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Welcome to the course on Coding Theory. 
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As we know the error correcting 
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and error detecting capability of error correcting codes 
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depends on the distance profile of these codes so today we are going to talk and, talk about

the distance properties 
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of linear block codes. We are going to 
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describe what we mean by Hamming distance of codes and then we are going to talk about

how the  minimum Hamming distance  of  code  is  related  to  the  columns  of  parity  check

matrix. 
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I am first going to describe what is Hamming weight. So if we have a n-tuple, let's call it v, so

v is an n-tuple, and since we are restricting our discussion to binary linear block code. So we

consider a binary n-tuple. So this v 0, v 1, v 2, v n minus 1 could be either 0 or 1. So we

define the Hamming weight of this vector v as number of non zero components of v. So, for

example, let's say 
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v is 0 0 1 0 1 1. Let's say 
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this is my v. So we can see here how many non-zero components we have, 1, 2, 3. So the 
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Hamming weight of v is in this example is 3. Now let v and w are two 
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n-tuples. So we define the Hamming distance between v and w which is denoted by d v w as

the number of places where v and w are differing. So 
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for example, if v is given by this 1 0 0 1 0 1 1, and w is given by 0 1 0 0 0 1 1 then what is the

Hamming distance, then let's look at the first location. This is 1 and this is 0. So they are

differing in the first location. So that's 1. Similarly the second location, this is 0, this is 1, so

they are differing. So now it's Hamming weight is Hamming distance 2, 0 0 both are same,

the third bit location, the fourth bit location this is 1 and this is 0, so there are differing, so

Hamming distance is now 3, 0 0 they are same, this bit location both the v and w are 1,

similarly in this location v and w are same. That means our Hamming distance between v and

w is 3. And these are three locations where they are differing. One is this first bit location, 
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second bit location and this fourth bit location, 
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so the Hamming distance between v and w in this example is 3. Now if 
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v, w, x are 3 binary n-tuples, then the Hamming distance between v and w, Hamming distance

between w and x and Hamming distance between v and x satisfies this inequality which is

known as  triangular  inequality.  So  what  is  triangular  inequality?  The  Hamming  distance

between v and w 
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plus the Hamming distance between w and x is  greater  than equal  to Hamming distance

between 
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v and x. So let us 
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first try to prove this triangular inequality. So let v, w and x are 3 binary n-tuples. So the

binary distance between v and w can be defined as Hamming weight of v plus w. Note that

we are talking about binary n-tuples. 



(Refer Slide Time 04:45)

And what is Hamming distance? Hamming distance is number of positions in which v and w 
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are differing. And since we are talking about binary n-tuples so 
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the number of places where v and w are differing can be found if we add v and w, that is

modulo 2 addition of v and w and we find out the positions where the sum is 1. Because only

in those locations where these 
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bits are differing v plus w will be 
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1 otherwise it will be 0 because we know for binary modulo 2 addition 0 plus 0 is going to be

0, 

(Refer Slide Time 05:35)

1 plus 1 is going to be 0, only when 
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they are differing, 0 plus 1 in this case, it is going to be 1 
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and if this is 1 and this is 0, in this case also 
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this Hamming weight is going to be 1. So we can write down the Hamming distance between

v and w as the Hamming weight between v plus w. Similarly we can write the Hamming

distance between w and x as the weight  of this  vector  w plus x. And we can define the

Hamming distance between v and x as the weight of v plus x. So if we have 
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2 code vectors a and b we know the weight of a plus the weight of b is going to be greater

than or equal to weight of a plus v. Only when the 1's in a and b are non-overlapping this is

going to be equal otherwise weight of a plus weight of b will be greater than weight of a plus

b. Now let us 
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choose our a and 
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b wisely. So let us choose a to be v plus w and 
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b to be w plus x. If we choose these values of a and b and put this in this inequality what we

get is weight of v plus w plus weight of w plus x is greater than equal to weight of v plus w

plus w plus x. w plus w is going to be 0, so this will be v plus x. This is given by weight of v

plus x. So what we have shown is weight of v plus w plus weight of w plus x is greater than

equal to Hamming weight of v plus x. And weight of v plus w is nothing but Hamming

distance between v and w. So this we can replace by Hamming distance between v and w.

This we can replace by Hamming distance between w and x. And this we can replace by

Hamming distance between v and x. Hence we get 
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the Hamming distance between v and w plus Hamming distance between w and x is greater

than equal to Hamming distance between v and x. 



Now let us define 
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by what do we mean by minimum distance of a linear block code. So we define a minimum

distance of a linear block code in this fashion. It is the minimum Hamming distance between

any  2  codewords  so  we  define  minimum  distance  of  linear  block  code  C  as  minimum

Hamming distance between v and w where v and w are codewords and v is obviously not

equal to w. Now this can be 
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written as, we will come to that. Similarly we will define a minimum weight of a code. A

minimum weight of a code is defined as minimum Hamming weight of code v, non zero

codeword v belonging to this linear block code C. It's easy to 
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show that the minimum distance of a code is nothing but minimum weight codeword of a

linear block code, minimum weight non zero codeword. So let's see how we can show this.

So  minimum  distance  of  a  code  is  defined  as  Hamming,  minimum  Hamming  distance

between any two 2 codewords v and w belonging to this linear block code C where v is not

same as w. Now we know that Hamming distance between v and w 
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can be written in terms of 
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Hamming weight of v plus w. So this can be written as Hamming weight of v plus w. So we

can write minimum distance as minimum Hamming weight of v plus w where v plus w are

codewords belonging to this linear block code and v is not same as w. Now v plus w, now

since we are talking about linear block codes, 
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sum of 2 codewords is also a valid codeword. So v plus x, 
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v plus w is going to be another valid codeword belonging to this linear block code C. So we

can write this as minimum weight of a codeword x belonging to this linear block code where

x is a non-zero codeword. So in other words, this is then nothing but minimum weight of

linear block code C, so we can write then minimum distance of a linear block code to be

equal to the minimum weight of a non-zero codeword 
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belonging to C. 
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Next we are 
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going to show how is 
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minimum distance of a linear block code related to columns of a parity check matrix and how

from the columns we can find out what is the minimum distance of a linear block code. 
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So the result which I am going to show you is as follows. If C is an n k linear block code

whose parity check matrix is given by H, so for each codeword of Hamming weight l there

exist l columns of this parity check matrix H such that the vector sum of these columns is

equal to zero vector. So let's prove this. Let's say
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we can write the parity check matrix in this form. Note this is n minus k cross n matrix so

there are n columns which we are denoting by h 0, h 1, h 2 and h n minus 1 so h i represents

the ith column of these parity check matrix. And we said that 
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for each codeword of Hamming weight l, so let us say that at this location i 1, i 2, i 3, i l these

are the locations where the codeword basically has a non-zero weight. So the let the non-zero

components of the codeword v be denoted by v i 1, v i 2, v i 3 and v i l where we just,

without loss of generality we are just writing as i 1 is less than equal to i 2 is less than equal

to i 3 is less than equal to i 3 is less than equal to i l is less than equal to n minus 1. And since

these are the non-zero components of the codeword, at this location v will  be 1, at other

locations where are 0 components, the values of v at those locations will be 0. 



(Refer Slide Time 13:44)

Now we know that if v is a valid codeword then v H transpose is equal to 0. So if v is a valid

codeword then v H transpose is going to be 0. This we can write as v naught times h 0 plus v

1 times h 1 plus v 2 times h 2 plus plus plus v n minus 1 h n minus 1. Now note that among

these, v 0, v 1, v 2 v n minus 1, there are l components which are 
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non-zero.  And what  are  those l  components?  v i  1,  v i  2,  v i  3  up to  v i  l  so all  other

components of v will be 0. So here then 
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only terms that will be left, we are left with is basically v i 1, h i 1 plus v i 2 h i 2 plus up to v

i l h i l. Now since v i 1 v i 2 v i 3 v i l is 1 we can write this as h i 1 plus h i 2 plus h i 3 up to

h i l is going to be 0 and what are these h i 1, h i 2, h i 3. These are columns of your parity

check matrix H. So what does this say? It says that if we do vector sum of these l columns of

parity check matrix then basically their vector sum is 0 and that's what the theorem 
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is about. That if there exists a codeword, for each codeword of Hamming weight l there exist

l columns of parity check matrix whose vector sum is equal to l. So we showed that if l

components of this codeword v are non zero then this relation follows. 
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Next 
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we show another result which says of l columns of parity check matrix whose vector sum is 0

vector then there exists a codeword of Hamming weight l in this linear block code C. So let's

see. 
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So suppose the l columns of parity check matrix H whose vector sum is zero are given by h i

1, h i 2, h i 3 up to h i l, 
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then what we have is h i 1 plus h i 2 plus h i 3 up to h i l is going to 0. 
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Now let us consider an n-tuple, we denote it by x whose non-zero components are given by x

i 1, x i 2 up to x i l. In other words, at l locations this n-tuple is non zero so the Hamming

weight of x is l. Now we want to show that if there exist l columns of these parity check

matrix H whose vector sum is 0, then there exist a codeword whose Hamming weight is l. So

next we are going to show that if this condition happens and if there is an n-tuple whose

Hamming weight is l then this x has to be a codeword. So how do we show x is a codeword?

Well if x is a codeword, x H transpose will be 0. So let us 
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evaluate x H transpose. So what is x H transpose? It's given by x 0 h 0 plus x 1 h 1 plus x 2 h

2 plus up to x n minus 1 h n minus 1. Now since we know that l elements of these n-tuple x

are non-zero and they are given by x i 1, x i 2, x i 3, x i n l so we can write this as x i 1 h i 1

plus x i 2 h i 2 up to x i l h i l. Now since x i 1, x i 2, x i 3, x i l they are all 1, we can write

this as h i 1 plus h i 2 plus h i 3 plus h i l. Now what did we say about vector sum of these l

columns? We say 
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the vector sum of these l columns is 0. If that's the case, then this 
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is equal to 0. So what we have shown now is x H transpose is 0. Now if x H transpose is 0,

then x has to be a valid codeword. So we have shown that if 
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vector sum of l columns of parity check matrix H sum up to 0, then there exist a codeword of

Hamming weight l. 

Now using these 2 theorems, this theorem and 
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this theorem, we can make these following observations. If C is a linear 

(Refer Slide Time 20:15)

block code with parity check matrix given by H and if no d minus 1 or fewer columns of

parity  check matrix  add up to  0,  then the code has  a  minimum weight  of at  least  d.  So

minimum distance of code is at least d if no d minus 1 columns of this H matrix, the vector

sum of these d minus 1 columns or fewer columns of this H matrix, if they do not add up to 0,

it means the 
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linear block code has at least minimum distance of d. 
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The second 



(Refer Slide Time 20:59)

statement we can make is if there is a linear block code C with parity check matrix H then

minimum weight of this linear block code C d min is basically equal to the smallest number

of columns of this H matrix whose vector sum add up to 0. Thank you.


