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Hello.  Welcome to  another  module  in  this  massive  open online.  So,  in  this  module

alright,  let  us  start  looking at  a  new topic  that  is  entropy which  is  one of  the  most

fundamental aspects of information theory, which we will going to define shortly. So,

this is entropy.
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So,  we  have  seen  in  our  discussion  that,  I  si  the  information  per  symbol  with  the

corresponding to source alphabet S I is log 1 to the base log 1 over Pi to the base 2 bit is

correct right. And well Pi we have seen this is nothing, but the probability of the symbol

S I and we have seen that Isi this quantity tends to infinity as Pi S the probability as base

equally Pi tends to 0. And I si tends to 0 that is for certain events that is when the event

occurs with probability 1 I si tends to 0 information tends to 0 alright. So, frequently

occurring event have less information rare events have higher amount of information

associated with them.
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Now, the average information the average information of the source can now be defined

as the average information of source S well average information of source S is simply the

expected value this is I of S which is expected value of I of well expected value of I of S

which is basically nothing, but well this is summation i equal to 0 summation i equal to 0

to m minus 1 log 2. So, this is Pi, log 2 or let me write it this way. This is Pi times the

information that probability of symbol i times the information associated with symbol i.
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So, we are computing of weighted average. So, this is equal to Pi log to the base log 2 to

the base 1 over Pi. And this quantity it is expected value of s this quantity is termed as H

of S H of S equals Pi log 1 over Pi to the base 2. This is termed as it is a fundamental

quantity of information theory is termed as the entropy. This is termed as the entropy of

sources.
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So, this is termed as the entropy of source S. So, it is basically information of symbol i

this is your information of symbol i weighted by the probability Pi, weighted by it is

probability of occurrence. So, it is the expected value as a average information of the

source which is obtained by weighing the information of each symbol S I that is I si with

it is probability Pi and summing over all the alphabets summing over the entire source

alphabet, alright.

So,  this  quantity  is  termed  as  the  entropy  of  the  source  and  as  we  have  said  is  a

fundamental quantity in information theory. It can characterizes the average information

per  source  average  it  characterizes.  So,  this  characterizes  entropy  characterizes  or

quantifies  average  information  content,  average  information  of  the  source  average

information of the source as in the information average information per symbol one can

also think of average information per symbol emitted by the source. Emitted or generated

emitted or generated. This can also be thought of as entropy can also be thought of as

average uncertainty.
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It is the average the average uncertainty associated with the source. So, more uncertainty

also implies basically more randomness or so more uncertainty.

So, more uncertainty more uncertainty implies more information. So, you can also be

thought of as the average uncertainty right. So, this symbol what is uncertain about the

next symbol that  is going to be generated about the source all  right.  There is which

means  that  there  is  greater  uncertainty,  which  captures  the  fact  that  that  is  created

information in the symbols generated by the source. If this if there is a greater certainty if

we know for sure what the or if we show or if you know with great certainty what the

next symbol that is generated by the source is going to be; that means, on an average

there is less information in the symbols or less information content in the symbols that is

generated by the source.

We are going to see this also of course, as we proceed through subsequent aspects or

subsequent examples of entropy.
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Now, let  us start by looking at some simple properties of entropy, if you look at the

definition of entropy which is Pi log on or p an observed that well Pi greater than equal

to 0 less than equal to 1 over Pi less than or equal to 1 this implies well one less than or

equal to 1 over Pi less than. So, 1 over Pi is always basically greater than or equal to 1

which implies log 1 over Pi to the base 2 is greater than or equal to 0. Since 1 over Pi is

greater than equal to 1. So, Pi is greater than equal to 1 log to the 2 to the base 1 over Pi.

Log to the base 2 1 over p is greater than equal to 0. So, Pi is greater than equal to 0

correct log 1, over Pi to the base 2 is greater than equal to 0, this implies both of these

are non negative quantities.
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So, therefore, Pi log 1 over Pi to the base 2 is greater than or equal to 0 for each i. So,

this is basically this entropy is the sum of non negative terms, implies H of S is also

greater than or equal to 0. So, entropy is non negative correct. Entropy can be zero, but it

cannot be negative. In fact, we will see examples where entropy is 0. So, entropy has to

be greater than equal to. So, this also means that the information content of a source

cannot be cannot be negative. It is non negative either 0 or greater than 0 entropy of a

source the information content of a source has to be greater than or equal to 0.
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So, this basically means that the information content, information content of source is

greater than equal to 0.
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Further observe that if Pi equal to 1, then Pi log to the base 2 or Pi equal to 1 times log to

the base 2 1 over 1 this is 0. So, this is equal to 0.

So, this quantity equals 0 for Pi well for Pi equal to 1. Now what happens if Pi equal to 0

what happens to this quantity Pi equals 0 Pi equals 0, let us look at this quantity Pi log to

the base 2, 1 over Pi, which is equal to I can write it as log to the base 2, 1 over log to the

base 2 1 over Pi divided by 1 over p i.
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Now, you can see here that both the numerator that is if you look at this quantity here,

numerator and the denominator tend to infinity as Pi tends to 0 as Pi tends to 0 both the

numerator  and  denominator  tend  to  tend  to  infinity.  So,  this  is  undefined.  So,  this

expression at 0 in that sense it is undefined.

So, let us look at the limit  as Pi tends to 0. And naturally if both the numerator and

denominator tend to infinity as Pi tends to 0, we can use the lthopital's rule right which is

the rule in calculus to evaluate the limit. So, correct.
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So, now let us calculate the limit of this as Pi tends to 0, that is log the base to 1 over Pi

which is equal to well, I will write the numerator as minus log to the base 2 Pi 1 over Pi

which is equal to.

(Refer Slide Time: 15:06)

Now, again I can differentiate this I can take the derivative of the numerator since it is ill

defined on substitution of 0, I can take minus log 2 to the base Pi. I can differentiate the

numerator and denominator differentiate the numerator and denominator with respect to

Pi. This is termed as a  L'Hospital's Rule which is basically from calculus to evaluate

correct the limit of precise with such quantities which are ill defined.
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Now, if I substitute this that becomes limit Pi tends to 0, if you look at this that becomes

well the numerator is well d by d minus log Pi to the base 2. I can write this as Pi 2 the

base that is your traditional logarithm to the base e, to log e to the base 2 divided by well

I can differentiate with respect to Pi that gives me minus 1 over Pi square. And finally,

differentiating the numerator, I get minus log minus derivative of log is 1 over Pi minus

log in  to  log e to  the base 2 into  Pi square from the denominator  will  come to the

numerator. So this is basically limit Pi tends to 0, well Pi into log 2 p to the base 2 which

is equal to 0. So, basically what we have established is if you look at this is limit that is.
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Since we cannot directly substitute Pi equal to 0 into Pi log 1 over Pi limit, p d Pi tends

to 0 Pi log to the base 2 1 over Pi also tends to 0.

So, you can say. So, and also remember we have also seen before that Pi log to the base 2

1 over Pi equals also equals 0 for certain events that is for Pi equal to 1. So, we have seen

that for both the what you see is that as Pi tends to 0 all for Pi equal to 1 the average

information that is Pi log to the base 2 1 over Pi is basically 0 that is for both events

which occur with probability one, and events which tend to occur with probabilities close

to 0 or the rarest of the rare events which rarely occur which means that the probability

of occurrence is close to 0 for both such events both types of such events the average

information  associated  with 0.  And this  is  this  can be understood as  follows that  of

course, as we have seen events which occur very frequently that is the probability close

to one naturally the information associated with them is 0. 

So, the average information associated with them is 0 as we have seen before, but what

we have seen is  that  although information associated  with the rare  events  which are

probability close to 0 is very high, since they occur extremely infrequently the average

information associated with them is also 0 all right. So, Pi log to the 2 log to the base 2 1

over Pi is 0 when Pi equal to 1 or when Pi is also close to 0. So, that is an important

point.
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So, this basically shows that this is basically equal to. So, 1 over Pi log to the base 2 to

the base. So, what we have seen is Pi intuitively this is close to 0 for both very common

and very rare very common, and very common meaning, Pi approximately equal to 1,

very rare meaning Pi approximately equal to 0. So, that is what we have, so all right. 

So, in this module what we have seen is basically we have defined a very important

quantity,  which  is  the  entropy  all  right  which  is  basically  the  average  information

associated with each symbol of the source which is expected value of the information

expected value of the information per symbol that is I si of the source which denotes the

average information that is associated per each symbol of the source. Which also said

this  characterizes  the  uncertainty  associated  with  the  source  all  right,  which  is  also

basically used to characterize or quantify the information content of a particular source

and we have also seen that Pi log to the base 2 1 over Pi is equal to 0 when Pi is 1 or P is

very close to 0. 

So, we will stop here and continue with other aspects in the subsequent modules.

Thank you very much.


