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Hello, welcome to another module in this massive open online course. So, so far we are

looking at source coding and we have looked at different kinds of codes. And we said

that we are interested in the design of uniquely decodable codes and in particular prefix

free or instantaneous codes all right. So, we are interested in design of prefix free or

instantaneous which form a subset of uniquely decodable codes. Now let us look at a

new concept coding in a of course, in a the design and as well as decoding of a such

prefix free codes. And this is the binary tree representation of a code ok.
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So, in this module we would like to start looking at a binary tree Representation of a

code. And as I have told you this is useful for useful for in design as well, the design as

well as decoding design as well as decoding of course, it is useful for the design as well

as decoding of the codes.
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For  instance  consider  the  code  for  symbol  code  s  naught  represented  by  1  0,  s  1

represented by 0 0, s 2 represented by 1 1 and s 3 represented by 1 0. Now if you look at

this code.
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I  can  represented  it  as  a  binary  tree  and the  binary  tree  representation  would  be  as

follows. So, we construct a binary tree for this code.



So, I start with the root, therefore 1 I go above for 0 I go below. So, for instance s 0 is 0

followed by another 0. So, this is s 0. Now s 1 would be well I am sorry, this is s 1 s 1

would be 0 followed by another 0. So, now, if I would like to do s 0 s 0 would be 1

followed by 0. So, for 1 you go to the top of the tree 1 you go the branch, take a branch

going above and then followed by 0. So, this is s 0 and s 2 is 1 1. So, you go 1 and again

take the branch above that is 1. So, this is s 1 and s 3 would be 1 1 0. So, 1 1 and you

take a further 0 that would be your, that would be your s 3. So, s 3 would be 1 1 0. So,

this s 1 So, s 1 s 0. So, we have represented the code using a binary tree that is what you

done we simply represented the code using a binary tree ok.

So, this is a binary tree representation for the above code. Now if you can see in this

code you can see that s 1 the code word s 1 lies allow or I am sorry this is the code word

s 2 s 2 is 1 1 this is the code word s 2. So, you can see that s 2 lies along the path to s 3, s

2 lies along path 2.

S 2 lies along the path 2 that is symbol 2 lies along the path 2 symbol 3. And you can see

s 2 you can see s 2 this is 1 1, s 3 is 1 1 0. So therefore, s 2 forms a prefix s 2 forms a

prefix of s 3. Does we can see that s 2 in this binary tree representation of the code s 2

the node s 2 which represents which represents the code word, which is represented by

the code word 1 1 that lies along the path 2 the code the code word for s 3 which is

represented by 1 1 0 therefore, this is not a prefix free code ok.
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So therefore, this is not you can see that it is not it is not a prefix free code, because s 2

forms up s 2 lies alone. 

So in general, if any code word right, if any code word lies along the path that is if any

code word lies along the path, another code word in the binary tree representation then it

is not a prefix, it is not a prefix free code; it is not a prefix free code. If any code word

lies along. So, from the binary tree representation basically one can see it is a prefix free

code or not. For instance consider another code ok.

Consider now s 0 represented by 1 s 1 represented by 0 1, s 2 represented by 0 0 1 and s

3 represented by 0 0 0.
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Now, if you look at this code you can see that well again let us look at the binary tree

representation, go above for 1 below for 0 s 0 is 1. So, this is basically your s 0 s 1 is 0

comma 1.

S 1 is you go a below for 0 0 comma 1 this is s 1 and a for s 2 you have 0 0 1, for 0 0

goes below, s 2 is 0 0 1 and a s 3 is 0 0 0, s 3 0 0 0. And now if you can see basically you

can say that no symbol lies or in the no code word for knows the code for any symbol.

So, this is the binary tree code word for any symbol right.
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So, all codes end on leaf nodes, all code words end on leaf nodes. These are known as

these are the various leaf nodes. All code words are on leaf nodes and basically, no code

word is on the path of, an for instance if you would like to go to s 2 this is well we just

draw it.

This is the path to s 2; this is the path to s 1, path to s 0 path to s 3. So, no code word is

on the path of any other code word. At another way to says no code word is an ancestor

of for code word right. So, our ancestor is basically where in node at that nodes split is

into further nodes in the binary tree. So, this node is to is said to be the ancestor node of

the of the corresponding branches and the leaves that emanate from those branches. So,

no code word  is  the  ancestor  of  another  code  for  instance,  here  you can  see  in  the

previous 1 s 2 is the ancestor of s 3. Which is basically the same thing you are saying s 2

is a prefix of s 3, s 2 is an ancestor node of s 3.

However here you have no code is an ancestor no code word, all these are the same

things, no code word is an ancestor node, no code word is an ancestor node for another

code word.  And therefore,  no code word is  an ancestor  code for  another  code word

therefore, this is a, Therefore this is a prefix free code. 

So, in a binary tree for a prefix free code well, no code lies along no code word lies along

path to another code word and no code word is basically ancestor node to another code

word. All the code words are along with leaf nodes, which means the end nodes of any



other branch they do not form intermediate nodes. So, that is a binary trees. So, from a

binary tree representation one can see that if it is a one can check, quickly if it is a prefix

free node or prefix free code or not. Now again if you look again at the same at the code

let me draw the binary tree again.
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This is 1 s 0, this is 0 this is 1, this is s 1 this is 0 1 0 s 2, s 3. Now if you look at the

depth of this tree binary tree the depth equals l max equals 3. So, you have 0 0. So, if

depth is the maximum number, that is the maximum number, you can think of that depth

of the binary. So, the binary tree.

L max l max is the length. So, here you can see l max equal to 3 that is you have a code

word with 3 bits that is maximum number of bits in a code word is 3. So, the maximum

length of the code word is 3 and you can see that the binary depth of the binary tree is

also 3 there is a numbers of levels  in the binary tree used for representing the code

number of levels. Number of levels and binary tree representation equal to 3, this is l

max l max is equal to maximum number of bits in code word. So, you can see that if you

look at the code words. 
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Again If you go back you have l 0 equal to 1 this is the length one bit 1 1 equal to 2 and l

2 equal to 3, length of code word 2, length of code word 3 equal to 3.

So therefore, from this you can see that l max is equal to 3. So, then so it is very simple

that maximum 3 bits is are refuse to represent each code word. And that is the depth of

the binary tree that is the number of levels in this binary tree. Now you will observe

something interesting if you go to s naught, now let us look at, now it is not difficult to

see that for a given binary tree. Now if you have the code word of s naught now because

s naught terminates this leaf node, now the number of nodes that are eliminated because

the leaf node terminates at n naught this is at leve1, 1 level l I am sorry, l 0 equal to 1 this

at level l 0 equal to 1. Now therefore, the number of terminated nodes.

Now,  what  happens  is  because  you  are  terminating  this  leve1  1  with  s  naught  the

corresponding number of nodes that are removed at level 3. So, the number of nodes you

can see here in this case number of nodes eliminated at level 3 is equals 2 to the raise to l

max minus l i that is basically, in this case that is 2 raise to 3 minus 1 l i that is i equal to

0. So, 2 raise to 3 I l i equal to i equal to 0. So, l naught equal to 1 2 raise to 3 minus 1

that is 2 raise to 2 equal to 4 and this is an interesting result. So, what you are observing

is because we are terminating right, in this prefix free code because we are terminating

the node the code had because no other code word can lie further down from s naught



right. For that matter along any code word because then it would be a prefix that it would

not be a prefix free code ok

So therefore, in order for it to be prefix free code you are terminating that particular

branch at that code word s naught. Which means that further down at the depth of the

binary tree that is the l max this leads to a removal from the binary tree of 2 to the power

of l max minus l i. In this case 2 to the power of l max minus l naught for the ith code

word it will lead to the removal of 2 to the power of l max minus l i in general. For

instance,  if you can look at  s 1 s 1 is at  the leve1 1, I cannot draw this  binary tree

completely, but if you look at level 2 if this is at level 2 correct s 1 is at level 2 because it

as 2 bits 0 1. So, that will need to the removal of 2 to the power of l max that is 3 minus

1 1 that is 2 2 to the power of 3 minus 2 nodes at depth l max. 

So, s 1 2 to the power of 3 minus 2 equal to 2 nodes. Now s 2 and s 3 are already at level

3 that is the depth. So, s 2 corresponds to one nodes s 3 corresponds to the one nodes that

is 2 to the power of l max that is 3 minus 3 minus l i l I is also 3 bits 2 to the power of 3

minus 3 0 that is one node each node is corresponds to one node at level. So, what you

see  is  each  node  in  this  binary  tree  corresponds  to  that  if  you  extend  it  further

corresponds to the depth of the binary tree that is l max corresponds to 2 to the power of l

max minus l  i  distinct  nodes.  Now these  nodes  cannot  overlap corresponding to  the

different code words because remember, it is a prefix free code right. So, no codes lies

along the path to another code word therefore each code word.
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So, to summarize this in the prefix free code corresponds to 2 to the power of l max

minus l i distinct, distinct code words at l max at depth l max or a depth of the binary tree

at depth l max. Now from this we observe that summation, from this we observe that

summation i equal to 0 m minus 1 2 to the power of l max minus l i must be less than or

equal to that is 2 to the power of l max.
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Since 2 to the power of l max is the maximum number of nodes possible at depth l max.

For instance if we look at l max equal to 3, correct?
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L max equal to 3, the maximum number of nodes equal to 2 to the power of 3 equal to 8.

Since what you observe is it is very simple add depth l max the maximum number of

nodes that are possible in this binary tree is 2 to the power of l max. Now in each node it

each code word You are removing or it corresponds to 2 to the power of l max minus l i

distinct code words at the depth l max.

Therefore, the sum of all these nodes corresponding to e these different code words if

you add the sum of all these nodes at the l depth max corresponding to all these code

words, that must naturally be less than or equal to 2 to the power of l max, which is the

maximum number of distinct nodes that is possible at the depth l max. And there from

this we have a simple result.
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We have now rewriting this summation i equal to 0 to m minus 1 2 to the power of l max

minus l i less than or equal to 2 to the power of l max. This implies that you take 2 to the

power of l max common summation i equal to 0 to m minus 1 2 to the power of minus l i

less than or equal to 2 to the power of l max.
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Now, cancel 2 to the power of l max now both sides and what you will get is a very

elegant inequality which says summation i equal to 0 to m minus 1 2 to the power of

minus l i is less than or equal to 1. And this is a fundamental inequality that as to be



obeyed by the prefix free code which we have derived from the binary tree and the

system as the Kraft inequality.

The system as the Kraft inequality for a, this is the Kraft inequality for prefix that is we

are considering, s 0 s 1 s 2 s m minus 1 with lengths l 0 1 1 l 2 up to l m minus 1. These

are the corresponding lengths; these are the corresponding code word lengths.
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So, with these code word lengths the Kraft inequality tell me for a prefix free code we

have to satisfy i equal to 0 to m minus 1 2 to the power of minus l i less than or equal to

1. This is your Kraft inequality, this is the Kraft inequality. This is a Kraft inequality and

a now interestingly the converse can also be shown to shown to be true and it naturally

follows, if you can look at the proof that if there are lengths l 0 1 1 l m minus 1 which

satisfy this Kraft inequality,  then there exists a prefix code for this alphabet with the

given code word.  Let us,  let  us node that  also converse is  also true which basically

implies if lengths l i satisfy condition above.

There exist a prefix free code there exists a prefix free code with code word lengths

equal to l i. So, that is what the Kraft inequality tell us. So, this module we have looked

at a very important result that is Kraft inequality based on a binary tree representation for

a prefix free code we said that the binary representation of the prefix free code is such

that no code word is an ancestor code, word ancestor node for any other code word all

right.



And using this property looking at them total number of distinct nodes that are possible

at the depth maximum depth of the binary tree that is at the level l max corresponding to

the maximum number of maximum length of the code word in this in any code. We have

shown that this code word lengths l i must satisfy summation i equal to 0 to m minus 1 2

to the power of minus l i less than or equal to 1 the system as a Kraft inequality. And

subsequently we will use the Kraft inequality to derive further insights about the nature

of the code and principles regarding the code construction all right. So, we will stop here.

Thank you very much.


