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Hello.  Welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at  source coding, various aspects of source coding, different  kinds of source

codes in particular.  We are interested in prefix free or instantaneous codes and in the

previous module, we have looked at an important inequality that has to be satisfied by

the lengths of the code words of a prefix free code that is given by the kraft inequality.

We will use this kraft inequality to derive now a fundamental bound on the minimum

possible average code length for a prefix free code, ok.

(Refer Slide Time: 00:50)

So, in this module, we would like to focus again on the average code length. As I have

specified before, this is one of the fundamental aspects of a code that is we would like to

characterize correct, we would like to characterize the minimum possible average code

length. What is the minimum possible average code length? We would like to ask this

question again towards this.



(Refer Slide Time: 01:54)

We would like to consider X drawn from a source with the alphabet s naught s1 up to sm

minus 1 and we have probability  of each symbol s  i  is  equal  to  probability  of each

alphabet s i is purely symbol s i is p i. Now, the length we have seen, we have defined

average length of the codeword.

(Refer Slide Time: 02:53)

Let the length of codeword be l i, then we know that for the average code length or

average codeword length is nothing, but expected value of l which is i equal to 0 to m

minus 1 p i, that is the summation of the lengths l i weighted by the probabilities p i,



correct.  This is expected value of, this is the average codeword length which we are

denoting  by  l  bar.  We  have  seen  this  before  that  the  average  codeword  length  is

summation p i l i equal to 0 to M minus 1.

Yesterday we have also defined, we have also seen the kraft inequality that the codeword

lengths  of  any  prefix  free  code  have  to  satisfy  and  the  kraft  inequality,  this  is  a

fundamental inequality which we had derived from a binary representation. Let me just

refresh your memory. So, I have i equal to 0 to M minus 1 to the power of minus l i less

than or equal to 1.

(Refer Slide Time: 4:20)

Now, what we would like to define is, we would like to define this quantity q i which is

equal to 2 to the power of minus l i by summation j equal to 0 to M minus 1 2 to the

power of minus l j. Just changing the index using a different index, instead of I am using

j because I am using i equal to j equal to 0, j equal to 0 to M minus 1 2 to the power of

minus l j.

Now, what can we say about this q i? Now, we have defined this q i. Now, if you can

look at this q i, the first thing you will observe is that q i is greater than or equal to 0. All

the quantities involved are positive. Q i is greater than 0. Since each 2 to the power of

minus l i greater than equal to 0 summation j equal to 0 to M minus 1 2 to the power of

minus l j is greater than equal to 0. So, q i is less than equal to 0.
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Further, we have 2 to the power of minus l i, each 2 to the power of minus l i. Remember

all the quantities are positive. This is less than equal to summation j equal to 0 M minus

1  2  to  the  power  of  minus  l  j  because  2  to  the  power  of  minus  l  i  is  one  of  the

components in this summation, all right. So, all the quantities are positive and 2 to the

power of minus l i is in fact one of the quantities in the components in the summation on

the right hand side.  Therefore,  2 to the power of minus l i  is less than and equal to

summation j equal to 0 to M minus 1 2 to the power of minus l j which implies 2 to the

power of minus l i divided by summation j equal to 0 to M minus 1 2 to the power of

minus l j. This is less than or equal to let me just write this a little bit more clearly. This

implies 2 to the power of minus l i divided by summation j equal to 0 to M minus 1 2 to

the power of minus l j less than or equal to 1 or rather this is our, in fact nothing, but our

q j or q i. This is q i which is less than equal to 1.
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So, we have q i 0 less than or equal to q i less than or equal to 1. Further summation i

equal to 0 to M minus 1 q i equals summation i equal to 0 to M minus 1 2 to the power of

minus l i divided by summation j equal to 0 to M minus 1 2 to the power of minus l j, the

denominator is a constant.

(Refer Slide Time: 07:59)

So, taking summation over the numerator, what we have is summation i equal to 0 to M

minus 1 2 to the power of minus l i divided by summation j equal to 0 to M minus 1 2 to

the power of minus l j. This is equal to 1.



So, what we have is each q i is positive, that is it is non-negative. 0 is less than equal to

lies between 0 and 1 and summation of all q i is equal to 1. So, naturally the q i form a

probability mass function on the probability distribution correct. So, q is correct. So, we

have 0 less than or equal to each q i less than or equal to 1 and we also have summation i

equal to 0 to M minus 1 q i equal to 1. So, q i is from a probability distribution.

Now, let us use the concept of the Kullback Leibler Divergence which we have seen

before.
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So, now we have a probability distribution Pi P0, we have a probability distribution P0

P1 Pm minus 1 q0 q1 qm minus 1 and therefore,  the  KL divergence  between these

Kullback Leibler Divergence between these two probability.
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So,  we have two probability  distributions,  the KL divergence  which is  defined as  D

which is equal to summation i equal to 0 to M minus 1 p i log to the base 2 p i divided by

q i. This must be greater than or equal to 0. This is the KL divergence.

Remember we had looked at KL divergence between two probability density functions. 

(Refer Slide Time: 10:47)

We had defined it something like this, the KL divergence between, for instance if F and g

which are two probability density functions, F of x and g of x, we had defined it for

continuous probability density functions as two probability density functions correspond



into the random variable x as f of x g of x log 2 to the base 2 f of x. This was a definition,

where f of x and g of f are probability density functions.

Now, what we are doing is, we are again doing the same thing for discrete probability

mass functions. P and q are probability mass functions correct, probability distributions

on discrete  symbols s0 s1 s minus 1.  So,  what  we have done is,  we have taken the

definition of KL divergence which we have defined for probability density functions and

we have in fact now given the equivalent definition for probability mass functions which

is obtained by of course replacing this integral by summation, that is replace continue

integral  which  is  the  continuous  sum replacing  my  integral  by  sum and  of  course,

probability  density  functions  by  probability  mass  functions  probability  densities  by

probability masses. So, we have this is basically KL divergence for probability and you

can say probability mass functions. So, that is what we have over here.

(Refer Slide Time: 13:12)

Now, therefore, we have KL divergence greater than or equal to 0. Remember we said

KL divergence and in fact, we had established proved using log concavity, right using

concavity of the log function that KL divergence is always greater than equal to 0 and the

same  property  of  course  we  are  done  it  in  the  case  context  of  probability  density

functions, but the same is also valid for probability mass functions, ok.

This implies that summation i equal to 0 to M minus 1 Pi log to the base 2 Pi log to the

base 2 Pi greater than equal to 0 which implies summation i equal to 0 to M minus 1 Pi



log to the base Pi minus plus summation i equal to 0 to M minus 1 Pi log to the base 2 1

over q i greater than equal to 0. I can equivalently write in this fashion.

Now, if you look at this quantity Pi log to the base 2 Pi, you will realize that this is

nothing, but minus H of x and now q i remember equals to the power of minus li divided

by summation j equal to 0 to M minus 1 2 to the power of minus lj which implies 1 over

qi is simply summation j equal to 0 to M minus 1 2 to the power of minus l j divided by 2

to the power of minus l i.

(Refer Slide Time: 15:06)

So, log 2 to the base log to the base 2 1 over q i, this is nothing, but log to the base 2.

Well, summation j equal to 0 to M minus 1 j equal to 0 to M minus 1 2 to the power of

minus l j divided by 2 to the power of minus l i 2 to the power of minus l i can come to

the numerators or that becomes 2 to the power of l i. So, this is simply log to the base 2 2

to the power of l i. Let me just write that also log to the base 2 2 to the power of l i plus

log to the base 2 summation j equal to 0 to M minus 1 2 to the power of minus l j.

Now, if you look at this, this quantity is nothing, but l i. So, this will be l i plus now if

you look at this quantity here, we know from Krafts inequality or from kraft inequality,

we know that summation j equal to 0 for any prefix code 2 to the power of minus l j is

less than and equal to 1 which means implies natural log to the base 2 summation j equal

to 0 to M minus 1 2 to the power of minus l j. This has to be less than or equal to 0

correct from Kraft inequality. We know that summation j equal to 0 to M minus 1 2 to the



power of minus l j is less than or equal to 1. Therefore, if we take the logarithm of that

quantity, the log has to be negative.
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So, I can write this as minus epsilon, where epsilon is some positive quantity. So, that is

the whole idea. So, I can write this as minus epsilon, where epsilon is some positive

quantity and that is the reason for that is because, what is minus epsilon. Minus epsilon is

log to the base 2 summation over j 2 to the power of minus l j and therefore, this is equal

to l i minus epsilon. So, now, if you substitute these quantities here, this is equal to l i

minus epsilon and now, what we have interestingly is if we call this equation as star.
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If we call this equation as star, from star what we have from equation star above, what

we have is minus H X plus minus H X plus minus H X plus, well P i into l i minus

epsilon minus H X plus summation i equal to 0 to M minus 1 P i into l i minus epsilon is

greater than or equal to 0 from KL divergence implies summation i equal to 0 to M

minus 1 P i l i greater than or equal to H X plus summation i equal to 0 to M minus 1 P i

into epsilon. Epsilon is constant that comes out summation P i which is equal to 1. So,

this is simply H X plus epsilon implies this is greater than or equal to and epsilon is

positive. Recall epsilon is greater than equal to 0 which implies this is greater than equal

to H X, ok



(Refer Slide Time: 20:29)

So, this is nothing, but l bar. So, what we have is l bar greater than or equal to H X which

is the entropy of the source, that is summation P i log q over P i and there we have a very

fundamental result, a fundamental bound on the average length of any prefix free code

using the Kraft inequality. We have shown that the average length of any prefix code has

to be lower bounded by the entropy of the source and this is a very fundamental elegant

and interesting result. So, what this shows us is that, what this is telling us is that the

average length of any prefix code, thus we have a fundamental bound on average code

length for a given source and remember not any code, average code length, we have to

qualify this. This is for any prefix free code, average code length for any prefix free code

and we have shown that this is bounded by the entropy.
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So, the average code length l bar greater than equal to H X, that is average code length

that is entropy is a lower bound. What this tells us that entropy is a lower bound for the

average code length. So, this is very fundamental. What this says is no matter what prefix

free code you design, all right this has to satisfy the kraft inequality. What that tells us is

that the average code length cannot be lower than the entropy. At most, it can be equal to

entropy. It has to be greater than and equal to entropy.

So, the efficiency of a code can now be judged by how close is the average code length

of  the  entropy.  So,  we  have  a  convenient  means  to  judge  the  efficiency  of  a  code.

Remember we said that lower the average length of the code, the more efficient it is and

now, we have shown that you cannot arbitrarily reduce it to any non-zero quantity. This

is lower bounded by the entropy. So, you can approach entropy. I mean one can desire or

one can design a  code to approach the entropy as closely as possible,  but  cannot of

course make it lower than the entropy and therefore, the closeness of this average code

length to the entropy you can characterize, can be used as a measure to characterize the

efficiency of the designed prefix free code for a given source, all right.

So, now how closely can you approach this entropy and how to approach, it is something

that we are going to see in the subsequent modules.

Thank you very much.


