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Hello,  welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at M-ary QAM that is M-ary quadrature amplitude modulation, and we are about

start over discussion on the receiver and receive processing and the bit error rate for M-

ary QAM, but before we do that yesterday we derived the value of amplitude A.

(Refer Slide Time: 00:34)

So, let me just correct this amplitude A is square root before we proceed further and just

correcting this as missing a square root. So, this is simply square root of 3 a like ES by 2

M minus 1. So, that is fairly obvious.



(Refer Slide Time: 00:51)

So, let us now start with the receiver of course, again we have seen this many times

before, the receiver for M-ary QAM, and in M-ary QAM remember that the transmitted

waveform x t equals a 1 P 2 t plus a 2 P 2 t, plus n t which is the noise.

(Refer Slide Time: 01:37)

Now, similar to QPSK we matched filter it similar to QPSK, we separately match filter is

separately matched filter with well h1 t equals P 1 t minus t and h 2 t equals P 2 t minus.

So, you separately for the detection of a 1 all right at the receiver of course, we using

matched filter the matched filter to process the received signal, but we have remember



there are 2 independently modulated signals that is a 1 on the in phase a pulse a 2 on the

quadrature alright.

So, therefore, we have to individual we have to separately matched filter x t once with

filter matched to P 1 t that h1 t equals P 1 capital T minus t, and once with the filter

matched to P 2 the pulse shape P 2 t which is also which by the way is orthogonal to P 1

t.  So,  h  2 t  equals  P 2 capital  T minus t.  So,  we have  2 separate  matched  filtering

operation,  similar  to again nothing difference similar to what you seen in quadrature

phase shift keying.

So, since P 1 h P 1 t is orthogonal to P 2 t therefore, when you matched filter with h1 t

that extracts the symbol a 1 and the component with respect to P 2 that is the component

symbol a 2 the contribution will be 0. Similarly when you matched filter with respect to

p h 2 which is matched to P 2 that is  P 2 capital  T minus t the contribution of a 1

becomes 0 because again P 1 is orthogonal to P 2. So, this is all these points we had seen

in the our discussion for QPSK that is quadrature phase shift keying.

(Refer Slide Time: 03:54)

So, therefore, what we have here is basically x t you separately matched filter with h1 t

equals P 1 t minus that gives a 1 E p plus n 1 tilde and E p is equal to 1. So, this is simply

a 1 plus n 1 tilde; now notice that in this contribution from a 2 is 0; when a matched filter

with respect to h1 t 1 t, h1 t minus t, contribution of a 2 is 0 since P 2 t is orthogonal to P

1 t.



Similarly, here when you matched filter with h 2 t equals P 2 t minus t you get a 2 E p

plus n 2 tilde this is a 2 plus n 2 tilde of course, this is because energy of the pulse E p is

normalized  to  1  and  again  here  contribution  of  now here  contribution  for  the  same

reason, contribution of for same reason a 2 is 0, same reason this is a P 1 t is orthogonal

to P 2 t.

And further if n 2 n t, let us assume that the received signal this received signal is I am

sorry this is not the transmit this is y t which is x t plus n t, remember y t is we are

assuming a w g n channel we can look at other channels also, but we have restricted our

self to the simplest and most general case of an a w g n channel. So, far so n t is additive

white Gaussian noise with n t  is AWGN with auto correlation R n and tau equals N

naught by 2 delta tau.

(Refer Slide Time: 06:57)

And the  mean equal  to  0 then n 1 tilde  and n 2 tilde  these are  we have  seen both

Gaussian mean equal to 0 and variance equals n naught by 2 E p again E p equals 1. So,

this is n naught by 2.



(Refer Slide Time: 07:28).

So, variance, so n naught so, n 1 tilde these are Gaussian mean equal to 0 variance equals

n naught by 2. Now, therefore, and further now this we can call this as a 1 plus n 1 tilde,

we can call  this  statistic  as r  1 t  that  is  followed matched filtering  and followed by

sampling at t equal to capital T, this we can call this as R 2 t.

(Refer Slide Time: 08:06)

Now the decision rule for each r 1 t now what is the decision rule? Decision rule that is

decide a 1 from r to t, and decide a 2 from a 1 from r 1 t, a 2 from r 2 t and remember



these are PAM symbols. So, decision rule is similar to PAM these are independent PAM

symbols, which implies decision is similar to PAM.

But remember these belong to square root M-ary PAMs, but square and this is important

square root M-ary PAM. So, we are going use a same decision rule that we have used for

PAM that  is  pulse amplitude  modulation,  but  each of  these  belongs  to  a  constituent

square root M-ary PAM.

(Refer Slide Time: 09:38)

So, the decision rule corresponds to that of a square root M-ary PAM. Now we have

already seen what the decisions are for a square root M-ary PAM for instance in a square

root M-ary PAM we have seen we have A, 3 A correct this will be well 2 i plus 1. So,

square root i equal to square root M by 2 minus 1. So, twice square root M by 2. So, this

will be square root M minus 1 A minus A so on, this will be minus square root M minus 1

times A and we have already seen that the thresholds for instance, this will remain same

if it the midpoint here is this is 0 the midpoint here between A and 3 A is 2 A, and if it

lies between these 2 thresholds then decide A that is if for instance r 1 t less than 2 A or it

is greater than equal to 0.

If r 1 t less 0 less than equal to r 1 t less than equal to 2 a then decide a 1 equals A. So,

this we already seen this before decide a 1 equals A and similarly we have other decision

rules. And towards the end points if for instance now you look at this, this will be square



root this point will be square root M minus 3 A and the midpoint here is square root M

minus 2 A.

So, if r T is well if it is greater than or equal to square root M minus 2 A, decide a 1

equals square root M minus 1 A. Because this entire decision region there is nothing to

the right of square root M minus with this  entire decision region corresponds to a 1

equals or decide a 1 or a 2 in fact, this is valid both for square root of M minus 1.

Similarly, if it is less than square root M minus 2 A, if you look at this decision region

decide a 1 this is well a decide either a 1 or a 2, we can generally say a i equals square

root of or minus square root of or rather minus square root of a i. As in fact, as I was

saying you can make this very general you do not need to restrict this to either a 1 or a 2

you can simply use r i is 0 greater than equal to 0 is equal to r i T less than 2 A, then

decide a i equals A if r i T greater than or equal to square root of M minus 2 A decide

well a i equal to square root of M minus where a M minus 1 is and further i equals either

1 or ok.

(Refer Slide Time: 13:51)

And similarly you can formulate the similarly one can formulate the rest of the cases.



(Refer Slide Time: 14:04)

Remember the decision rule corresponds to a set of cases. Similarly one can formulate

the rest of the cases that is corresponding to minus a right for a instance if you look at the

level  minus a you look at  the midpoint  on both sides.  So,  minus a lies  between the

midpoint on the right is between minus a and a 0 midpoint on the left between minus a

and minus 3 a is minus 2 a. So, it lies between the received symbol r i T lies between

minus 2 a to 0, then you have to decide that the transmitted symbol a i equals minus a

and so on. And remember we also call this as the nearest neighbour decision rule that is a

very powerful idea, that is basically depending on the closest constellation point you are

assigning r r i to r i t.

Basically you are assigning a i to the closest constellation point to r i T that is the whole

point. It is a very simple if you look at it is very intuitive that is you look at r i T, look at

the closest constellation point in this square root M-ary PAM to r i T and choose a i as

basically the closest constellation point to r i T. So, that is basically the idea let me just

summarize this. So, choose a i equals closest constellation point in square root M-ary

PAM to r i T choose the closest constellation point to r i T that is the basic idea.

Now, the probability of error; remember the probability of the error for each PAM.



(Refer Slide Time: 16:12)

Let us recall  probability of error first for M-ary PAM, probability of error for M-ary

PAM is well probability of error equals twice 1 minus 1 over M correct Q A divided by

square root N naught over square root of N naught over 2 except now we are dealing

with the square root M-ary PAM. So, this is the probability of error for each individual

square root M-ary PAM. So, this is the probability of error for a 1 comma a 2 which

belong to square root M-ary which belong to square root M-ary PAM.

(Refer Slide Time: 17:04)



So, P e equals twice 1 minus 1 over square root of M Q A divided by square root of N

naught by 2 and Q is the Gaussian I do not need to keep repeating this again Q is the C C

D F complimentary cumulative distribution function of the standard Gaussian random

variable. Standard Gaussian that is mean equal to 0, I am not repeating this explicitly

variance equal to unity that is the tail probability of the standard Gaussian.

And at this stage I think all of you should be more than familiar with that, that is if you

look at  Q of x this  area is  Q of x this  is  tail  probability  of standard Gaussian.  Tail

probability of the standard Gaussian random variable and further for M-ary QAM we

have derived it as a as given symbol remember we said given symbol energy E s.

(Refer Slide Time: 18:47)

Each individual square root M-ary PAM has each individual square root M-ary PAM has

average energy ES by 2.



(Refer Slide Time: 19:42)

Which means and for that we have derived the condition the corresponding condition is

amplitude A equals square root 3 ES by 2 M minus 1 this ensures average symbol energy

ES by 2 or ensures average energy ES for the entire PAM e a average energy ES by 2.

So, this ensures this value of a ensures average symbol energy ES by 2.

For each square root M-ary PAM and average energy ES because average energy ES by

2 for each square root  M-ary PAM, the total  average energy will  be the sum of the

component average energies that ES for the overall M-ary QAM. So, only thing left now

is to substitute this value of A.



(Refer Slide Time: 21:02)

So, P e we have a beautiful  result  P e is twice 1 minus 1 over square root of M Q

substitute the value of a which is 3 ES by 2 M minus 1 into N naught by 2 which is equal

to. So, P e 2 1 minus square root of M Q square root of well, 3 ES by N naught into M

minus 1.

So, this is the average energy for each constitutes average probability.

(Refer Slide Time: 22:01)

I am sorry average probability of error or average symbol error rate for each constituent

average  symbol  energy  for  each  constituent  square  root  M-ary  PAM, and similar  to



QPSK again similar to QPSK. Now this is the average energy it is a average symbol

error rate for each constituent square root M-ary PAM.

Now, the overall QAM symbol will be an error if either of the PAM symbols is in error

and  therefore,  similar  to  QPSK right  the  overall  symbol  is  in  error  if  either  of  the

component  bits  are  in  error  all  right.  So,  overall  QAM  is  in  error,  if  either  of  the

constituent PAM symbols are in error therefore, the overall error rate for the overall M-

ary QAM constellation can be derived as is well P e equals.

(Refer Slide Time: 23:13)

Let us write this as P e QAM that is 1 minus 1 minus remember we derived this again I

am not going through the entire derivation 1 minus 1 minus the constituent PAM error

rate which is 1 minus 1 plus P e PAM square minus twice P e PAM, which is equal to

well twice P e PAM minus P PAM whole square which is approximately equal to twice

the error rate of the constituent PAM because at high SNRP e PAM square.



(Refer Slide Time: 24:33)

This is a square is very small, because this square term at high SNR this is very small in

comparison 2 P e PAM square is very small in comparison 2 P e PAM.

(Refer Slide Time: 24:59)

So, the error rate finally, overall error rate for the QAM for the M-ary QAM is equal to

twice dropping the approximation for simplicity twice 1 minus 1 over or let me just write

it; twice 1 minus 1 over have drop the approximation sign Q square root of 3 ES by n

naught M minus. So, this is twice let me just write it a little bit more clearly, this is twice



1 minus 1 over square root of M Q3 E s by n naught into M minus 1. So, this is the error

rate for the overall QAM.

(Refer Slide Time: 26:54)

Now, before you wrap this up let us look at a simple constellation diagram for the M-ary

QAM, for M-ary QAM let us consider the simple case where M equal to 16 which means

each constituent square root of 4 PAM. So, a 1 comma a 2 belongs to a square root of 4

square root of 16 that is 4 QAM.

(Refer Slide Time: 27:40)



So, basically a 1 belongs to the set of 4 levels minus 3 A minus A, A comma 3 A, a 2 also

belongs to minus 3 A, minus A, comma 3 A. So, these are the levels corresponding to

levels of the 4 PAM or the square root of 16 PAM.

(Refer Slide Time: 28:20)

And these can be. So, I can represent a 1 on the x axis a 2 or the levels of a 1 on the x

axis. So, here I have A, minus A, 3 A minus 3 A similarly on the y axis I have the levels

of a 2 A, 3 A, minus A, minus 3 A and this is A. So, this corresponds to the point A,A this

corresponds to the point minus A similarly 3 A comma A. So, this will have a total of

course, we are considering M equal to 16. So, naturally this will have a total of 16 points

in the constellation.
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For instance if you look at this point this point corresponds to a 1 equals 3 A, a 2 equals

minus A. Remember this corresponds to a 1 y axis corresponds to a 2. So, there are total

of 16 points naturally this is 16 QAM constellation. So, there are a total of 16 points in

the 16 QAM, observe a 1 belongs to a linear PAM that is a PAM on a line remember

PAM is a linear constellation that is it can be represented on a line.

So, here we have a QAM all right which has a constituent square root M-ary PAM a 1 on

a line, that is x axis co another constituent square root M-ary PAM a 2 on the line which

is  the y axis  therefore,  if  you will  get  the net  constellation  this  looks like  a  square,

alright.  So,  this  is  also  known  as  a  square  constellation.  So,  a  QAM  is  a  square

constellation. So, this is a very interesting observation so you can see that the QAM is a

square QAM is a square constellation that is symmetry.



(Refer Slide Time: 31:02)

So, it is a QAM is a square constellation and of course, we have seen the number of bits

equals log 2 to the base M. M equal to 16 if M is equal to 16 number of bits equals log

16 to the base 2 equal to 4 bits, 2 bits on each of course, 2 bits on each constituent PAM

2 bits  on each constituent  PAM. And further as I  have said in the beginning of this

module that QAM is a very general constellation very powerful constellation all right

because you are you can transmit individual PAM symbols on both the in phase and

quadrature pulses correct in phase and quadrature components and it can scale right with

M equal to 16 we get 4 bits, with M equal to 64 you get 6 bits per symbol, M equal to

256 you get 8 bits per symbol, 512 1024 and so on.



(Refer Slide Time: 32:17)

So, there are all several different possibilities. So, you have M equal to of course, if M is

equal to 4 that is QPSK, 16 QAM, 64 QAM, 256 QAM, 1024 and so on. So, these are all

the QAM. So, this is of course, your 4 symbols means 2 bits means one bit on each in

phase and quadrature this is of course, your QPSK; and number of bits equals, 2 4 that is

log to the base to of this quantity 2, 4, 6, 8, 10 of course, you can add 2, 0, 4, 8, 4, 0, 9, 6

and you will have 12 bits. So, the number of bits increases.

So,  therefore,  by  choosing  an  intelligent  QAM  modulation  to  suit  the  channel

requirements one can scale the bits you can go from 2 bits to 4 bits to 6 bits to and

remember we are increasing the number of bits per symbol for the same symbol rate let

us say your symbol rate of 1000 symbols per second or 1 mega symbol per second. If

you choose QPSK which has 2 bits per symbol you get 2 mega bit per second. If you

choose 1024 QAM which has 10 bits per symbol right you get ten mega bit per second

all right. So, by choosing the suitable QAM one can scale up the data rate and that is how

high data rate is achieved right high data rate is achieved in for instance 3G, 4G and 5G

and also future in the future 5G cellular networks by scaling up the modulation, this is

known as higher order QAM or higher order modulation.

So, these basically this is known as the higher order for instance when you go for from

QPSK to all these this is known as, and modulation can be chosen adaptively correct



modulation can be chosen adaptively to meet rate requirements, and this is termed as

adaptive modulation which is at important scheme.

(Refer Slide Time: 35:10)

So, higher order modulation and adaptive modulation higher order modulation plus.

(Refer Slide Time: 35:53)

These are important in to achieve higher data rates in 3G, 4G and also 5G. In 3G, 4G and

5G so when the rates go from 100s of kilobit per second to megabit per second to tens of

megabit per second to in fact, a gigabit per second right these can be achieved of course,



achieved by several technologies sectoral components I am not saying that higher order

modulation in is the only technology component in achieving higher data rates.

(Refer Slide Time: 36:56)

But higher order modulation usage of higher order module higher order modulation is

one of the strategy is one of the main strategies that can be employed to multiply right

multiplied the bit rates several times that is for the same symbol rate right for the same

symbol rate for instance, if you have a symbol rate of 10 mega symbol per second if you

use 4 QAM that is QPSK which has 2 bits per symbol, you get a data rate of 20 bits or 20

megabits per second 20 Mbps, and if you can succeed in using 1024 QAM, which has 10

bits per symbol you can get a data rate of 100 Mbps. So, you can see from 20 Mbps to

100 Mbps that is a factor of 5 into 5. So, that is a factor of 5 in data rate.

So, you can go from. So, let us say this can 3G data rate this can be 4G data rate. So, 3G

systems typically or data rates around Mbps or at most 10 Mbps, in 4G you can go up to

data you can go to data rates of 100 Mbps and in fact, more you can go to data rates of

about 200 to 300 Mbps. So, it all depends on the modulation scheme use along of course,

along with several other technologies, but modulation right and adaptively choosing the

modulation  depending  on the  user  at  user  requirements.  So,  the  modulation  scheme

depends on the requirement of the user right what kind of the rate the user requires and

also the channel condition, if the wireless channel is able to support such a data rate. So,



adaptively one can modulate on can chose an appropriate modulation right to meet the

data rate requirement and it is of course, deliver the maximum data rate to each user.

(Refer Slide Time: 39:24)

So,  that  increases  the  data  rate  significant  as  we go from 3G to  4G to  5G wireless

technologies and QAM is a very general and is one of the most widely used modulation

schemes. So, let me just summarize that QAM is one of the most simplest powerful and

it  is  one  of  the  most  widely  used  it  is  very  flexible  one  of  the  most  widely  used

modulation scheme alright.

So, in this module we have covered comprehensively covered QAM that is what is the

constellation  what  is  the  structure  of  QAM what  is  the  structure  of  the  transmitted

waveform  what  is  the  processing  at  the  receiver  and  the  associated  probability  the

probability of error for M-ary QAM and also, the importance of this QAM with respect

to the modern wireless technologies all right. So, we will stop here and continue with the

other aspects in subsequent modules.

Thank you very much.


