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Hello.  Welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at the differential entropy of a continuous source and in that on the same lines,

let us extend also the concept similar to the entropy. We had the concept of joint entropy

and  conditional  entropy.  So,  let  us  extend  the  differential  entropy  to  also  the  other

aspects. So, there is the joint and the conditional entropies, ok.

(Refer Slide Time: 00:42)

So, we are going to look at the joint and conditional. I should say differential entropies

and the definitions are rather similar, ok.



(Refer Slide Time: 01:21)

Remember this is for continuous sources, correct continuous sources which distributions

are characterized by probability density functions, ok and the definitions are similar. 

(Refer Slide Time: 01:44)

So,  the  definitions  are  similar  to  those  of  the  joint  and  conditional  entropies  where

discrete sources. Of course, we have seen the differential entropy. Similar to that of the

entropy  with  the  probability  is  replaced  by  the  probability  density  function  and  the

summation  replaced  by  the  integral  which  is  also  can  be  viewed  as  a  continuous



summation and therefore, the joint entropy and the conditional and joint and conditional

differential entropies are also similar for instance.
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Let us say we have two sources continuous sources X and Y or rather these can also be in

the  context  of  a  communication  channel  which  is  going  to  be  relevant  moreover

discussion  later.  So,  you can  have  a  channel  X denotes  the  transmitted  symbols,  Y

denotes the received symbols in the context of a communication system. So, this can be a

communication channel.

So, basically Y is another source represented by the symbols represented characterized

by probability density function now. So, F Y of y, we have several quantities F X of f,

these are what are known as the marginal PDF s marginal probability density functions

of X, Y also. Now, we have the joint probability density function of X similar to the joint

probabilities X and Y.
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We  have  the  joint  probability  density  function  of  X  and  Y.  So,  we  have  the  joint

probability. So, this is basically your joint PDF of X, Y and when you have the joint PDF,

you have h of X, Y. The joint differential entropy is similarly defined as minus infinity to

infinity. The double sum, the continuous double sum will become the integral, the double

integral correct.
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So, this can be defined as this is equal to minus infinity to infinity minus infinity to

infinity F of X, Y log to the base two 1 over F of X, Y d x d y. So, this is your joint



differential entropy or you can simply call this as a joint entropy. In this context, this is in

the source X and Y are continuous, ok.
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Now, similarly one can define the conditional entropy for continuous sources that is h of

X given Y. Remember that is you take the marginal probability density function of Y and

then, average the conditional entropy of X given Y equal to Y times d y.
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In case now you might recall that for instance, for our this definition, you might recall

that in the case of our, in the case of the discrete symbols, it is given as follows.
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You might recall this definition. It is probability X equal to s i. This is of course the

conditional entropy of Y given X, similarly for X given Y, ok.

So, this is you can write this as if you want to recall the definition for the discrete case.

The equivalent definition would be summation probability Y equal to r j i. Think we are

using j equal to 0 to n minus 1 times h of x given y equal to r j. So, that would be the

equivalent  definition  for  the  discrete  case.  We  are  replacing  the  probability  by  the

marginal density correct and of course, similarly the entropy by the differential entropy

correct h of x given this is the differential entropy. So, you can see the definition is very

similar to that what we have for the discrete sources that replaced the probability replace

the  probability  by  the  probability  density  function.  That  is  the  marginal  probability

density function and entropy for the discrete case by the differential differential entropy

for the continuous source X, ok.



(Refer Slide Time: 08:42)

Of course, I can now simplify this as follows. This will be integral minus infinity to

infinity F of Y that is the marginal probability density and the differential entropy that is

F of X given Y times X given Y equals Y times log 2 to the base 1 over F of X given Y X

given Y equal to Y. This is basically your h X given Y equal to Y. What we have here is

the conditional probability density function. So, all these concepts you must be familiar

from  probability  and  random  process.  This  is  the  conditional  probability  density

function.
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The conditional probability density function can be defined as follows that is F of X

given Y of X given Y. We just write the definition for your convenience F of X given Y X

given Y equals Y equals F of X, Y divided by F of F of X. So, this is the conditional

probability  density  function and now if  you look at,  you can write  this  again as the

following thing. You can basically write this as follows. Of course, there has to be an

integral, sorry there has to be an integral with respect to here the integral with respect to

X followed by another integral with respect to Y.

Now, if we look at this F of Y, the probability density function of Y into F of X, Y given

F of X given Y is nothing, but the joint probability density function F of X, Y.
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So, therefore, you will have combining these two that is if we use the property that where

we use the property that F of X F of X F of X given Y times, this is equal to the joint

probability density function. So, F of X is the conditional probability density function, F

of X given y times the probability density function equal to the joint probability density

function.

Therefore if you look at this joint therefore, if you look at this conditional entropy, the

definition will boil down to minus infinity to infinity minus infinity to infinity F of X, Y

correct X, Y times log to the base two 2 over F of X, Y. I am sorry F of X, this will still

be F of X given Y X given Y times dx dy, ok.
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So, this is basically your h of X given Y. This is the conditional entropy or rather your

conditional differential entropy and finally, one can also define the mutual information

between these two continuous sources.
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The definition has again once again similar to what we have for the discrete sources, that

is you have the mutual information that is I of X, Y equals h X. Of course, now in terms

of the differential entropies h X minus h given Y equals h Y minus h Y given X and this

is basically your mutual information basically.



So, in this module what we have seen is basically we have extended the definitions of the

joint entropy, the conditional entropy and the mutual information to continuous sources

and we have seen that these definitions can be obtained similar to the discrete, similar to

the  scenario  with  discrete  sources  as  parallel  by  replacing  the  entropies  with  the

differential  entropies,  the  probabilities  with  the  corresponding  probability  density

functions correct and the definitions are similar for the continuous case.

So, we will stop here and look at other aspects in subsequent modules.

Thank you very much.


