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Hello.  Welcome  to  another  module  in  this  massive  open  online  course.  So,  we  are

looking at frequency shift keying all right. And in frequency shift keying well we are

considering 2 different wave forms, to represent the information bit 0 and one which is

shifted in frequency correct.

(Refer Slide Time: 00:45)

So, we are considering 2 different frequencies f 1 and f 2 since they are wave forms are

shifted versions of each other with frequencies this is known as frequency shift key all

right. And what we have seen in this is that my y t corresponding to 0 is a times P 1 T

plus n t. That is, this is for information bit 0 for 1, we have y t equals a times P 2 T plus n

t.



(Refer Slide Time: 01:23).

We have seen the matched filter optimal received filter, optimal receive filter a is h t

equals P 1 well T minus t minus P 2 T minus P 2 T minus t. So, this is the optimal receive

filter, optimal receive filter in the sense we must be well familiar by now optimal in the

sense this maximizes the output SNR or signal donates power ratio.

(Refer Slide Time: 02:27)

Now, consider the transmission of information bit 0, consider or consider information bit

0. We have for this y t equals A times P 1 T plus n t.



(Refer Slide Time: 03:02)

Now, matched filter or receive filter with h t, h t equals P 1 T minus t minus P 2 T minus

t followed by sampling at followed by sampling at t equal to T. Now that gives us if you

can look at it, we have r of t equals well integral minus infinity to infinity, y of well y of

tau times h T minus tau d tau substituting for h of t.

(Refer Slide Time: 04:05)

This gives us integral this gives us integral minus infinity to infinity y of t is basically

you are well this is a P 1 times P 1 of tau a P 1 of tau, of course, there is noise also a P 1

of tau plus n tau times now the filter h t capital H capital T minus tau P 1 which is you



can see is simply P 1 tau minus P 2 tau d tau, and that gives us well that can be split

naturally into 2 terms, A P 1 tau into P 1 tau minus P 2 tau d tau. This is your signal

component, plus integral minus infinity to infinity n tau, P 1 tau minus P 2 tau d tau and

this is your noise component.

(Refer Slide Time: 05:26)

So, corresponding to the transmission of information signal the inform corresponding to

information bit 0, we have computed what is the output after filtering with h t followed

by sampling at t equal to capital T where capital T is the symbol duration these are in the

signal component and the noise component.



(Refer Slide Time: 06:15)

Now, let us simplify both these components individually now let us come to the signal

component. Now the signal equals minus infinity to infinity a times P 1 tau into P 1 tau

minus P 2 tau d tau, which is equal to integral minus infinity to infinity a times P 1

square tau d tau minus A times integral minus infinity to infinity P 1 tau P 2 tau d tau.

Now you can see this is nothing, but the energy of the pulse this is equal to 1 and this

integral minus infinity to infinity P 1 tau P 2 tau d tau, we have seen this is the inner

product of P 1 tau comma P 2 tau which is equal to 0. So, this is my product is 0 because

P 1 tau and P 2 tau we have said are orthonormal basis functions of the signal space.

(Refer Slide Time: 07:32)



Therefore all that is left is a times E p substituting E p equal to 1, this is remember the

signal component after  matched filtering.  Now if  you look at the noise component n

tilde, which is equal to minus infinity to infinity n tau P 1 tau minus P 2 tau d tau.

(Refer Slide Time: 08:15)

Now, this noise we have previously see in from an analysis of the noise output at the

noise at the output of a matched filter we are said the this is the input noise is a Gaussian

noise  process  the  output  noise  process  also  Gaussian  once  you sample  it  you get  a

Gaussian random variable, if the input noise process is 0, mean the output noise process

is also 0 mean. So, n tilde is Gaussian mean equal to 0. Now the variance is eta naught

by 2 and this also we have seen integral minus infinity to infinity magnitude h tau square

d tau or h T minus tau square d tau, which is equal to n naught by 2, integral minus

infinity to infinity well P 1 tau or.
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Let me write it for the sake of just being clear let me write this as T minus P 1 tau minus

P 2 tau square, d tau. Now this is now expand this P 1 tau minus P 2 tau whole square,

what you have is P 1 square tau, plus P 2 square tau minus, twice P 1 tau P 2 tau d tau.

(Refer Slide Time: 10:13)

Now, is split this into 2 terms or split this into other 3 terms. This is equal to n naught by

2, integral minus infinity to infinity, P 1 square T minus tau d tau plus n naught by 2

integral minus infinity to infinity P 2 square not T minus tau.



P 2 square tau d tau plus the third term, which is n naught by 2 integral minus infinity to

infinity P 1 tau P 2 tau d tau. And now you can see once again this is integral minus

infinity to infinity P 1 square tau d tau that is E p the energy of the pulse which is 1,

integral minus infinity P 2 square tau d tau this is also E p which is equal to 1. This is

once again this is inner product between P 1 and P 2, which is equal to 0. So, what is

remaining is basically if  you can see the noise power or the noise variance that is n

naught by 2, plus n naught by 2 we are setting E p equal to 1 plus 0, which is equal to n

naught n naught by 2 plus n naught which is equal to 0 this is a noise power at the output

after sampling.

(Refer Slide Time: 11:54)

So, this is the noise power. Previously we had always noise power n naught by 2.

But now we have noise power after sampling equals after sampling equals n naught. So,

observe that this is basically once again slightly different with respect to what we had for

amplitude shift keying and also binary phase shift keying as noise power, after match

filtering and sampling was n naught by 2 now we have noise power n naught.



(Refer Slide Time: 12:37)

So, basically the output is r T equals well A E p plus n tilde setting E p equal to 1 this is a

times writing E p again because it is. So, that the expression is general and can be valid

also for scenarios where E p is not necessarily equal to 1 n tilde this is Gaussian with

mean equal to 0, and variance is equal to n naught. Now similarly corresponding to the

transmission of information bit corresponding to bit 1, well corresponding to bit one we

have y t equals a times P 2 T plus n t.
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Now, when we matched filter this, or receive filter this, with once again h of t equals P 1

T minus t minus, P 2 T minus t the output will be well, you can verify this r T is minus A

E p plus n tilde again setting equal to 1, this is equal to minus A E p or minus simply a

minus A plus n tilde, where n tilde is Gaussian. Once again is a same thing the mean

equal 0 the variance is equal to n naught.

(Refer Slide Time: 14:58)

Therefore,  now  if  you  can  look,  if  you  look  at  this  team  comprehensively  I  can

summarise  this  as  the  output  after  filtering  and  sampling  is  basically  given  as

corresponding to 0 and 1, this is A plus n tilde this is minus A plus n tilde. Now you can

see this is similar to BPSK this model, if you can observe closely, model is similar to

BPSK that is binary phase shift keying except noise variance is sigma square equals n

naught, naught n naught by 2 right. In BPSK in the noise variance what we are computed

n tilde that is noise variance after filtering and sampling was n naught by 2, here it is n

naught.
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Therefore, now the threshold again by symmetry, look at it the mean is shifted for 0 the

mean shifted to a for 1, the mean is shifted to minus A, symmetry by symmetry again the

optimal detection rule is to compare the sample r T with 0. So, once again by symmetry

by symmetry, the optimal decision rule, optimal decision rule is the optimal decision rule

is once again that is your r T greater than equal to 0, implies decide well decide a naught

equal 0 that is this is the information bit. On the other hand if r T is less than 0 that

implies decide a naught is equal to 1. So, therefore, that summarises your decision rule.
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This is the optimal decision of FSK is not very different from that. In fact, very similar to

that of b s k this is the optimal. In fact, we can say threshold based decision rule for

frequency shift keying FSK or frequency shift keying, that is f frequency shift keying

FSK.

(Refer Slide Time: 18:48)

And the corresponding bit error rate again we can see, corresponding bit error rate there

is if you look at this bit error rate, which is either which is again another thing that you

should be familiar very familiar with, by now this is the bit error rate bit error probability

or this known by many terms or the probability, this is equal to Q times A divided by

sigma which is equal to Q times A divided by square root of n naught, which is equal to

Q times A square divided by n naught.
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Now, substitute A equal to Eb substitute A equal to square root of e b, as where Eb as we

have seen before equals the energy per bit. So, bit error this becomes Q square root of Eb

over n naught this you can say is the probability of bit error or bit error rate. So, this is

the bit error rate for frequency shift keying, let us note that. This is the bit error rate this

is the bit error rate for frequency shift keying that is FSK. So, this is the bit error rate for

frequency shift keying, and again you can see if you compare it with bit error rate now

bit error rate for.
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Now, if you look at bit error rate for BPSK that is basically Q square root 2 Eb over n

naught. And bit error rate for both amplitude shift keying comma frequency shift keying

is Q square root Eb over n naught. And if you remember or discussion our previous

discussion the Q function is the yield probability of a Gaussian random of the standard

Gaussian random variable therefore, the Q function is decreasing in it is argument and

therefore, this implies that the bit error rate of both frequency shift keying and amplitude

shift keying for an average bit energy of Eb is lower the bit error, I am sorry bit error rate

is higher the bit  error rate performance is worst because remember the Q function is

decreasing therefore, Q of square root of 2 Eb by n naught is less than Q of square root

Eb over n naught.

So, the bit error rate of both amplitude shift keying and frequency shift keying is higher

and  how much  and how in  efficient  our  amplitude  shift  keying and  frequency shift

keying in comparison to binary phase shift keying we have seen previously that they are

3 dB worse in comparison to binary phase shift keying the reason being you need twice

the average bit energy that is you need twice the average bit energy Eb to achieve the

same bit error rate performance in amplitude shift keying and frequency shift keying as

that of BPSK. So, let us also note that once again all though that should be plenty clear.

So, the first point is BER of ASK is identical to that of FSK; obviously, the comparison

has to be fair for equal for equal average energy per bit Eb. Further the BER of ASK

comma FSK is greater than BER of BPSK.
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This  is  because  remember  Q function  is  decreasing  in  it  is  argument.  Gaussian  tale

probability is a decreasing a monotonically decreasing function. And more importantly

we also have the fact that how in efficient are there ASK comma FSK amplitude shift

keying and frequency shift keying are 3 dB in efficient or 3 dB worse. Which basically

means for same bit error rate to achieve the same bit error rate you are ASK amplitude

shift keying slash frequency shift keying need 3 dB they need 3 dB more power. 

So, they are basically 3 dB to 3 dB worse amplitude shift keying and frequency shift

keying at 3 dB worse that binary phase shift keying. So, basically you can say binary

phase shift keying for the same average energy per bit Eb achieves the lowest bit error

rate amongst BPSK, ASK and frequency shift keying all right. So, BPSK is the amongst

these 3 BPSK binary phase shift keying is the most efficient modulations scheme and the

reason for that if you explore it will be because binary phase shift keying for the same

average bit error rate uses antipodal signalling that is it uses signals plus A and minus A

all right which maximises the distance between the constipation points.

You can note this in formally all though we have not shown this regressly it maximises

the distance between the conciliation points for the same average bit error rate. While

both amplitude shift keying and frequency shift keying have do not do this all right. So,

they have a poor performance. So, their performance is poor in comparison to the in

comparison to binary phase shift keying which has which we have shown to be in a very

efficient digital modulation scheme. So, that completes our discussion on frequency shift

keying based on the based on this frame work remember of the signal space the concept

of signal space where we are now implying not one, but 2 pulse wave forms which are

both of unit energy normalised to unit energy all right and also no orthogonal to each

other. 

So, they constitute and orthonormal bases for this signals space we are representing the

information bit 0 using a times P 1 T that is along the signal P 1 T bases function P 1 T,

we are representing the information bit one by a times P 2 T which is along the direction

in the signals space or which is along the basis function P 2 T and therefore, we are now

using a 2 dimensional signal space in frequency shift keying that is the interesting aspect

about frequency shift keying all right.

So, we will stop here. 


