
Principles of Communication Systems - Part II
Prof. Aditya K. Jagannatham

Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Lecture - 42
Uniquely Decodable Codes, Prefix-free Code, Instantaneous Code, Average Code

length

Hello. Welcome to another module in this massive open online course. So, we are

looking at source coding that is representing the symbols emitted by the source as a

sequence of binary symbols, right as a sequence of binary bits of information and our

aim is to maximize the average length of code that is the average number of binary

symbols or binary bits used to represent each symbol, all right. In this context, yesterday

we have looked in the previous module at different kinds of course, we have looked at a

fixed length code, we have also looked at a variable length code, ok.

(Refer Slide Time: 00:57)

So, let us go about this. So, let us continue our discussion on this aspect of variable

length code. For instance, with M equal to 4, we have seen an example of a variable

length code s naught is 0, the alphabet s1 is represented by 1, s2 is represented by 0 0 and

s3 is represented by 1 1.

(Refer Slide Time: 01:40)

We see this is a variable length code in that different symbols have different bits,

different symbols have different number of bits. This is a variable length code.

(Refer Slide Time: 02:31)

However, we have also seen that this is not uniquely decodable, it is not uniquely

decodable, since you have the sequence 0 0 0. This can either correspond to s0, s2 or it

can correspond to s2 s0 and so on. So, it is not uniquely decodable which means that the

original that is the coded symbol sequence, this implies the coded symbol sequence

cannot be perfectly reconstructed or cannot be perfectly recovered and obviously, that is

bad. That is once we code the symbols, obviously we have represented them using a

sequence of binary bits. You would like to or you store them using sequence of binary

information bits. One would like to obviously at a later time or at the receiver if that

transferred across the channel, recover the original symbols by looking at the sequence

of binary bits.

Now, if the sequence of symbols cannot be recovered from this binary bits, then there are

going to be problems because the original message is lost, alright. So, it is a lossy coding

and the original message cannot be recovered. So, obviously we are interested, naturally

we are interested in designing uniquely decodable codes that is codes from which there is

one to one mapping, that is one to one mapping from that is for any that is there is a

mapping that is basically for any set off from a corresponding to a new set of sequence of

binary information bits. The corresponding symbols can be uniquely recovered that is

there are low two sequence of symbols which are mapped to the same sequence of

information bits, ok.

(Refer Slide Time: 04:55)

So, we would like to design uniquely decodable codes and for instance, if we can take an

example, again you can see that s0 s1 s0 is 1, s1 is 0 1, s2 is 0 0 1, s3 is 0 0 0. You can

see this is a uniquely decodable code for example if we receive the symbol.

(Refer Slide Time: 06:00)

If we received the sequence 1 0 1 0 0 1, I can immediately decode this as s0 followed by

s2, ok. So, there is no other symbol sequence corresponds to this bit sequence. So, this is

a uniquely decodable code.

Now, in part the reason for this you can see is because if you look at the set of

codewords, all right you have four codewords corresponding to the four symbols. You

can see that no codeword is the prefix of another codeword. You can see from this that no

codeword is a prefix of no codeword is a prefix of another codeword, so no codeword.

(Refer Slide Time: 07:36)

However, if you look at this, you can see that s0, that is 0 is a prefix of 0 0. So, s0 or

codeword for s0 is a prefix of the code for s2, right. Here the codeword is a prefix, the

codeword of s0 is the prefix of the codeword or s2, ok.

So, here you can see no codeword in this uniquely decodable code. S0 is 1, s1 is 0 1, s2

is 0 0 1, s3 is 0 0 0.

(Refer Slide Time: 08:43)

No codeword is the prefix of another codeword, ok and such a code, this is known

simply as a prefix free code or also known as a prefix code. Sometimes it is explicitly

called as a prefix free code or simply prefix code. Sometimes it is also known as a prefix

code is basically that no codeword forms prefix of another codeword. Prefix means

something that is placed before something that is in front of another word. Prefix of a

word is something that is in front of another word, right, no codeword. If code is known

as a prefix free code, if the mapping is such that no codeword forms a prefix of another

codeword, ok.

(Refer Slide Time: 10:15)

Now, such a prefix free code is uniquely decodable. So, prefix free code, the importance

of a prefix free code is that prefix free code is uniquely decodable, more over prefix free

code is also known as an instantaneous code. It implies that you do not need to wait for

the next codeword to decode the current. So, that is each codeword is decodable by itself,

that is it is not necessary to wait for the next codewords. So, what happens in

instantaneous code is for instance, if you look at each codeword correct, the moment you

look at a codeword, it can be a map to a symbol. You do not need to wait to the next

codeword to begin. For instance, if you take a look at this, let us again take a look at this.

Let say I have 0 0 0 followed by 0 0 1, ok.

(Refer Slide Time: 12:28)

So, I have this code 0 0 0 followed by 0 0 1 followed by let us say 1. Now, the movement

you will look at 0 0 0, I can map it back to s3, correct. The moment you see 0 0 1, I can

map it to s2. The moment you see s1, I can map it to, I do not need to find. It is not

necessary to wait until the next codeword. This is known as, such a code is known as an

instantaneous code and the prefix free code and an instantaneous code can be shown to

be one and the same. If it is a prefix free code, a code is a prefix free code if it is an

instantaneous, ok.

(Refer Slide Time: 13:48)

So, prefix free code and an instantaneous code and therefore, they are uniquely

decodable prefix free code and instantaneous code and instantaneous code and both of

these are uniquely or both of these are uniquely decodable, that is given a set of coded

bits, I can map it to a unique set of information. I can make it to a unique set of symbols,

ok.

So, prefix free codes and instantaneous codes and you interested in designing such code

that is basically instantaneous codes or prefix free codes. So, we will focus and of

course, one important point to note here is that uniquely decodable does not imply, that is

in other words, they can be other codes, other than prefix free codes which can also be

uniquely decodable, but we not be looking at them, alright. Then, when the most

important class of uniquely decodable codes or one of the most convenient lectures,

frequently used convenient class of codes which are uniquely decodable, I am basically

prefix free or instantaneous code and we will be interested in the design of such codes.

That is how to design the prefix free or uniquely decodable code for a source with a

given set of symbols with a set of probability, that is we are looking at a discrete.

As we have clarified in the previous model, we are interested in looking at discrete

memory less sources with a set of symbols with a fix set of probabilities and the

probability of each symbol does not depend on the probabilities of the symbols generated

in the past. There is probabilities of symbol. At time instant k do not depend on the

probabilities on the symbols generated in the past.

(Refer Slide Time: 16:09)

Let us now look at the average code length that is this is an important metric because this

is basically going to design the efficiency of code design. So, what is the average code

length? Now, the average code length and its relevance to compression for instance, let

symbol si be represented using li bits. S1 is represented in 0 0 0 equal to 3 bits, that is

length equals to 1, the length of s1 equals 3, ok.

(Refer Slide Time: 17:25)

Now, let the probability of occurrence that is probability X equal to si. This be equal to P

i. Now, the average code length or average codeword length is defined as summation

over all codewords i equal to 0 to M minus 1 P i l i.

(Refer Slide Time: 18:29)

So, average code length l bar, let us denote that by l bar. The average code length is

summation i equal to 0 to M minus 1. That is the average that is you have the length l i

weighted by the probability P i. This is the average length of the code and what we

would like to do now is basically we would like to develop efficient codes which

minimize this average code length that is the average number of bits that is required to

represent any symbol generated by the source.

So, an efficient code is one which has obviously the least average code length because

that requires the lowest number of bits on average to represent the symbol of the source

and naturally, it is therefore makes it easier to communicate transmit information over

the channel. It makes it easier to store the symbol generated by the source by coding

them appropriately because the space that is going to be occupied by the bits, the coded

bits is going to be minimum for this efficient code.

(Refer Slide Time: 19:54)

So, what we are interested in is, we would like to minimize average length as well as

develop fundamental insights into the code design process, that is for instance, we would

like to ask the question for a certain source, we generate certain set of symbols with

certain probability, what is the lowest average code length that is possible. That is how

low can I get the average code length to be? That is fundamental and therefore, one using

the answer to this fundamental question, one can target an appropriate code length,

alright. So, we will not only be looking a designing efficient codes, but we will also be

interested characterizing how efficient can that process be, how low can the average

length code be for a source with a given set of symbols with a set of probabilities. So, we

would also like to ask the question, we would also like to generate some fundamental

insights into this code design process, ok.

So, in the sense, how low or basically what is the minimum let us put it this way. What is

the minimum possible average code length for a given source? So, this is basically what

we would like to know, alright.

So, basically in this module, we have completed our discussion regarding the codes.

What we have seen is, we have seen uniquely decodable codes and an important class of

codes, prefix free codes which are basically no codeword is a prefix of another codeword

or which are also known as the instantaneous codes because one need not wait till the

next codeword to decode the current codeword, alright and what we have said is, we are

interested in designing such prefix free or instantaneous codes. And also, we are

interested in answering some fundamental questions as how low, alright, what is the

fundamental bound on the average code length for any code that can be designed for a

particular discrete memory less source, alright. So, that will help us design it. So, we

would like to come up with efficient schemes to design codes and we would also like to

characterize their efficiency. There is how far are we from the lowest possible average

code length that can achieve, that can be achieved for a particular source with certain set

of symbols given a certain set of probabilities for the symbols, alright.

So, with this we will stop this module here, and look at other aspects in the sub segment

modules.

Thank you very much.

