An Introduction to Coding Theory
Professor Adrish Banerji
Department of Electrical Engineering
Indian Institute of Technology, Kanpur
Module 02
Lecture Number 09
Distance Properties of Linear Block Codes-II
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In this lecture we are going to talk about what do we mean by weight distribution of a linear
block code and then we are going to talk about how is the error correcting capability and
error detecting capability of a linear block code dependent on the minimum distance of a

code. So we will continue
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Lecture #5B: Distance Properties of Linear Block Codes-I1

basically our discussion on distance properties that we have started
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Distance properties of block codes

Example 3.2: Let k = 3 and n = 6. The table gives a (6. 3) linear block

code
Message Codewords
(vg, uy, u2)  (vg. vy, va, va, va, v5)
(000) (000000)
(100) (011100)
(010) (101010)
(110) (110110)
(001) (110001)
(101) (101101)
(011) (011011)
(111) (000111)

last time. So this is one example of a linear block code where number of information bits is 3
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Distance properties of block codes

Example 3.2: Let k = 3 and n — 6. The table gives a (6, 3) linear block

—

code

Message Codewords

{un.ul.ug) (vo.v1.vg.v-3.v..|n=,]
(000) (0o0000)
(100) (011100
(010) (101010)
(110) (110110)
(001) (110001)
(101) (101101)
(011) (011011)
(111) (000111)

and number of
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Distance properties of block codes

Example 3.2: Let k = 3 and n — 6. The table gives a (6.3) linear block

—_—

code
Message Codewords
(vg, vy, u2)  (vo. vy, va, vy, v, v5)
(000) (000000)
(100) (011100)
(010) (101010)
(110) (110110)
(001) (110001)
(101) (101101)
(011) (011011)
(111) (000111)

coded bits is 6. This is a list of 2 k codewords which is 8 codewords, message bits and these
are their corresponding codewords. So these are the, from 0 0 0 to 1 1 1, these are our 2 k
message bits and corresponding to each of our message bits these are the corresponding

codewords,
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Distance properties of block codes

Example 3.2: Let k = 3 and n — 6. The table gives a (6.3) linear block
code

Message Codewords
(vg, vy, u2)  (vo, vy, va, vy, va, v5)

(000) —>»(000000)
(100) (011100)
(010) (101010)
(110) (110110)
(001) (110001)
(101) (101101)
(011) (011011)
(111) (000111)

Ok. Now
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Distance properties of block codes

Example 3.2: Let k — 3 and n — 6. The table gives a (6.3) linear block
code ‘

Message Codewords
(vg, uy, u2)  (vo. vy, va, vy, va, v5)

(000) —»(000000)
(100) —> (011100)
(010)— (101010)
(110) (110110)
(001) (110001)
(101) (101101)
(011) (011011)
(111) (000111)

let us look at what is the weight distribution of these codewords. So these codewords, this is

all zero codeword, so the weight, Hamming weight for this is basically 0. What about
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Distance properties of block cod

Example 3.2: Let k = 3 and n — 6. The table gives a (6.3) linear block

code DEa—

Message Codewords

(vg, uy, u2)  (vo. vy, va, vy, v, v5)
(000) —>»(000000) (o)
(100)—=(011100)
(010)—= (101010)
(110) (110110)
(001) (110001)
(101) (101101)
(011) (011011)
(111) (000111)

This codeword has 3 1's. So Hamming weight is 3,



Example 3.2: Let k

code

Message Codewords

(vg, uy, 12) (g, vy, va, vy, v, v5)

(000) —» (000000)
(100) —> (011100)
(010)— (101010)
(110) (110110)
(001) (110001)
(101) (101101)
(011) (011011)
(111) (000111)

3 and n — 6. The table gives a (6. 3) linear block

—_—

this codeword has three 1's. So its Hamming weight is 3.

Distance properties of block codes

Example 3.2 Let k
code

3 and n — 6. The table gives a (6,3) linear block

— —

Message Codewords

(o, 02) (Yo, va, va. v, va, vs)

(000) —»(000000)
(100) —> (011100)
(010)— (101010)
(110) (110110)
(001) (110001)
(101) (101101)
(011) (011011)
(111) (000111)

ull o

This codeword has four 1's. So the Hamming weight is 4.
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Distance properties of block codes

Example 3.2: Let k = 3 and n — 6. The table gives a (6.3) linear block
code ‘

Message Codewords
(vg, vy, u2)  (vo. vy, va, vy, va, v5)

(000) —>(000000) 0
(100) — (011100) =
(010)—s (101010) 3
(110) (110110) 4
(001) (110001)
(101) (101101)
(011) (011011)
(111) (000111)

Distance properties of block codes

Example 3.2: Let k = 3 and n — 6. The table gives a (6.3) linear block

code =

Message Codewords
(vg, uy, u2)  (vo. vy, va, vy, va, v5)

(000) —>(000000) 0
(100) — (011100) =
(010)—s (101010) 3
(110) (110110) 4
(001) (110001) =%
(101) (101101)
(011) (011011)
(111) (000111)

This one similarly has Hamming weight 4,
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Distance properties of block codes

Example 3.2: Let k = 3 and n — 6. The table gives a (6.3) linear block
code ‘

Message Codewords
(vg, vy, u2)  (vo. vy, va, vy, va, v5)

(000) —>(000000) 0
(100) — (011100) =
(010)—s (101010) 3
(110) (110110) 4
(001) (110001) =
(101) (101101) 4
(011) (011011)

(111) (000111)

this one Hamming weight 4 and this one has
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Distance properties of block codes

Example 3.2: Let k = 3 and n — 6. The table gives a (6.3) linear block

code

Message Codewords
(vg, vy, 12)  (vo. vy, va, vy, va, v5)

(000) —>(000000) 0
(100) —2 (011100) =
(010)—s (101010) 3
(110) (110110) 4
(001) (110001) ==
(101) (101101) 4
(011) (011011) 4
(111) (000111) =

Hamming weight 3.
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Now what is the minimum distance of the code? As you recall we define the minimum

distance of the code as minimum weight
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Example 3.2: Let k = 3 and n — 6. The table gives a (6, 3) linear block

code. _—

Message Codewords

(o, th, 13)  (vo. v, v2, w3, va. )
(000) — (000000) 0
(100) ——> (011100) 3
(010)—s (101010) 3
(110) (110110) 4
(001) (110001) =
(101) (101101) 4
(011) (011011) 4
(111) (000111) 3

of a non-zero codeword. So what is the minimum weight of the non-zero codeword in this

case? Its 3 so minimum distance of this code is 3.
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Distance properties of block codes

@ Let A; be the number of codewords in C with Hamming weight

So let a i denotes the number of codewords in C with Hamming weight i. So if
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Distance properties of block codes

Example 3.2: Let k = 3 and n — 6. The table gives a (6, 3) linear block
code ‘

Message Codewords
(vg, uy, u2)  (vo, vy, va, va, va, v5)

(000) —=(000000) 0
(100) — (011100) T
(010)—s (101010) 3
(110) (110110) 4
(001) (110001) =
(101) (101101) 4
(011) (011011) 4
(111) (000111) -

you look here, if I, so I will use a 0 to denote
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Distance properties of block codes

Example 3.2: Let k = 3 and n = 6. The table gives a (6. 3) linear block
code -

Message Codewords AO
(vo. 0. 02)  (vo.va,va, va, va. vs)

(000) —>(000000) 0
(100) —» (011100) =
(010)—s (101010) 3
(110) (110110) 4
(001) (110001) =
(101) (101101) 4
(011) (011011) 4
(111) (000111) = -

number of codewords which have Hamming weight 0 and that number is 1. Do we have
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Distance properties of block codes

Example 3.2: Let k = 3 and n — 6. The table gives a (6.3) linear block
code

Message Codewords AO = 1
(vg, uy, u2)  (vo, vy, va, va, va, v5)

(000) —=(000000) 0
(100) — (011100) T
(010)—s (101010) 3
(110) (110110) 4
(001) (110001) 3
(101) (101101) 4
(011) (011011) 4
(111) (000111) 3

any codeword with Hamming weight 1? No. So a 1 is going to be 0.
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Distance properties of block codes

Example 3.2: Let k = 3 and n = 6. The table gives a (6. 3) linear block
code ’

Message Codewords AO = 1
(vg, uy, u2)  (vo, vy, va, va, va, v5) =0

-

(000) —=(000000) 0
(100) — (011100) T
(010)—s (101010) 3
(110) (110110) 4
(001) (110001) =
(101) (101101) 4
(011) (011011) 4
(111) (000111) 3

What about a 2? How many codewords we have with Hamming weight 2? Again that's 0.
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Distance properties of block codes

Example 3.2: Let k = 3 and n — 6. The table gives a (6.3) linear block
code ‘

'-.b

Message Codewords
(vg, uy, u2)  (vg, vy, va, va, va, v5)

(1] “

P2
&

(000) —=(000000) 0
(100) — (011100) =
(010)—s (101010) 3
(110) (110110) 4
(001) (110001) ==
(101) (101101) 4
(011) (011011) 4
(111) (000111) o

What about a 3? That's basically 1, 2, 3, 4.We have 4 codewords with
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Example 3.2: Let k = 3 and n — 6. The table gives a (6.3) linear block

code -
Message Codewords AO = 1
(g, y, u2)  (vo, w1, va, v3, v, v5) A =0
(000) —>»(000000) 0 A?.:O
(100)—=(011100) 3
(010)—s (101010) 3z Ay=4
(110) (110110 -
(001) (110001) 3
(101) (101101) 4
(011) (011011) 4
(111) (000111) 32

Hamming weight 3, a 4, 1, 2, 3, Ok

(Refer Slide Time 04:04)
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Distance properties of block codes

Example 3.2: Let k = 3 and n = 6. The table gives a (6. 3) linear block

code 5

(1] II

o%r

Message Codewords
(up. iy, w2) (v, w1, va2, v, v, vs5)

» PP
n

(000) —>(000000) 0

(100) —5 (011100) =
(010)—s (101010) 3 A=4
(110) (110110) 4 4=
(001) (110001) =

(101) (101101) 4

(011) (011011) 4

(111) (000111) 2

Ok we don't have any codeword with Hamming weight 5 or
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Distance properties of block codes

Example 3.2: Let k = 3 and n — 6. The table gives a (6.3) linear block

code -

>
L] il
0w

Message Codewords
(vg, uy, u2)  (vg. vy, va, va, va, v5)

(000) —>» (000000) 0 A=
(100) —5 (011100) -
(010)—s (101010) 3 Ay=4
(110) (110110) 4 A+:3
(001) (110001) 2
(101) (101101) 4 s=0
(011) (011011) 4

(111) (000111) =

Hamming weight 6.
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Distance properties of block codes

Example 3.2: Let k = 3 and n = 6. The table gives a (6. 3) linear block

code - T
Message Codewords AO = 1
(vg, uy, u2)  (vo, vy, va, va, va, v5) A\ =0
(000) —>»(000000) 0 Azto
(100) —5(011100) =
(010)—s (101010) 3 Ay=4
(110) (110110) 4 A*:S
(001) (110001) = A
(101) (101101) 4 s=0
(011) (011011) 4 AC-’-O
(111) (000111) |

And you can do a quick check, the number of codewords should add up to number of

codewords that we have which is 8, 1 plus 4 plus 3, Ok. So we are denoting
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Distance properties of block codes

@ Let A; be the number of codewords in C with Hamming weight

by a i, the number of codewords in this linear block code with Hamming weight i.
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Distance properties of block codes

@ Let A; be the number of codewords in C with Hamming weight
@ The set {Ag. Ay, ---  A,} is called the weight distribution of C

Now this set which describes how many codewords
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we have of particular weight, this is basically known as weight distribution of a linear block

code, see. So for this

Example 3.2: Let k = 3 and n — 6. The table gives a (6,3) linear block

code. —_—

Message Codewords A0=1
(w0, 01.02) (v 1.0, v5. va. ) A=0
(000) —>(000000) 0 =0
(100) —> (011100) 3
(010)—s (101010) 3 A=4
(110) (110110) 4 AyL=3
(001) (110001) 3

(101) (101101) 2 As=0
(011) (011011) 4 AC=O
(111) (000111) 3

block code, the weight distribution is given by this. This completely specifies the weight

distribution



Example 3.2: Let k = 3 and n = 6. The table gives a (6, 3) linear block
Message Codewords AO = 1
(ug, iy, u2) (v, w1, va, va, v, v5) A=0
(000) —(000000) 0 A1:O
(100) —=(011100) 32
(010)—s (101010) 3 Ay=4
(110) (110110) ~ A+:3
(001) (110001) . - A
(101) (101101) 4 s=0
(011) (011011) -~ Ac_._o
(111) (000111) 2

of this particular 6 3 linear block code.
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@ Let A; be the number of codewords in C with Hamming weight
@ The set {Ag. Ay, --  A,} is called the weight distribution of C

And since we have said



(Refer Slide Time 05:07)

B =is0semssjuanannf?

@ Let A; be the number of codewords in C with Hamming weight /.
@ The set {Ag. Ay, -+, A,} is called the weight distribution of C.
@ Notethat 4 =1, and }°7 A, = 2%,

a linear block

(Refer Slide Time 05:08)

code will have an all zero codeword, so a 0 will be
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@ Let A; be the number of codewords in C with Hamming weight |
@ The set {Ag. Ay, -- . A,} is called the weight distribution of C
@ Notethat 4 =1,and 37 (A =2*

1 and sum of all these codewords, they should all add up to total number of codewords which

is 2 to the power k.

I just worked out

YR (TITTTT el e
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Distance properties of block codes

@ Let A; be the number of codewords in C with Hamming weight i
@ The set {Ag. Ay,--- ,A,} is called the weight distribution of C

@ Notethat 4 =1,and 3] (A = 2*

@ Example 3.3: For the (6,3) code in example 3.2

A=1A=04=0A43=4A=3A=0A4A=0.

this example for the 6 3 code we have shown in the previous slide and I showed you that in

this particular example a 0 is 1, a 3 is
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Distance properties of block codes

@ Let A; be the number of codewords in C with Hamming weight i

@ The set {Ag. Ay, --  A,} is called the weight distribution of C

@ Notethat 4 =1,and 3] (A =2*

@ Example 3.3: For the (6,3) code in example 3.2
A=1A=0A=0A3=4A=3As=0,A4=0.

—_—

4,
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Distance properties of block codes

@ Let A; be the number of codewords in C with Hamming weight i

@ The set {Ag. Ay, --  A,} is called the weight distribution of C

@ Notethat 4 =1,and 377 (A = 2*

@ Example 3.3: For the (6,3) code in example 3.2
Ag=1A=0A4=0A43=4A=3As=0A4=0.

—_—

a 4 is 3. Rest all others are
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Distance properties of block code

@ Let A; be the number of codewords in C with Hamming weight i

@ The set {Ag. Ay, --  A,} is called the weight distribution of C

@ Note that A4y = 1, and 37 A, = 2*

@ Example 3.3: For the (6,3) code in example 3.2
Ag=1A4=04=0A43=4A=3A=0A4A,=0.

—_—

0. And I also showed
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Let A; be the number of codewords in C with Hamming weight i
The set {Ag, Ay,--- , A, } is called the weight distribution of C
Note that 4y = 1, and 3" A, = 2

Example 3.3: For the (6,3) code in example 3.2

Ag=1A4=04=043=4A,=3A=0A4A;=0.

® dmin in the above example is 3

you that the minimum distance of this code is 3 because minimum weight of a non-zero

codeword in this example is 3. Now the probability of
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by

PUE) =3 Ap/(1-p)
=1

undetected error for a linear block code over a binary symmetric channel is basically related

to the weight distribution of the code.
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by
PAE) =3 Aip(1-p)""
i=1

@ Example 3.4: For the (6.3) code in example 3.2,

P.(E) =4p (1 - p) + 3p*(1 - p)* = 4p* (for small p)

So for a 6 3 linear block code and, so when does an, when does a undetected error happens?
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An undetected error happens if, let's say you send one particular codeword and at the receiver
you receive some other codeword. So without loss of generality let's assume that we sent a all
zero codeword. And at the receiver you received any other non-zero codeword. So if I send

an all zero codeword
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@ The probability of undetected error on a BSC is given by

PAE)= Y Apl(1 )

@ Example 3.4: For the (6,3) code in example 3.2,

P.(E) = 4p’(1 - p)’ + 3p*(1 - p)* = 4p®  (for small p)

at the transmitter and at the receiver you receive any other non-zero codeword then that will
be the case of undetected error. So you can see basically, that's why I have written it as, so
what is the probability, when you are sending an all zero codeword, what is the probability of
getting another codeword of weight a i or weight i? What is the probability that, when I am

sending an all zero codeword and you receive a codeword
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which has weight i? Now that probability is given by,
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@ The probability of undetected error on a BSC is given by

PE) = 3" Agl(1 )"

@ Example 3.4: For the (6,3) code in example 3.2,

PJE) =4p*(1 — p)* +3p*(1 - p)* = 4p®  (for small p)

since we are considering a binary symmetric channel, now recall what happens in binary

symmetric channel, two inputs 0 and 1,
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by
L T o &
PAE) =3 Ag/(1 - p)"
i=1

@ Example 3.4: For the (6.3) code in example 3.2,

PE)=4p*(1 - p)’ + 3p*(1 - p)* = 4p* (for small p)

two outputs 0 and 1, and what

(Refer Slide Time 07:52)
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by
o - .0

PAE) =Y Ap'(1-p)
=1

@ Example 3.4: For the (6.3) code in example 3.2,

PE)=4p*(1 - p)’ +3p*(1 - p)* = 4p® (for small p)

is the crossover probability? That is basically given by p. So with probability p,
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@ The probability of undetected error on a BSC is given by

B — 0
PUE) =3 Apl(1 - p)™ ><
=]
| |

@ Example 3.4: For the (6,3) code in example 3.2,

PE)=4p’(1 - p)’ +3p*(1 - p)’ =4p* (for small p)

0 can get flipped to 1, 1 can get flipped to 0. And the probability of correct detection is 1

minus p. So you are sending a

(Refer Slide Time 08:11)
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by —P
L o g
P,(E Ap'(1 1
(E) Z;_n (1-p) >

@ Example 3.4: For the (6.3) code in example 3.2,

P.(E) =4p (1 - p)* + 3p*(1 — p)® = 4p* (for small p)

codeword which is an n-bit tuple. Now what's a probability



(Refer Slide Time 08:17)

that you are sending an all zero codeword of all zero bits, you receive another codeword of

(Refer Slide Time 08:28)

 EisDisrmessmand el 1

3 rie=ma-ck e

@ The probability of undetected error on a BSC is given by P
a [#]
P.(E) = z Ap'(1—p)"' ?
=] e l
@ Example 3.4: For the (6,3) code in example 3.2, = |

P.(E) =4p°(1 — p)* + 3p*(1 - p)* = 4p®  (for small p)

weight i. Now that probability is given by p raised to power i. This will happen when i bits

get flipped and n minus i bits do not get flipped. So that probability is given by p raised to

power i into 1 minus p raised to power n minus i and how many such codewords exist? That

number is given by a i. So the probability of getting a weight i
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codeword at the receiver; when you send an all zero codeword, that probability
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@ The probability of undetected error on a BSC is given by —p
P [+] : ?
P.(E) = E_AL'P‘(I -y 2
=]
@ Example 3.4: For the (6,3) code in example 3.2, l - |

P.(E) = 4p’(1 - p)’ + 3p*(1 - p)* ~4p®  (for small p)

is basically given by this. Ok. Now
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an undetected error will happen if the receiver receives any non-zero codeword. So I have to

sum up
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@ The probability of undetected error on a BSC is given by —P
- (+]
PAE) =3 Ap(1-p)"" 2 %
im1
@ Example 3.4: For the (6,3) code in example 3.2, l = l

P.E) = 4p*(1 - p)’ + 3p*(1 - p)* = 4p®  (for small p)

this probability
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by —p
- i 4
PUE) =3 Ap/(1 - p) ]
|| —
| I—p |

@ Example 3.4: For the (6,3) code in example 3.2,

PE) =4p’(1 - p)’ +3p*(1 - p)* = 4p* (for small p)

for all i going from 1 to n. So this is my overall
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by - P
" o &
P.(E Ap'(l e
(E) IZ;__p (1-p) >
| I—p |

@ Example 3.4: For the (6.3) code in example 3.2,

PE) =4p’(1 - p)’ + 3p*(1 - p)* = 4p* (for small p)

undetected error probability if I send a linear block code over a binary symmetric channel. So
for the example that I have considered I know the weight distribution, so if I plug that in here
what I get is, so there were 4 codewords with weight 3, so this is 4 p raised to power 3. And

what was n, n is 6.
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by —p
L o g
P.(E Ap'(1 1
(E) =3 Ag(1 - ) .
| I—p |

@ Example 3.4: For the (6,3) code in example 3.2,

PE)=4p’(1 - p)’ +3p*(1 - p)* =4p* (for small p)

So 6 minus i which is 3 in this case, it's 3. So first term that I will get is this.
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@ The probability of undetected error on a BSC is given by - P
n o N
P.(E Ap'(1 il
(E) Z;Jp (1-p) >
| I=p |

@ Example 3.4: For the (6.3) code in example 3.2,

PE)=4p’(1 - p)’ +3p*(1 - p)’ =4p* (for small p)

.

The next term corresponding to
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Let A; be the number of codewords in C with Hamming weight |
The set {Ag, Ay,--- A, } is called the weight distribution of C
Note that 4y = 1, and }°7 A, = 2

Example 3.3: For the (6,3) code in example 3.2

Ag=1A=04=0A43=4A,=3A=0A4A,=0.

@ dyis in the above example is 3

these codewords
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Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by

PAE) =Y Ap/(1-p)
=1

is given, so there are 3 codewords of weight 4
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@ The probability of undetected error on a BSC is given by

A 0 Z jo
PAE) =) Ap'(1—p)" 2
L —
| |

@ Example 3.4: For the (6,3) code in example 3.2, =

PE) =4p’(1 - p)’ + 3p*(1 - p)’ = 4p* (for small p)

PE———

Probability of 4 bits getting flipped is p raised to power 4 and probability of the other 2 bits
not getting flipped is 1 minus p whole square. And since p is typically small, I mean I can

approximate it, for small p I can approximate this undetected error probability
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@ The probability of undetected error on a BSC is given by

L o =
PAE) =3 Ap/(1-p)"" ?%
e —
\ |

@ Example 3.4: For the (6.3) code in example 3.2, -

P.(E) =4p (1 — p)* + 3p*(1 — p)® = 4p* (for small p)

e
e —

as 4 times p g, because this will be close to 1 and since p is 4, small number, p raised to
power 4 will be a small number. So this will be roughly equal to 4 into p raised to power 3.

This is for the case when p is small.
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Error detecting properties of block codes

@ There exist (n,k) linear block codes for which
P(E)<27" " forallp<1/2

on a BSC

So you can see in general, so in this particular example
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- s = Rl i BT e T
BTy —— 1 [(TITTTTGh e

G

Error detecting properties of block codes

@ The probability of undetected error on a BSC is given by —p
n o %
PUE) =3 Ap/(1 - p) :
i=l
| 1—p |

@ Example 3.4: For the (6,3) code in example 3.2,

PE)=4p’(1 - p)’ +3p*(1 - p)’ =4p® (for small p)

—_—
P——

the undetected probability basically
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@ The probability of undetected error on a BSC is given by —p
n o E
PAE) =Y Agi(1 - p)" ,
i=1
| I—p |

@ Example 3.4: For the (6.3) code in example 3.2,

PE) = 4p*(1 - p) + 36°(1 - p)* ~ 48 (for small p)

.

varies as p raised to power 3 which is basically same as n minus k. In general we can show

that

(Refer Slide Time 11:22)

iso rwegmaaaaify
rTREEE S g L L)

s

Error detecting properties of block codes

@ There exist (n,k) linear block codes for which
P(E)Y<2 ™" forallp<1/2

on a BSC

that undetected probability is dependent on how many
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@ There exist (n k) linear block codes for which

P(E) <228 forall p < 1/2

on a BSC.

parity bits that we have; so the more

(Refer Slide Time 11:30)

the number of parity bits, lesser will be the undetected error probability. So we can make
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Error detecting properties of block codes

@ There exist (n,k) linear block codes for which
P(E)Y<2 "M forallp<1/2

on a BSC

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n — k in a linear code

undetected probability go small by increasing the number of parity bits. Now if we have
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Error detecting properties of block codes

@ There exist (n,k) linear block codes for which
P(E)Y<2 "M forallp<1/2

on a BSC.

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n — k in a linear code

@ For a codeword with minimum distance dmis. NO error pattern with

weight dmin — 1 or less can change a transmitted codeword into
another codeword

a codeword with minimum distance d min, we know that any error pattern or weight less
than equal to d min minus 1 is not going to change that codeword into any other valid

codeword. So in other words, if there is an error pattern of weight
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Error detecting properties of block codes

@ There exist (n,k) linear block codes for which
P(E)Y<2 ™" foralip<1/2

on a BSC.

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n — k in a linear code.

@ For a codeword with minimum distance dmis, NO error pattern with

weight dmin — 1 or less can change a transmitted codeword into
another codeword.

d min minus 1 or less, then
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a AB0 s ¢mesaans iy

Fo ' re=mus-ci -Fenlussnnnnc

Error detecting properties of block codes

@ There exist (n,k) linear block codes for which
P(EY<2 "% forallp<1/2

on a BSC.

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n — k in a linear code

® For a codeword with minimum distance dmis. NO error pattern with
weight dmin — 1 or less can change a transmitted codeword into
another codeword

it cannot change a
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valid codeword into another valid codeword. What does that mean? It means that we can

actually detect any error pattern of weight up to d min minus 1.So

(Refer Slide Time 12:42)

@ There exist (n.k) linear block codes for which

P(E)Y<2 "% forallp<1/2

on a BSC.

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n — k in a linear code.

@ For a codeword with minimum distance dm,, NO error pattern with
weight dyi, — 1 or less can change a transmitted codeword into
another codeword.

@ Therefore, all error patterns with dmni, — 1 or fewer errors are
detectable, and dy,, — 1 is called the random error detecting
capability of a block code.

all error patterns of weight d min minus 1 or fewer errors are basically detectable and this is

also known as random error correcting capability of a linear block code.

Now take an example of a repetition code that we did in the first class. So let's say we have a

rate one half repetition code.
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Error detecting properties of block codes

1
@ There exist (n,k) linear block codes for which r
P(E)<2 "8 forallp<1/2

on a BSC.

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n — k in a linear code.

@ For a codeword with minimum distance dmis, NO error pattern with
weight dmin — 1 or less can change a transmitted codeword into
another codeword.

@ Therefore, all error patterns with dyi, — 1 or fewer errors are
detectable, and d;,;, — 1 is called the random error detecting
capability of a block code

So then for 0, we are sending 0 0
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Error detecting properties of block codes

1
R=3

@ There exist (n,k) linear block codes for which

—l
P(E)Y<2 " H foralip<1/2 O OO

on a BSC.

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n — k in a linear code.

@ For a codeword with minimum distance dmis, NO error pattern with
weight dmin — 1 or less can change a transmitted codeword into
another codeword.

@ Therefore, all error patterns with dy,, — 1 or fewer errors are
detectable, and d,;, — 1 is called the random error detecting
capability of a block code

and for 1 we are sending 1 1.
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Error detecting properties of block codes

1
R= >
@ There exist (n,k) linear block codes for which Z
—_—
P(E)Y<2 "M foralip<1/2 O OO
1 —-11
on a BSC.

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n — k in a linear code.

@ For a codeword with minimum distance dwia. No error pattern with
weight dmin — 1 or less can change a transmitted codeword into
another codeword.

@ Therefore, all error patterns with dy,, — 1 or fewer errors are
detectable, and d;,;, — 1 is called the random error detecting
capability of a block code

Now let's assume because of error in the channel some of the bits got flipped. So let's say this
what we received when we, let's say what we received was 1 0. If you receive 1 0 can you

detect?
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Error detecting properties of block codes

1
R= =
@ There exist (n.k) linear block codes for which z
—
P(E)Y<2"M forallp<1/2 o) 00
1 - 11
on a BSC. 10

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n — k in a linear code.

@ For a codeword with minimum distance dmi,. NO error pattern with
weight dmin — 1 or less can change a transmitted codeword into
another codeword.

@ Therefore, all error patterns with dmin — 1 or fewer errors are
detectable, and dy,, — 1 is called the random error detecting
capability of a block code

So what is the minimum distance, first answer this question. What is the minimum distance
of this code, this rate one half repetition code? We can see the minimum distance is 2.

Minimum distance of this code is 2. So
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0 —= 00
1 - 11
on a BSC. io

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n — k in a linear code.

@ For a codeword with minimum distance dmis, NO error pattern with
weight dmin — 1 or less can change a transmitted codeword into
another codeword.

@ Therefore, all error patterns with dys — 1 or fewer errors are
detectable, and d,,;, — 1 is called the random error detecting
capability of a block code.

@ There exist (n k) linear block codes for which

PE)<2 ¥ forallp<1/2

according to this, we should be able all error patterns of weight 1. So let's take an example.
Let's say we received 1 0, can you detect the error? Yes we can because since it’s a rate one

half repetition code what we expect to receive

(Refer Slide Time 14:30)

either 0 0 or 1 1 if we
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@ There exist (n.k) linear block codes for which R = drmine 2
O
P(E)<2 "% foralip<1/2 O_'O
) all p T — 11

@ The above bound shows that the undetected error probability can be
made to decrease exponentially with the number of parity check bits
n — k in 2 linear code.

@ For a codeword with minimum distance dmia,. NO error pattern with
weight dmin — | or less can change a transmitted codeword into
another codeword.

@ Therefore, all error patterns with dy, — 1 or fewer errors are
detectable, and d,,, — 1 is called the random error detecting
capability of a block code.

transmit these codewords over a binary symmetric channel. But what we have received is 1 0
which is neither 0 0 nor 1 1. So we are able to detect single error. So to repeat basically, if
you have a linear block code whose minimum distance is d min. You will be able to detect all

€eITOorsS, random errors of error pattern up to

(Refer Slide Time 15:09)

d min minus 1.

Next we are going to show how is the error detecting capability, error correcting capability of

a linear block code related to the minimum distance of a code. So
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Error correcting properties of block codes

Theorem

@ A block code C with mimmum distance dm., s capable of correcting
all error patterns of weight t or less, where t is an integer such that
2t + 1 < din < 2t + 2

Proof:

if we have a linear block code C whose minimum distance is d min where d min satisfies this

relation.
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Theorem

@ A block code C with minimum distance d., is capable of correcting
all error patterns of weight t or less, where t is an integer such that
2t+ 1 < dmin S 2t+2

Proof

d min is greater than equal to 2 t plus 1 where t is an integer and its less than an integer and it

is less than equal to 2 t plus 2. If d min satisfies this relation
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and if we have a linear block code with minimum distance d min then it is capable
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Theorem:

@ A block code C with minimum distance dmi, is capable of correcting
all error patterns of weight t or less, where t is an integer such that
2t + 1| < Ooin < 2t + 2.

Proof:

of correcting all error patterns up to weight t. So let us prove this result.
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Error correcting properties of block codes

Theorem:

@ A block code C with minimum distance d,;, is capable of correcting
all error patterns of weight t or less, where t is an integer such that
2t + 1 < doia < 2t +2

Proof

@ Assuming codeword v is transmitted and r is the received sequence
Let w # v be any other codeword. Then d(v,.w) < d(v.r) + d(r.w)
(triangle inequality)

Let us assume the codeword that is transmitted is given by v and what we received is say
tuple r. Let us assume there is another codeword w which is not same as v. Now we know
from triangular inequality that Hamming distance between v and w will be less than equal to
Hamming distance between v and r plus Hamming distance between r and w. Now let us

dassume
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Error correcting properties of block codes

Theorem:

@ A block code C with minimum distance d,, is capable of correcting
all error patterns of weight t or less, where t is an integer such that
4+ 1< che <242

Proof

@ Assuming codeword v is transmitted and r is the received sequence
Let w # v be any other codeword. Then d(v.w) < d(v.r) + d(r.w)
(triangle inequality)

@ If the error pattern has weight t', then d(v.r) =t

that the error pattern has weight t hat. And what's r; r is nothing but v plus this error pattern,
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Error correcting properties of block codes

Theorem

@ A block code C with minimum distance d,, is capable of correcting
all error patterns of weight t or less, where t is an integer such that
2t + 1 < Ooia < 2t + 2

Proof

@ Assuming codeword v is transmitted and r is the received sequence
Let w # v be any other codeword. Then d(v.w) < d(v.r) + d(r.w)
(triangle inequality)

T=V4
@ If the error pattern has weight t', then d(v.r) =t €

correct? So the Hamming distance between v and r is going to be the weight of this error

pattern and which we are denoting by t dash. Now since

(Refer Slide Time 17:29)
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Error correcting properties of block codes

Proof (contd)

@ Since v, and w are codewords,
d(v,w) = dpin = 28+ 1
Therefore,

dir.w) > d(v.w) —d(v.r) =2t +1-1¢".

v and w are valid codewords, so the Hamming distance between v and w will be at least equal
to the minimum distance of the code. So the Hamming distance between v and w is greater
than equal to minimum distance of the code and in the beginning we defined that our

minimum distance
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Error correcting properties of block codes

Theorem

@ A block code C with minimum distance d,;, is capable of correcting
all error patterns of weight t or less, where t is an integer such that
+1< gy C2H+2

Proof

@ Assuming codeword v is transmitted and r is the received sequence
Let w # v be any other codeword. Then d(v,.w) < d(v.r) + d(r.w)
(triangle inequality)

T=V+
@ If the error pattern has weight t', then d(v.r) =t <€

is at least 2 t plus 1. So from these
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Error correcting properties of block codes

Proof (contd)

@ Since v, and w are codewords,
d(v,w) > dpin = 2t + 1
Therefore,

dir.w) > d(v.w) —d(v.r) =2t +1-1¢".

two, we can write that Hamming distance between v and w is greater than equal to 2 t plus 1.
Now from the triangular inequality we know that Hamming distance between r and w, this we

can see from here, this relationship
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Error correcting properties of block codes

Theorem:

@ A block code C with minimum distance d,, is capable of correcting
all error patterns of weight t or less, where t is an integer such that
24 1< dop <20+2

Proof:

@ Assuming codeword v is transmitted and r is the received sequence.
Let w # v be any other codeword. Then d(v.w) < d(v.r) + d(r.w)
(triangle inequality)

: : TY=V+e

@ If the error pattern has weight t', then d{v,r) =t

basically triangular inequality

Error correcting properties of block codes

Theorem:

@ A block code C with minimum distance d,;, is capable of correcting
all error patterns of weight t or less, where t is an integer such that
41 < g S22

Proof:

@ Assuming codeword v is transmitted and r is the received sequence
Let w # v be any other codeword. Then d(v,w) < d(v.r) + d(r.w)
(triangle inequality)

- : T=V+e

@ If the error pattern has weight t', then d(w.r) =t

what we have is
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Error correcting properties of block codes

Proof (contd)

@ Since v, and w are codewords,
d(v.w) = dmin = 2t + 1
Therefore,

dir.w) > d(v.w) —d(v.r) =2t +1-1¢".

the Hamming distance between v and w to be less than equal to Hamming distance between r

and w plus Hamming distance between r and v, right.
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Error correcting properties of block codes

Proof (contd)

@ Since v, and w are codewords,
d(v. W) = dmin = 2t +

1
Therefore, d_(Y, H) < d (T, l-l) 1 d.('r: "]

dir.w) > d(v.w) —d(v.r) =2t +1—-1t".

Now this we can write as, we can bring this here and we can bring this here, what we can

write this as, let us say we can write this, this relation in this particular form.
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Error correcting properties of block codes

Proof (contd)

@ Since v, and w are codewords,
d(v,w) > dpin = 2t + 1

Therefore, d_(V s u) £ d (T. I-l) + i('f: "]

dir.w) > d(v.w) —d(v.r) =2t +1-1t".

Ok.

Now what is this quantity, Hamming distance
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Error correcting properties of block codes

Proof (contd)

@ Since v, and w are codewords,
d(v,w) = dpin = 28+ 1

Therefore, C'_(V; ‘-‘) S d (‘r’, "") + i('r, v‘]

dr.w) = d[v.wi— dliv.r) =2t +1-1'.

between v and w? The Hamming distance between v and w is at least equal to
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Error correcting properties of block codes

Proof (contd)

@ Since v, and w are codewords,

d(v,w) > dpin = 2t + 1

Therefore, E; ‘-‘) < d (Ta "") . i('r, v]

d(r.w) = d[v.wi—- dlv.r) =2t +1-1'.

2 t plus 1. And what is Hamming distance between the transmitted codeword and the received
codeword? This is we denote it by t dash. So then Hamming distance between r and w is

given by 2 t plus 1 minus t dash. Now
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Error correcting properties of block codes

Proof (contd)

@ Since v, and w are codewords,
d(v,w) = dmin = 2t + 1
Therefare,
dir.w) > d(v.w) —d(v.r) =2t +1-1¢t".
@ Ift' <t then

dirrw)>t+1>¢t and d(v,r)=¢t' <t

as long as your error pattern is
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Error correcting properties of block codes

Proof (contd)

@ Since v, and w are codewords,
d(v,w) > dpin = 2t + 1
Therefore,
dir.w) > d(v.w) —d(v.r) =2t +1-1t".
@ Ift’ <t then

dirrw)>t+1>¢t and d(v.r) =1t <t

less than equal to t the weight of error pattern is less than equal to t, in that case the Hamming
distance between r and w will be, you can plug that value of t here and what we will get is
Hamming distance between r and w is greater than equal to t plus 1 which is greater than

equal to t where as the Hamming distance between
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Proof (contd)

@ Since v, and w are codewords,

d(v.w) = dmin = 2t + 1
Therefore,
dir.w) > d(v.w) —d(v.r) =2t +1-1¢".
@ Ift’ <t then

dirrw)>t+1>¢t and d(v.r) =1t <t

transmitted codeword and the received codeword is t hat which is less than equal to t. What
does it mean? It means that the received codeword is closer to v than any other codeword w.
So what will be your maximum likelihood decoder for binary symmetric channel will decide
in favor of? It will decide in favor of v. So you will correctly decode this received sequence

to be v and this was our transmitted codeword. So you will not make an error. So what we



have shown here is, as long as your error pattern has weight up to t, those error patterns are

correctable provided

(Refer Slide Time 21:36)

=

ELrLL

Error correcting properties of block codes

Proof (contd)

@ Since v, and w are codewords,

d(v.w) = dmin = 2t + 1

Therefore, E, H) S d (T, l-l) = i('r: "]

d(r.w) -‘ld[u_wi— dlv.r) =2t +1-1.

the minimum distance of
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Error correcting properties of block codes

Theorem:
@ A block code C with minimum distance dm;, is capable of correcting
all error patterns of weight t or less, where t is an integer such that
Hii<d, <242
Proof
@ Assuming codeword v is transmitted and r is the received sequence
Let w # v be any other codeword. Then d(v.w) < d(v.r) + d(r.w)
(triangle inequality)
@ If the error pattern has weight t', then d(v.r) = t'

T=V+ e

your code is d min
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Error correcting properties of block codes

Theorem:

@ A block code C with minimum distance d,, is capable of correcting
all error patterns of weight t or less, where t is an integer such that
2t + 1 < oin < 2t + 2

Proof:

@ Assuming codeword v is transmitted and r is the received sequence
Let w # v be any other codeword. Then d(v,w) < d(v.r) + d(r.w)
(triangle inequality)

: : T=V+e

@ If the error pattern has weight t', then d(w.r) =t

and it satisfies this relationship. So the minimum distance of the code is at least 2 t plus 1,
and it is less than equal to 2 t plus 2, then it can correct all error patterns of weight t or less.

So as

(Refer Slide Time 22:03)
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Error correcting properties of block codes

Proof (contd)

@ Since v, and w are codewords,
d(v,w) = dmin = 2t + 1
Therefare,
dir.w) = d(v.w) —d(v.r) =2t +1-1¢t".
@ Ift' <t then
dirrw)>t+1>¢t and d(v.r)=¢t' <t

@ Hence r is closer to v than any other codeword w, and an ML
decoder will decode correctly

we can see here, the received codeword is closer to v than any other codeword w so it will

decide in favor of v and this r will be decoded as v.

Next we are
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Theorem:

@ For all | = t + 1, there is atleast one error pattern of weight / that
may not be correctly decoded by an ML decoder.
Proof: |
@ Let v and w be two codewords such that d(v.w) = dmi. Let €;, and
e> be two error patterns such that
(en+er=viw
(i) w(e: + &) = w(e:) + wiez) (nonoverlapping 1's)
(ii) wley) =I>¢t+1
Then,

wie) + w(e;) = w(e, + &) = w(v + w) = d(v + W) = duin-

going to show that if there exists an error pattern of weight greater than equal to t plus 1 then
our decoder whose minimum distance is at least 2 t plus 1 but less than 2 t plus 2, this
decoder will make an error. In other words, it would not be able to correct this error pattern of
weight t plus 1. So for all error patterns of weight 1, if 1 is at least t plus 1, then our maximum
likelihood decoder may not be able to correctly decode or correct that error. So let's prove
this. If v and w are 2 codewords and let's assume that the Hamming distance between v and w
is equal to the minimum distance of the code which is denoted by t min. And let e 1 and e 2
are two error patterns which satisfies these 3 properties, and what are these 3 properties? The
sum of e 1 and e 2 is the same as v plus w. The second property is, e 1 and e 2, they do not

have any overlapping

(Refer Slide Time 23:50)




1s. So weight of e 1 plus e 2 can be written as weight of e 1
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Error correcting properties of block codes

Thearem
@ For all | = t + 1, there is atleast one error pattern of weight / that
may not be correctly decoded by an ML decoder
Proof

@ Let v and w be two codewords such that d(v.w) = dy,. Let &), and
e> be two error patterns such that

e+ =v+w

(1) wier +e;) = wie:) + w(ez) (nonoverlapping 1's)
(i) wles)=/>¢c+1
Then,
w(e;) + wie;) = wle; + ;) = w(v +w) = d(v +w) = dyin-

plus weight of e 2. And we will show that if there is an error pattern of weight 1 where 1 is at
least t plus 1 then our maximum likelihood decoder will make an error in decoding. So the
way we have chosen our error pattern, weight of e 1 plus weight of e 2 is given by weight of e
1 plus e 2, this is from 2 and from 1 we know e 1 plus e 2 is nothing but v plus w so this is

same as weight of v plus w and this is nothing but this is Hamming distance between v and w

(Refer Slide Time 24:49)
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Error correcting properties of block codes

Theorem
@ For all | = t + 1, there is atleast one error pattern of weight / that
may not be correctly decoded by an ML decoder
Proof

@ Let v and w be two codewords such that d(v.w) = d. Let €, and
€2 be two error patterns such that

e+ =vi+w

(i) wie, +e:) = w(e;) + w(e:) (nonoverlapping 1's)
(i) wiey)=1>¢c+1
Then,
wie)) + wie;) = wie, + &) = w(v + w) = d(v § w) = dmin-

and we have said the Hamming distance between v and w is the minimum distance. So this is

equal to the minimum distance. Now let us assume that
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Error correcting properties of block codes

@ Assuming v is transmitted and r = v + e is received. Then

d(w.r) wiw+r)=wlw+v+e)=w(er)= dn — wie)
2t+2—(t+1)=t+1

we transmitted this codeword v and what we received is r. So this v got corrupted by this

error pattern e 1 which has
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Error correcting properties of block codes

Theorem
@ For all | = t + 1, there is atleast one error pattern of weight / that
may not be correctly decoded by an ML decoder
Proof
@ Let v and w be two codewords such that d(v.w) = dmin. Let &y, and
€ be two error patterns such that
e+ =v+w
(i) wie; +e;) = wie;) + wiez) (nonoverlapping 1's)
(i) wier)=71>¢t+1
Then,

wie) + wiey) = w(e, + &) = wiv + w) = d(v 9 w) = dnin.

Hamming weight of at least
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Error correcting properties of block codes

Theorem
@ For all | = t + 1, there is atleast one error pattern of weight / that
may not be correctly decoded by an ML decoder
Proof

@ Let v and w be two codewords such that d(v.w) = d,. Let €, and
ez be two error patterns such that
e+ =viw
(i) wie: +e:) = w(e;) + w(e:) (nonoverlapping 1's)
(i) wley)=1>¢c+1
Then,

w(e)) + wie;) = wle, + &) = w(v+w)= d(v,w} A

t plus 1. Now

(Refer Slide Time 25:21)

Error correcting properties of block codes

@ Assuming v is transmitted and r = v + €; is received. Then

d(w.r) wiw+r) = wlw+v+e)=w(er)= dn — wie)
2t+2—(t+1)=1t+1

we will repeat the same exercise, we will try to find out the Hamming distance of this
received codeword from the correct transmitted codeword v and Hamming distance between
the received codeword and any other codeword w. So if we calculate the Hamming distance
between w and the received codeword we know that Hamming distance between w and r is
nothing but Hamming weight of w and r. And what is r? r is my received codeword, v plus e

1. So I can write this as w plus v plus e 1. Now what is w plus v? From 1,
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Error correcting properties of block codes

Theorem
@ For all | = t + 1, there is atleast one error pattern of weight / that
may not be correctly decoded by an ML decoder
Proof:

@ Let v and w be two codewords such that d(v.w) = dy,. Let €, and
e> be two error patterns such that

(lem+ee=viw

(i) w(er +e;) = w(e:) + w(ez) (nonoverlapping 1's)
(wii) w(el) I>t+1
Then,
wie)) + w(e;) = w(e, + &) = w(v + w) = d(v ¢ w) = dmin-

I have w plus v is same as e 1 plus e 2. So then this is

Error correcting properties of block codes

@ Assuming v is transmitted and r = v + e; is received. Then

dw.r) wiw+r)=w(w+v+e)=w(e:)=dnn— wie)
2t+2-(t+1)=¢t+1

e 1pluse?2pluse 1. Soe 1 plus e 1 will be 0. So this will be e 2, weight of e 2. And what is

weight of e 2? From this relation
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Error correcting properties of block codes

Theorem
@ For all | = t + 1, there is atleast one error pattern of weight / that
may not be correctly decoded by an ML decoder
Proof:

@ Let v and w be two codewords such that d(v.w) = di,. Let €, and
e> be two error patterns such that

(e +er=v+w

(i) w(er +e;) = w(e,) + w(ez) (nonoverlapping 1's)
(i) wley)=1>¢c+1
Then,
wie)) + wie;) = w(e, + &) = w(v + w) = d(v ¢ w) = duin-

we can see weight of e 1 plus weight of e 2 is d min. So weight of e 2 is d min minus weight

of e 1. So this we can
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Error correcting properties of block codes

@ Assuming v is transmitted and r = v + e is received. Then

diw.r) = ww+tr)=w(w+v+e)=w(e:)=dn,— wie)
2t+2-(t+1)=t+1

write as weight of e 2 as d min minus weight of e 1. So d min is less than equal to 2 t plus 1
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Error correcting properties of block codes

@ Assuming v is transmitted and r = v + e; is received. Then

d(w.r) wiw+r)=w(w+v+e)=w(er)= dn — wie)
2t+2—(e+1)=t+1 T

and weight of e 1 is at least t plus 1. So
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Error correcting properties of block codes

@ Assuming v is transmitted and r = v + e; is received. Then

dw.r) wiw+r)=w(w+v+e)=wer)= dn — wie)
2t+2-(t+1)=t+1 T

weight of e 2 will be less than 2 t plus 2 minus t plus 1 which is t plus 1. So the Hamming

distance between w and r is less than t plus 1. And
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Error correcting properties of block codes

@ Assuming v is transmitted and r = v + e is received. Then

diw.r) = ww+r)=wlw+v+e)=w(e)=dn —we)
2t4+2=[(t+1)=t+1

@ Therefore d(w.r) = d(v.r) and an ML decoder may decode
incorrectly.

what is the Hamming distance between v and r? This is weight of e 1,
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Error correcting properties of block codes

dv.7)= v(=)

@ Assuming v is transmitted and r = v + e; is received. Then

diw.r) = w(w+r)=w(w+v+e)=w(e)=dm.—wle)
2t4+2—-[(t+1)=t+1

@ Therefore d(w,r) < d(v.r) and an ML decoder may decode
incorrectly.

Ok and what is weight of e 1? Weight of e 1 is given by 1, which is



Error correcting properties of block codes

Theorem
@ For all | = t + 1, there is atleast one error pattern of weight / that
may not be correctly decoded by an ML decoder
Proof:

@ Let v and w be two codewords such that d(v,.w) = din. Let €y, and
e> be two error patterns such that
e+ =v+w
(i) w(er +e;) = w(e:) + w(ez) (nonoverlapping 1's)
(i) wley)=1>¢c+1
Then,

wie)) + w(e;) = we, + &) = w(v + w) = d(v 9 w) = dmin-

at least t plus 1. So what we

Error correcting properties of block codes

@ Assuming v is transmitted and r = v + e; is received. Then

diw.r) = w(w+r)=w(w+v+e)=wle)=dn — w(e)
2t+2-(e+1)=t+1 T

have shown here is
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Error correcting properties of block codes

@ Assuming v is transmitted and r = v + e; is received. Then

diw.r) = w(w+r)=w(w+v+e)=w(e)=dm.—wle)
2t4+2=(t+1)=t+1

@ Therefore d(w.r) < d(v.r) and an ML decoder may decode
incorrectly.

@ Hence for a block code with minimum distance d,,,;,. an ML decoder

d; 1

4
will correctly decode any error pattern of weight t = | =4—| or less

weight of w, Hamming distance between w and r is
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Error correcting properties of block codes

@ Assuming v is transmitted and r = v + e; is received. Then

diw.r) = wlw+r)=wlw+v+e)=wle)=dn — wle)
2t+2=(t+1)=t+1

@ Therefore d(w.r) < d(v.r) and an ML decoder may decode
incorrectly.

@ Hence for a block code with minimum distance d,,;,. an ML decoder

A
will correctly decode any error pattern of weight t = | %=1 | or less

less than t plus 1 where as Hamming distance between v and r is greater than equal to t plus

1. So what we have shown is Hamming distance between w and r is less than equal to

Hamming distance between received codeword r and the true codeword which was actually

transmitted which is v. So in this case the maximum likelihood decoder will decode in favor

of w and not v and will make a mistake. So through this construction
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we have shown that if your error pattern is of weight t plus 1, then you are not guaranteed to

correct that error. So from this and the previous result we can conclude
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@ Assuming v is transmitted and r = v + e is received. Then

diw.r) = ww+r)=w(w+v+e)=wer)=dm — wie)
< 2t+2-(t+1)=t+1

@ Therefore d(w.r) < d(v.r) and an ML decoder may decode
incorrectly.

@ Hence for a block code with minimum distance dp;,, an ML decoder
will correctly decode any error pattern of weight t = [ %=1 or less.

that if we have a block code with minimum distance d min which satisfies relationship that d

min
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lies between 2 t plus 1 and 2 t plus 2 then this linear block code with minimum distance d min

should be able to correct
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@ Assuming v is transmitted and r = v + @; is received. Then

diw.r) = ww+r)=w(w+v+e)=wle)=dmn— w(e)
< 2t+2-(e+1)=1t+1

@ Therefore d(w.r) < d(v.r) and an ML decoder may decode
incorrectly.

@ Hence for a block code with minimum distance d..;,.. an ML decoder
will correctly decode any error pattern of weight t 2 [%2=1] or less.

all error patterns up to weight t where t is given by



Error correcting properties of block codes

@ Assuming v is transmitted and r = v + €, is received. Then

diw.r) = ww+r)=wlw+vie)=wle)=dn — w(e)
2t4+2=(t+1)=t+1

@ Therefore d(w.r) < d(v.r) and an ML decoder may decode
incorrectly.

@ Hence for a block code with minimum distance d.;,. an ML decoder
a
will correctly decode any error pattern of weight t = | %52=1| or less.

this. So this t is
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Error correcting properties of block codes

@ Assuming v is transmitted and r = v + e; is received. Then

diw.r) = ww+r)=wlw+v+e)=w(er)=dmn— wie)
2t4+2=(t+1)=t+1

@ Therefore d(w,r) < d(v,r) and an ML decoder may decode
incorrectly.

@ Hence for a block code with minimum distance d,,;,. an ML decoder
a
will correctly decode any error pattern of weight t = | %5a=1| or less.
@ t is called the random error correcting capability of the code

known as random error correcting capability of the linear block code.

Next we are going to prove a result
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which is as follows. So if we have an n k linear block
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Theorem:

@ For an (n. k) linear code C with minimum distance dmin. all the
n-tuples of weight t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C.

Proof

code whose minimum distance is given by t min then we can show where d min lies between
2 t plus 1 and 2 t plus 2, then we can show that all end tuples of weight t or less can be used
as coset leader in our standard array. So we are going to prove this result using method of

contradiction.
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Now let's say, so how method of contradiction wor. We will say, let's say they are all error
patterns or weight up to t; let's say they are not coset leaders. Let's say, we will assume a
scenario where there are 2 such end tuples with weight up to t which are not coset leaders. In
other words they lie in the same coset or same row. And then later on we will show that that

is not possible. So that's how this method of contradiction will work

(Refer Slide Time 30:27)

TS50 smeemanan Yy 1

Theorem:

@ For an (n. k) linear code C with minimum distance dmia. all the
n-tuples of weight t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

will work
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Error correcting properties of block codes

Theorem

@ For an (n. k) linear code C with minimum distance du;,, all the
n-tuples of weight ¢t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is dy;,, minimum weight of C is also

drlllﬂ

so minimum distance of the code is d min so minimum weight of the code is also d min.
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Error correcting properties of block codes

Theorem:

@ For an (n, k) linear code C with minimum distance dpis. all the
n-tuples of weight t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is dy;,, minimum weight of C is also
df“ll\

@ Let x and y be two n—tuples of weight t or less.

Let x and y are 2 n-tuples of weight t or less. Now



(Refer Slide Time 30:45)

rTosms- i —=eSesssEenl

B

Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dmis. all the
n-tuples of weight ¢t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is dy;,, minimum weight of C is also
dﬂ\ll\

@ Let x and y be two n—tuples of weight ¢ or less

& w(x+y)< w(x)+ wly) <2t < dyin

weight of x plus y will be less than equal to weight of x plus weight of y. Why, because there
might be some overlapping 1s at some locations of this n-tuple x and y and we are given that
the weight of x and weight of y is at most t so then weight of x plus weight of y will be less
than equal to 2 t and this is less than minimum distance because minimum distance of code is

at least 2 t plus 1. Now let us assume
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Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dy;,, all the
n-tuples of weight t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is dy,;,, minimum weight of C is also
Aenin

@ Let x and y be two n—tuples of weight t or less
e w(x+y)< w(x)+ wly) <2t < dyin

@ Suppose x and y are in the same coset, then x + y must be a
nonzero codeword in C

that these x and y which are
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error patterns of weight t or less, let us assume that they are not coset leaders. If they are not
coset leaders, let us assume they are in the same coset; they are in the same row. So if we

assume x and y are in
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Theorem:

@ For an (n. k) linear code C with minimum distance d;,, all the
n-tuples of weight ¢t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C.

Proof

@ Since minimum distance of C is d,,,, minimum weight of C is also
Omin -

@ Let x and y be two n—tuples of weight t or less.

o wix +y) < w(x) + wly) < 2t < doin

@ Suppose x and y are in the same coset, then x + y must be a
nonzero codeword in C.

the same row or same coset, then x plus y must be a codeword. Why this is so? If you recall
your standard array we had something like this. First row first column was all zero vector and
then we had other codewords. And then we had error pattern, let's say e 2. This was e 2 plus v

2. Like, like this was e 2 plus v 2 k. If you look at
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Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dy;,, all the
n-tuples of weight t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is dy;,, minimum weight of C is also
Vv, R

diin O - V3
@ Let x and y be two n—tuples of weight ¢ or less e,_lt-pvt - ..cz“f
e w(x+y)< w(x)+ w(y) <2t < dyin

@ Suppose x and y are in the same coset, then x + y must be a
nonzero codeword in C

any 2 elements in the same coset or same row and if you add them up what do you get? Let's

add this and this, what do we get? e 2 plus e 2 plus v 2,

(Refer Slide Time 32:41)

[Me-% 1 LA L4
Farromss-ca

Theorem

@ For an (n, k) linear code C with minimum distance d.;,, all the
n-tuples of weight t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is d,,,. minimum weight of C is also
V.=

Do [+ ] L, T F
@ Let x and y be two n—tuples of weight t or less s;_lt;ﬂ',_ . A.cz“r
e w(x+y)< w(x)+ w(y) <2t < duin

@ Suppose x and y are in the same coset, then x + y must be a
nonzero codeword in C

we will get v 2. If we add this and this we will get v 2 plus v 2 k which is another codeword v

s. So if we take any two elements in the same coset and we add them up we are going to get a



Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dy;,, all the
n-tuples of weight ¢t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is dy;,. minimum weight of C is also
v, R

Aiin Olva -.. Va
@ Let x and y be two n—tuples of weight t or less e,_lt-pvx : ..cz“f
e w(x+y)< w(x)+ wly) <2t < dyin

@ Suppose x and y are in the same coset, then x + y must be a
nonzero codeword in C

non zero codeword.
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Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dy;,, all the
n-tuples of weight ¢t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is dy;,, minimum weight of C is also
v, R

i Olva --. Va
@ Let x and y be two n—tuples of weight ¢ or less !,_lt;JV.L - "ez"f
@ w(x+y) < w(x)+ wly) <2 < duin

@ Suppose x and y are in the same coset, then x + y must be a
nonzero codeword in C
————————————

So if x and y are in the same coset then x plus y must be a codeword. This is impossible.
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Theorem:

@ For an (n, k) linear code C with minimum distance dmin. all the
n-tuples of weight t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C.

Proof
@ Since minimum distance of C is dy,. minimum weight of C is also
Fenin.
@ Let x and y be two n—tuples of weight ¢ or less.
@ w(x+y)< w(x)+ w(y) <2t < duin

@ Suppose x and y are in the same coset, then x + y must be a I
nonzero codeword in C.

@ This is impossible as weight of x + ¥ < dmin-

Why? Because if x plus y is a

(Refer Slide Time 33:19)

codeword then what is the minimum distance of x plus y? x plus y, minimum distance of that

must be d min.
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Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dy;,, all the
n-tuples of weight t (Dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof

@ Since minimum distance of C is dy;,, minimum weight of C is also
. . o

@ Let x and y be two n—tuples of weight ¢ or less
e w(x+y)< w(x)+ wly) <2t < dpin

@ Suppose x and y are in the same coset, then x + y must be a
nonzero codeword in C

@ This is impossible as weight of x + y < dmin

But what is the, what is the weight of x plus y, we just showed in this bullet that weight of x

plus y is less than d min. That means weight of x plus y is less than d min.
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Error correcting properties of block codes

Theorem
@ For an (n, k) linear code C with minimum distance d,;,, all the
n-tuples of weight ¢t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proof
@ Since minimum distance of C is d;,, minimum weight of C is also
ein —

® Let x and y be two n—tuples of weight t or less
e w(x+y)< w(x)+ w(y) <2t < duin

@ Suppose x and y are in the same coset, then x + y must be a
nonzero codeword in C

@ This is impossible as weight of x |+ y < dpyn.

If weight of x plus y is less than d min then x plus y cannot
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be a non zero codeword because the weight of a non-zero codeword should be at least d min.
So our assumption that x and y are in the same coset is wrong. In other words then x and y

must be in different cosets, different rows and we can always make these x and y as coset

leaders. So this proves our result that

(Refer Slide Time 3

all n-tuples of weight n, of weight t or less can be used as coset leaders in the standard array

and we know that uh if we use them as coset leaders, we, those are our correctable error

patterns.
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Theorem:

@ For an (n, k) linear code C with minimum distance dy,,. all the
n-tuples of weight t = |(dmin — 1)/2] or less can be used as coset
leaders of a standard array of C

Proaf

@ Since minimum distance of C is d,,, minimum weight of C is also
Fenin- i

@ Let x and y be two n—tuples of weight ¢ or less.

@ wix+y) < wix)+ w(y) < 2t < dmin

@ Suppose x and y are in the same coset. then x + y must be a
nonzero codeword in C.

@ This is impossible as weight of x + ¥ < dmin-
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Theorem:

@ For an (n, k) linear code C with minimum distance dmin. if all the
n-tuples of weight ¢ = |(dmin — 1)/2] or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight t + 1 that cannot be used as coset leader.

Proof:
@ Let v be the minimum weight codeword of C

Next I am going to show you a result which is as follows. So if you have a n k linear block
code whose minimum distance is d min and if all n-tuples of weight t or less are already used
as coset leader then there is at least 1 n-tuple of weight t plus 1 which cannot be used as coset

leader. So this essentially is going to show us again the same result that
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any weight pattern of, error pattern of weight t plus 1 is not guaranteed to be corrected. So

how do we
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Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dpi,, if all the
n-tuples of weight t = |(dmin — 1)/2] or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight £ + 1 that cannot be used as coset leader

Proof

@ Let v be the minimum weight codeword of C

prove it? So let's assume v is the minimum weight codeword of C
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Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance dp,, if all the
n-tuples of weight ¢t = |(dmin — 1)/2] or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight ¢t + 1 that cannot be used as coset leader

Proof:

@ Let v be the minimum weight codeword of C
@ Let x and y be two n-tuples that satisfies the following conditions

and we have 2 n-tuples x and y which satisfies these following conditions.



Error correcting properties of block codes

Theorem

@ For an (n, k) linear code C with minimum distance diin, if all the
n-tuples of weight ¢t = |(dmin — 1)/2] or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight t + 1 that cannot be used as coset leader

Proof:
@ Let v be the minimum weight codeword of C

@ Let x and y be two n-tuples that satisfies the following conditions

e xX4+y=v

First, x plus y is equal to v, and x and y do not

(Refer Slide Time 35:54)

LT T i'-' T T e

Theorem

@ For an (n, k) linear code C with minimum distance diin, if all the
n-tuples of weight ¢t = |(dmin — 1)/2] or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight ¢ + 1 that cannot be used as coset leader

Proof:
@ Let v be the minimum weight codeword of C
@ Let x and y be two n-tuples that satisfies the following conditions
s X+y=vw
@ x and y do not have nonzero component in common places

have any component common. So they do not have 1s common in same position. So
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Error correcting properties of block codes

Proof (contd.)

@ From definition, x and y must be in the same coset, and

w(x) + w(y) = w(v) = dmin

from the definition x and y
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Error correcting properties of block codes

Theorem
@ For an (n, k) linear code C with minimum distance dp,, if all the
n-tuples of weight ¢ = |(dmin — 1)/2] or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight t + 1 that cannot be used as coset leader
Proof

@ Let v be the minimum weight codeword of C

@ Let x and y be two n-tuples that satisfies the following conditions
s Xx+y=vw
@ x and y do not have nonzero component in common places

must be in the same coset. Why? Because we know if two elements are in the same coset and
if we add them sum is a valid codeword. So x plus y is equal to v which is a valid codeword,

then x and y must be in the same coset.
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Proof (contd.)
@ From definition, x and y must be in the same coset, and

w(x) + w(y) = w(v) = duin-

So that's what I said from definition x and y must be in the same coset because x plus y
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P\
is v which is a valid codeword. And we know that if we add any two elements in a coset their

sum is a valid codeword. And
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Error correcting properties of block codes

Proof (contd.)

@ From definition, x and y must be in the same coset, and

W{") L] W(y] W[V] dmin

similarly weight of x plus weight of y is equal to weight of v. And we have chosen v to be the

minimum distance codeword, so this is given by d min. Now if we choose

(Refer Slide Time 37:09)
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Error correcting properties of block codes

Proof (contd.)

@ From definition, x and y must be in the same coset, and
w(x) + w(y) = w(v) = dmin

@ If we choose w(y) =t + 1, then w(x) = tor t + 1 (since
2t + 1 < Opia S 28+ 2)

our y to have a weight of t plus 1, then we can see from here d min is greater than equal to 2 t
plus 1 but less than equal to 2 t plus 2. So from this and using the fact that d min lies between

2 tplus 1 and 2 t plus 2,
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Error correcting properties of block codes

Proof (contd.)

@ From definition, x and y must be in the same coset, and
w(x) + w(y) = w(v) = dmo.  2ZEHNS dyn S22

@ If we choose w(y) =t + 1, then w(x) = tor t + 1 (since
2t+ 1 < Oia <2t 4+ 2)

using these 2 results what we get is weight of x
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Error correcting properties of block codes

Proof (contd.)

@ From definition, x and y must be in the same coset, and
w(x) + w(y) = w(v) = dpin- 2‘&*15 dﬂSZ{:-ﬂ.

@ If we choose w(y) =t + 1, then w(x) = tor t + 1 (since
2t+ 1 < Opia <2t + 2)

can be t or t plus 1.
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Error correcting properties of block codes

Proof (contd.)
@ From definition, x and y must be in the same coset, and

w(x) + w(y) = w(v) = dmin-

@ If we choose w(y) =t + 1, then w(x) = tor t + 1 (since
2t + 1 < Omin S 2t +2)
@ Therefore if x is chosen as coset leader, y cannot be coset leader

So therefore if we choose x to be our coset leader then we cannot choose y as our coset
leader. You can see, because x and y are in the same coset and weight of x is t or t plus 1
whereas weight of y is t plus 1. So I will choose x as my coset leader. And if I choose x as my

coset leader then I cannot choose y as my coset leader which proves my result
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Error correcting properties of block codes

Theorem
@ For an (n, k) linear code C with minimum distance dpin. if all the
n-tuples of weight ¢ = |(dmin — 1)/2] or less are used as coset
leaders of a standard array of C, then there is at least one n-tuple of
weight t + 1 that cannot be used as coset leader
Proof
@ Let v be the minimum weight codeword of C
@ Let x and y be two n-tuples that satisfies the following conditions
*$XTy v
@ x and y do not have nonzero component in common places

which says that if all end tuples of weight t or less are used as coset leaders then there exist at

least one error pattern of weight t plus 1 which cannot be used as coset leader and if this error

pattern
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Error correcting properties of block codes

Proof (contd.)

@ From definition, x and y must be in the same coset, and

w(x) + w(y) = w(v) = dmin

pattern
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Error correcting properties of block codes

Proof (contd.)
@ From definition, x and y must be in the same coset, and
w(x) + w(y) = w(v) = dmin.

@ If we choose w(y) =t + 1, then w(x) = tor t + 1 (since
2t 4+ 1 < dpin <2t +2)

@ Therefore if x is chosen as coset leader, y cannot be coset leader

of weight t plus 1 cannot be put
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as coset leader then this is not a correctable error pattern.
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Proof (contd )
@ From definition, x and y must be in the same coset, and

w(x) + w(y) = w(v) = dnin-

@ If we choose w(y) = t + 1, then w(x) = tor t + 1 (since
20+ 1 < din S 2t 4 2)

@ Therefore if x is chosen as coset leader, y cannot be coset leader.

So with this, I will conclude my
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lecture on random error correcting and random error detecting properties of block codes.

Thank you



