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Hello, welcome to another module in this massive open online course on communication

massive open online course alright and we are looking at the power spectral density of

the transmitted digital communication signal. And we have derived autocorrelation, the

autocorrelation of the digital communication signal as follows; expected value of x t into

x t plus tau. We have shown this is basically your R x x of tau. We have shown that this

is equal to that R x x of tau is equal to P d over T where P d is the power of the data

symbols,  T  is  the  symbol  duration  times  R  P  T  P  T  of  tau  where  this  is  your

autocorrelation of pulse P T t.
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In fact, for any pulse P, this will simply be R P P of tau we can use any pulse tau we

cannot we do not need to be necessarily we can use any pulse P T. We do not need to be

necessarily  limited  to  the  rectangular  pulse  P T P sub capital  T that  was simply  an

example.
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For instance, and now we also know that this R P P of tau is of course, this has Fourier

transform this is basically  your R P P of tau which is autocorrelation of pulse P t is

defined as minus infinity to infinity integral P t P t minus tau d t, this is R p t p t tau. And



if I take the Fourier transform of R p t p t tau, I obtain S P P of F correct S P P of F which

is the Fourier transform that is Fourier transform of R P P tau, which is R P P tau integral

minus infinity to infinity R P P tau e to the power of minus j 2 pi F tau d tau. So, S P P F,

this is the Fourier transform of R P P tau and this can be shown to be interestingly.
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We can show that S P P F is equal to magnitude of P F square, where P F is the Fourier

transform of pulse P t that is what we mean is. P F equals integral minus infinity to

infinity P t e to the power of minus j 2 pi F t dt and therefore, this is magnitude of P F

square where P F is the Fourier transform of the pulse P t. And therefore, this quantity S

P P of F this quantity is termed as the energy spectral density or simply the ESD energy

spectral density of pulse P t which is a Fourier transform the autocorrelation function of

the pulse P t.
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And therefore, what we have is we have the autocorrelation of the digital communication

signal equals P d over T times the autocorrelation of the pulse R P P. If you take the

Fourier transform on the left to get the we know that the power spectral density S x x of

F equals minus infinity to infinity R xx tau e to the power of minus j 2 pi for a white

sense stationary process correct.
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Power spectral density is given by the Fourier transform of the autocorrelation function

for a  and this  is  a important  property for a wide sense stationary process the power



spectral  density  PSD  is  given  by  Fourier  transform  Fourier  transform  of  the

autocorrelation function.
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And therefore, what we have is we have well S x x of F which is the Fourier transform of

R x x tau is equal to P d over T times the Fourier transform of R p p tau which is

autocorrelation of the pulse, so that is your s. You can call that as your Fourier transform

of the autocorrelation S p p of F, but S P P of F is nothing, but the energy spectral density

all right this is the Fourier transform the autocorrelation of the pulse which is the energy

spectral density. And therefore, we have this is equal to P d over T times magnitude of P

F square.

So, basically what we have is a very interesting result that the power spectral density of

transmitter  signal  is  proportional  to  energy  spectral  density  of  pulse  this  is  a  very

important  result  that  is  the  power  spectral  density  of  the  transmitted  digital

communication signal is basically proportional to the energy spectral density of the pulse

P t. So, this is an important property which helps us characterize what is the power what

is the spectral distribution of power of the transmitted digital communication signal, and

what this result tells us is that it is nothing but a scaled version of the energy spectral

density of the pulse.
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And now for instance let us take a simple example. Let us consider again for the purpose

of this example consider the pulse P t equals the rectangular pulse. We are going back to

our rectangular pulse correct, which is our rectangular pulse 0 to capital T or rectangular

pulse 0 to capital T or let us go back to our rectangular pulse. We have defined it minus t

by 2 to T by 2 for a height of one that is what we have defined the pulse to be if you

remember.
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Now, therefore, now this is our pulse P t. This is the pulse or rather this is our pulse P

subscript capital T of t. And therefore, now if you look at the Fourier transform of this

pulse that is P subscript T of F is minus infinity to infinity P T of t e to the power of

minus j 2 pi F T d t. And we have seen this pulse is nothing but this is equal to 1, if mod t

less  than  equal  to  T by  2  and  0,  otherwise.  And  this  we  have  derived  the  Fourier

transform this already.
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This Fourier transform is T sinc F of T which is equal to T sin pi F T divided by pi F T.

And therefore, the magnitude P T F square equals well this is equal to T sinc F sinc

square F T, which implies the power spectral density.
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The PSD equals well P d over T times magnitude P T F square which is equal to well pd

over T I am sorry this is t sinc F T this is T square sinc square F T. So, this is times sinc

square F T, so this is P d well P d into T sinc square F T. So, this is the power spectral

density of the transmitted signal. So, this is the sorry this is the S x x F, this is your

power spectral density, this is the power spectral density of the transmitted signal. And

thereby we have derived the expression for the power spectral density of this transmitted

signal, so that completes our analysis with respect to the power spectral density of the

transmitted signal.
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And now let us look at the properties of the digital communication channel. So, let us

now proceed to look at the properties of a digital communication channel. So, let us look

at the properties or let us simply call this as the digital communication channel, how do

we model a digital communication. Now, simply put the channel is the medium through

which the transmitted signal propagates from the signal propagates or signal traverses

from the transmitter to receiver in a communication system. So, the channel is nothing

but you can say it is the medium through which or right the medium through which the

signal propagates from the transmitter to the receiver.
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So, channel which is not very clearly defined in many context. It is simply a you can

think  of  it  as  a  medium because  the  transmitter  and receiver  are  separated  medium

through  which  signal  propagates  or  signal  travels  from  transmitter  to  receiver  in  a

communication  system not  necessarily  a  digital  communication  system only,  in  any

communication  system,  for  instance  in  any  communication  system  correct  not

necessarily. So, there is a channel all right. So, the need in the communication system by

definition there is a transmitter, receiver and these are separated. The transmitter transmit

the  signal  which  has  to  reach  the  receiver  the  medium  through  which  the  signal

propagates correct from the transmitter to receiver that is termed as a channel and there

can be various kinds of channels.
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For instance,  we can have some examples common examples are a for instance your

telephone  lines  coaxial  cables  which  connect  basically  your  set  of  boxes  all  right.

Coaxial cables which transmit which are used for the transmission of TV signals correct

or your cable basically. And also the wireless channel all right, when there is no physical

when there is no particular guided propagation medium when the read electromagnetic

waves are transmitted over the radio channel over the air right for instance such as your

AM, FM. In fact, this is turning out to be the most dominant mode of communication

there is for instance your all your broadcast services such as AM, FM your cellular at all

this thing, cellular, Bluetooth, Wi-Fi set all of these are based on the wireless channel.

When there is no particular physical a guided propagation medium all right, it simply

transmitted over the air all right the radio channel EM waves can propagate of course,

correct.
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And now therefore, we have our signal correct we have our transmitted signal which is x

t equals summation k equals minus infinity to infinity a k P t minus k T where capital T is

the symbol time.
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.

Now, this signal x t; we have the signal x t, which traverses a channel, which passes

through a channel. So, this signal x t passes through a channel passes through a channel

to the receiver and you have y t. So, this is the transmitted signal, this is your received

signal transmitted signal, received signal and it passes through a channel. Now, one of



the  simplest  models  for  a  digital  communication  system  or  for  any  communication

system for that matter is what is known as an additive white Gaussian noise channel.
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One of  the  simplest;  a  simple  communication  system model,  now a  simple  channel

model  is  what  is  known as  an  additive  white  Gaussian  noise  channel  termed  as  an

additive  white  Gaussian  noise  -  AWGN.  This  is  a  very  important,  simple,  yet  very

important where let me first explain what these different terms mean A stands for well

additive, W stands for white, G stands for Gaussian and N stands for noise. So, this is

basically an additive white Gaussian noise channel.
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So, AWGN basically represents additive white Gaussian noise channel, which is one of

the most prominent channel models or of the most simplistic channel models employed

to model the behavior to understand the behavior model and understand the behavior and

performance of communications. Not just digital communication systems, but also for

that matter any communication systems also analog communication system and so on

analog communication systems and so on.
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So, in an AWGN channel we have the received signal y t, it is a very simple model as I

have described it. As I have said already y t equals x t received signal equals transmitted

signal plus the noise. So, this is your received signal, we have already seen that. This is

the transmitted signal, transmitted signal and noise. In particular, look at this adds to the

signal, this noise is additive in nature the noise this very symbol where the noise adds to

the signal noise. So, we have noise adds to signal this is term as this is a very important

assumption that the noise is additive in nature. So, this is termed as additive noise. So,

this is an additive noise channel that is one of the important. So, in the name AWGN

where the phrase additive, the term additive means that the noise adds to the transmitted

signal x t. And of course, there are other aspect that is the white and the Gaussian which

need  to  be  defined  in  order  to  complete  the  definition  of  the  noise  as  well  as  the

definition of this channel. So, we will look at these aspects in the next module.

Thank you very much.


