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Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at an additive white Gaussian noise channel which we have said is the simplest

one of the simplest models that can be use to represent a digital communication system

or a digital  communication channel or the effect of channel or which can be used to

model the effect of the channel in a digital communication system.

(Refer Slide Time: 00:37)

And we have said in that we have looked at a simple system in which y t the received

signal y t is simply the transmitted signal x t plus the noise. So, the noise is adding to the

transmitted signal x t this is termed as additive noise, alright, we have already seen that

this noise which adds to the signal is termed as additive noise.
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Now, the other important property; the other type of noise which is one of the most

popular noise models in a typical communication system is to consider Gaussian noise

that is noise N t noise process N t that is noise N t which is random and which is a

function of time therefore, it is a random process. So, noise this is random plus it is a

function of time, it implies this is a random process, correct.

(Refer Slide Time: 01:45)

Now, another very popular model for noise is to consider this noise process N t as a

Gaussian random process, another very popular model, since most naturally occurring



random processes are Gaussian. So, popular noise model is a Gaussian noise or basically

a Gaussian noise process which basically means it is a noise is a random process. So, this

noise Gaussian noise basically means the noise is a Gaussian random process alright. So,

this implies noise is a Gaussian random process. Now, we are going to see the properties

of the Gaussian random process. So, this means that your noise is a Gaussian random

process.

(Refer Slide Time: 02:45)

Now, what is the meaning of this Gaussian random process, random process we call the

random process  is  a  Gaussian  random process.  Now,  let  us  characterize  a  Gaussian

random process, a Gaussian let us characterize a Gaussian random process. Now, we call

a random process N t is Gaussian random process, if the joint statistics of if the statistics

of all orders are jointly Gaussian is Gaussian random process, if statistics and that this is

important statistics of all orders not just a single orders statistics of all orders.
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If statistics of all orders are jointly Gaussian, this implies this means this basically means

that is if you look at noise samples N t 1.

(Refer Slide Time: 04:26)

That is that is if you consider noise samples N t 1, N t 2 up to N t k these are basically

you can see these are k noise samples. These are k noise samples at times t 1 that is what

we are basically doing is we are taking this noise process N t. And we are considering k n

noise samples at time instants t 1, t 2 up to t k this noise samples are given as N t 1 and t

2 up to N t k.
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And you look at if you look at the joint distribution of these now k noise samples. If you

look at the joint distribution of the k noise samples, let us denote this by F of N t 1

comma N t 2 comma and so on N t k n 1 n 2 up to n k, this is the joint distribution of the

noise samples.

(Refer Slide Time: 06:23)

Now, if this joint distribution of noise samples, if this is jointly Gaussian alright. This

means it has a multivariate Gaussian density. If this is similar to the scalar Gaussian

density,  there is  a  multivariate  Gaussian density  that  is  considering  multiple  random



variables that is follows a multivariate follows the multivariate Gaussian density. And

this has to be true for not any particular correction follows the multivariate Gaussian

density for all choices of t 1, t 2, t k and more importantly and also not more importantly

also for all k. That is if you choose any k points if this follows if there are N t 1 and N t

2, N t k for all such noise samples all such combinations of k noise samples and for all

values of k.

If this follows a Gaussian density then it is termed as a Gaussian then as Gaussian then it

is termed as a Gaussian random process or basically also your noise is a Gaussian. If it is

a Gaussian random process noise plus Gaussian random process implies that is noise plus

not  Gaussian  not  simply  Gaussian.  But  a  Gaussian  random process  noise  plus  your

Gaussian  random process  is  basically  your  noise  which  follows  a  Gaussian  random

process is termed as a Gaussian noise.

(Refer Slide Time: 08:25)

So, as you can see we term noise as Gaussian basically if you the statistics of all orders

are jointly Gaussian what that means is if you look at the noise process N t consider k

samples at t 1, t 2, t k, N t 1, N t 2, N t k. If the joint density probability density function

of N t 1, N t 2, N t k is Gaussian that is it is jointly Gaussian for all such samples that is

for all such instance t 1, t 2, t k. And for any possible value of k that is also important, it

is not fixed it should not be it is not for a particular value of k, but for any such value of

k that is for k equal to 1, k equal to 5, k equal to 10 or a 1000 that is we take a 1000 noise



samples  and  the  samples  are  arbitrarily  chosen  time  instance.  The  joint  probability

density function should be a multivariate should be Gaussian that is it should follow a

multivariate Gaussian density. And then such a random process is known as a Gaussian

random process.

In particular if the noise correct if the noise follows is a Gaussian random process, it is

known as Gaussian noise. And this as we have said is one of the most popular models all

right because most naturally occurring probability are random variables follow Gaussian

distribution or we can also say that the most naturally occurring random processes are

Gaussian random process. Therefore, the Gaussian noise all right to model this thermal

noise the circuits, the thermal noise in these circuits in this at the receiver, which arises

from basically  from the thermal  noise in the circuits  at  the receiver  is  modeled as a

Gaussian random process. And this is one of the most popular models popular noise

models for a digital communication system. And this is employed almost throughout that

is we will look at literature or digital communication a dominant fraction of literature

would employ the Gaussian noise process.

(Refer Slide Time: 11:04)

Now, in particular the Gaussian noise process is a very interesting property. If a Gaussian

noise process is wide sense stationary, if it is WSS that is if a Gaussian noise process is

wide sense stationary then it implies it is also strict sense stationary. Normally this is not

true for a random process wide sense stationary random process that is a strict sense



stationary  process  is  a  much  more  rigorous  condition.  So,  strict  sense  stationary

processes are all strict  sense stationary processes are a wide sense stationary,  but the

other way round is not true that is all wide sense stationary processes are not strict sense

stationary.

(Refer Slide Time: 12:38)

So,  strict  sense  stationary  processes  are  a  strict  subset  of  white  sense  stationary

processes. So, if you look at the set of random processes, if we look at the set of random

processes then there are several random processes that are wide sense stationary, but only

a few of them are strict sense stationary. So, typically if it is strict sense stationary, it

implies wide sense stationary. Typically wide sense stationarity does not because wide

sense stationarity is a much more relaxed condition. So, typically wide sense stationarity

does not imply strict sense stationary.
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However  for  a  Gaussian  random process  wide  sense  stationarity  implies  that  is  the

interesting for a Gaussian only for a Gaussian random process wide sense stationarity

implies.  But  this  is  important  to  realize  that  only  this  happens  only  for  a  Gaussian

random process. It is not for any general random process only for the specific case of a

Gaussian random process a wide sense stationary that is a Gaussian random process is

wide sense stationary then it is also strict sense stationary. And it briefly revise, we can

briefly see what are the conditions a wide sense Stationarity. Random process wide sense

stationary that is N t is wide sense stationary if well expected value of N t equals mu for

all t that is the mean is constant.
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And expected value of N t that is the correlation or the cross correlation between two

time instance t and t plus tau t and t plus tau the correlation depends only on R N N of

tau  once  again  for  all  t  comma tau.  This  depends only  on tau you can  see  that  the

correlation between N t and N t plus tau depends only on the time difference tau. So,

these are the conditions for wide sense stationary. So, these are the conditions for wide

sense stationary. And for a Gaussian random process what we have shown is that if these

conditions are satisfied, if the Gaussian random process or the Gaussian noise process is

wide sense stationary then it is also strict sense stationary. But we have to keep in one

has to keep in mind that this is only for a special random process that is if the random

process is Gaussian.
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Now, let us look at the other property. So, we have seen additive. So, we have seen the

following properties,  we have seen the noise additive property of the noise Gaussian

property when is the noise Gaussian. Now, we are going to see a different property which

is the white whiteness or when do we call noise as white noise. So, we have to see the

property of white noise. So, the other important thing is property of noise is white noise.

Now, this property is motivated by the following observation noise typically has very

low noise typically has very low correlation that is temporal correlation. If you look at

the  correlation  that  is  if  you  look  at  a  noise  process  then  the  noise  process  looks

something which is very erratic very, very, very, erratic something that is unpredicted I

mean if I have to draw it.
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Let me just draw it appropriately that is the whole point the noise process is very erratic.

So, noise process is very erratic. It has very low temporal unlike a signal which is very

smooth for instance if you look at a signal which is smooth, so you have a noise process

which is very erratic. And the signal typical signal which is very smooth because you

have a high level of temporal correlation this has a high level of temporal correlation or

correlation  into  highly  correlated  in  time.  On  the  other  hand,  noise  has  very  low

correlation; noise has very low correlation across time. And the signal the typical signal

has very is smooth; it has a very high level of temporal correlation.

(Refer Slide Time: 20:19)



So,  one  way  to  model  this  very  low  temporal  correlation  is  noise  is  to  model  the

correlation that is if you look at any two time instants expected value of N t into N t plus

tau equals  eta  by two times  delta  tau.  And this  looks like  that  is  if  you look at  the

correlation between this is this quantity is nothing but expected value of N t and N t plus

tau this is a correlation between N t and N t plus tau. We are saying that this correlation

between N t and N t plus tau is eta by 2 times delta tau, which means it looks something

like this.

(Refer Slide Time: 21:09)

This is the axis; this is tau. And this is R N N of tau that is if we plot this correlation R N

N of tau. Now, this correlation is simply an impulse function scaled by this is simply an

impulse function that is it is simply that is if you look at this correlation it is simply an

impulse scaled by impulse scaled by eta by 2 pulse scaled by eta by 2. So, this is simply

an impulse this is simply an impulse scaled by eta by 2 which means if a tau is not 0, this

is 0. You can observe that delta tau correct delta tau equal to 0, if tau naught equal to 0

implies which implies at all these points that is tau not equal to 0, correlation is 0 that is

noise. That is if you look at this expected value N t that is if you look at this correlation

expected value of N t N t plus tau this is equal to 0, if tau is not equal to 0.
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What this is saying is if you look at any two different time instants t and t plus tau that is

t and t separated by a small time difference tau, the noise samples at these two incidents

are uncorrelated. And of course, further we are not saying it is independent if the noise

process is Gaussian then they are also independent.  But anyway at this point for any

general noise process which is white. If the noise the noise samples expected value of N t

N t plus tau noise samples are two different instance any two different instance N t and N

t plus tau is 0 that is they are uncorrelated. Such a noise is known as white noise that is

expected value of N t into N t plus tau is eta by 2 times delta tau. If tau equal to zero it is

delta zero eta by 2 times delta 0 if tau is not 0, then it is 0.

So, the noise correlation the noise correlation is given by the temporal correlation or you

can look at the autocorrelation function of the noise is given by eta by 2 times delta tau

such a noise is termed as white noise. This is termed as white noise, which means that

noise at any two different time instance noise sample at any two different time instants

are uncorrelated. The key operative word here is different any two different time instants

t comma t plus tau are uncorrelated and it is known as white noise.



(Refer Slide Time: 25:44)

Because if you look at the power spectral density, remember we have R N N tau equals

eta by 2 times delta tau. If you take the Fourier transform of this then you get the power

spectral density that is S N N of F and that is basically the Fourier transform of eta by

two delta tau and the Fourier transform of delta tau is nothing but unity. So, S N N by 2 f

is eta by 2 simply for all frequency it is simply eta by 2. So, therefore, if you look at the

power spectral density, remember this R N N tau, this is the autocorrelation function S N

N F this is the power spectral density, this is the power spectral density that is the PSD.
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And if you look at the PSD, PSD of white noise is simply eta by 2 that is if you look at

the PSD, PSD is simply eta by 2 that is it is uniform that is it is a uniform power spread

over all frequencies that is power the power spectral density is flat. Therefore, power is

spread uniformly over all frequencies. So, similar to white light which has power spread

uniform they are all frequency over all visible light frequency components all right the

power spectral  density  you observe for  white  noise has  a  power that  is  distributing.

Remember we said the power spectral density characterizes the distribution of power of a

random process in the frequency domain.

So, therefore, for this power spectral density; which is proportional to delta tau. If you

take the Fourier transform, Fourier transform of delta tau is 1. So, Fourier transform of

eta by 2 times delta tau is simply eta by 2. So, therefore, the power spectral density is flat

over the entire frequency domain, which means that the power is spread equally over all

the frequency components from minus infinity to infinity, hence this is termed as white

light. Since, it is similar its behavior or its power spectral densities power distribution

across  the  frequency  is  similar  to  that  of  white  light  which  has  uniform frequency

uniform distribution of power across all components in the visible light spectrum. So,

this is basically, so power we see PSD is flat power is uniformly distributed.

(Refer Slide Time: 29:01)

So, you see the PSD is flat power is uniformly distributed overall frequency components

similar to white light.
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Remember white it is a combination of all the colors. So, let is us implies this is such

noises hence the system dissimilar  to white light  hence termed as white noise hence

termed as white noise. The PSD, which is flat over the frequency domain hence termed

as white noise hence termed as white noise. This is termed as white noise that is the

whole point.
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Therefore, now we can say that the noise process, now we have seen the three properties

additive, Gaussian and white. So, now we can say noise which is additive, now these are



the  three  different  components.  And  notice  that  none  implies  other  noise  which  is

additive  plus Gaussian plus white  that  is  noise which is  additive  plus  Gaussian plus

white.
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If the noise is three different things satisfies these three different properties,  then the

noise is additive if only then the noise is additive, white, Gaussian. And further realize

that all these three conditions are very different none of them implies the other or no

subset of them implies that. For instance the noise additive does not imply it is white or

Gaussian  noise  is  white  does  not  necessarily  mean  the  noise  is  Gaussian  noise  is

Gaussian  does  not  mean that  the  noise is  white.  So,  all  these  three  components  are

independent all these three different properties are separate all right none of them implies

the others. Only if the noise satisfies these three separate criteria that is if a it is additive

it is white and it is Gaussian such a noise is known as additive white Gaussian such a

channel is known as an additive white Gaussian noise channel.

So, now, we go back to our digital communication channel model. This channel model

where y equal to x plus n. Remember we have looked at this channel model y equal to x

plus n, where we have y t equals x t plus n t such a channel is known as an additive white

Gaussian.
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Let me just quickly draw a simple schematic. This is a very simple yet a very powerful

channel  model,  which  can  be  used  to  characterize  a  general  digital  communication

channel. So, we have the transmitter signal, it is a very simple channel model as you can

see, I have the transmitted signal x t, I have additive noise. So, I have additive noise n t

and I have this thing. So, signal plus noise, noise is additive. If the noise if n t is white

and Gaussian and of course, you can see from the figure that the noise is additive implies

it is an AWGN, noise is additive and Gaussian, it is an AWGN channel. AWGN channel

implies that you have an additive noise, AWGN channel implies that basically noise is

additive.

Again I am reiterating the same thing because it is important plus white plus Gaussian.

So, one of the most popular models one of the most popular models as well as one of the

most practically applicable models plus you can also say that practically applicable for a

digital  communication  system,  one  of  the  most  popular  models  plus  also  practically

applicable for a digital  communication set.  So, basically that summarizes the AWGN

noise AWGN channel model which is basically a transmitted signal x t your noise n t is

additive; in addition if the noise n t is white and Gaussian. So, noise n t is additive. So, x

t plus n, it is a very simple model, x t signal transmitted signal plus noise n t gives rise to

that receive signal y t in addition.
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So, the noise is additive in addition if the noise is white and Gaussian this is known as an

additive  white  Gaussian  noise  channel.  One  of  the  most  simplest,  one  of  the  most

frequently  used  and  one  of  the  most  popular  and  also  one  of  the  most  practically

applicable channel models or models for a typical digital communication system. 

So, we will stop here; and based on this model, we will analyze the performance look at

optimal  schemes  for  this  digital  communication  system,  for  a  digital  communication

system and also their performance in the subsequent modules.

Thank you very much.


