An Introduction to Coding Theory
Professor Adrish Banerji
Department of Electrical Engineering
Indian Institute of Technology, Kanpur
Module 01
Lecture Number 06
Problem Solving Session-1
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Before we discuss decoding of linear block codes let us solve some problems today.
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Lecture #3B: Problem solving session-I
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by
1001011
0101110
0010111
1110010

What is (n, k) of C7

So first question we are going to look at is consider a linear block code C whose
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

1001011

0101110

0010111

1110010

What is (n, k) of C?

parity check matrix is given by this.
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

1001011

0101110

0010111

1110010

H

What is (n, k) of C?
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

1001011
0101110
_.|1 0010111
1110010

What is (n, k) of C7

And you are asked what are the code parameters, n and k;
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

1001011

0101110

0010111

1110010

H

What is (n. k) of C?

n which is a block length, codeword length and k is the size, it’s the dimension of the,
basically information sequence length s k. Now how do we solve it? We know, we will first
find out what is the rank of this matrix H. Now you can see this is a 4 cross 7 matrix right? So

the maximum rank
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by -

1001011

0101110

0010111

1110010 | 4y~

H

What is (n, k) of C?

possible is 4. Let's see whether it has rank 4. Now if you add row 1, 2 and 3 what do you get?
1111010,s0orry1110
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

1001011 1111010

0101110

0010111

1110010 | 4y~

H

What is (n. k) of C?

this is 0, 0 1 0. This is what you get, you can see this is 1, this is 1, this is 1, this is 0, this is O

this is 1and this is 0.
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

1001011 1119018
0101110 =

H=1l 0010111
1110010 AXT

What is (n, k) of C?

And what is row number 4? It’s exactly same
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@ Problem # 1: Consider a linear block code, C with parity check
matrix given by
1001011 11 190102
0101110 T
H=l0010111
1110010 447

What is (n, k) of C?

same as this. So you can see row 1, row 2, row 3 and row 4 add up to 0. That means it does

not have
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rank 4.So maximum rank possible is 3. So let's see
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by
1001011 1119010
0101110 i
0010111
11100104 AYT

H

What is (n. k) of C?

rank 4.So maximum rank possible is 3. So let's see
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@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

1001011 1110010
0101110 =

H=1 0010111
1110010 AXT

What is (n, k) of C7

if any 3 rows combination add up to 0. So let's see, let's see if we can consider sum of these

two rows. This iswhat, 110010 1.
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

1001011 1110010
H- | 0l01110 110010
—~loo010111

1110010 AXT

What is (n. k) of C?

Now none of the rows are equal to this, you can see. If we consider this row and this row, we

add these two rows.
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@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

“1001011 1) 10010
0101110 .
- 1160101
H=1t0010111

11100104 44T
What is (n. k) of C7

Let's see. What do we getis 101110 0. Now note
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

“1001011 119010
- | sioitieT S0,
= ' 1011100

11100104 44T
What is (n, k) of C7

none of these rows, r 2 and r 4 is equal to this. So these set of 3 rows, basically they are

independent. Let's try adding up this and
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

“1001011 1) 10010
0101110 o
- 1160101
H=1t010111

- 1011100
11100104 4y~

What is (n, k) of C7

and this. If we add first row and fourth row, what do we get? 011100 and
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@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

“100101 1< 1119010
- | 0101110 1100101
— |v0010111 1011100
1110010 44T
What is (n, k) of C7 011100

1, and note row number 3 and 2 are not same as this. Like that we can check, we can check

for example row 2 and 4, we add up row 2 and 4,
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@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

“1001011 1119010
W | 0101110 1100101
=~ 0010111 1011100
1110010 4% T
What is (n, k) of C? o111001

what do we get? 101 1 1 0 0, now note row number 3



(Refer Slide Time 03:36)

l-'-‘-"-'é [ITITTEE

s oY

rTR=EE

Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

1001011 1118010
w_ | 0101110 160101
H=1lpo010111
111001 0% 1011100
44T
Whatls[n..‘c!of(? 1011100 Dt“ool

and row number 1 are not same as this. So we can see that any 3 rows do not add up to 0. So

the rank of this matrix H is 3. So
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Linear block code

@ Problem # 1: Consider a linear black code, C with parity check
matrix given by

1001011

0101110

0010111

1110010

What is (n, k) of C?7
@ Solutions: Rank of Hmatrixis 3. So, n=7, k=7-3=4

rank of this matrix is 3. Now we know parity check matrix is n minus k cross n. So
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@ Problem # 1: Consider a linear black code, C with parity check
matrix given by

1001011

0101110

0010111 H
1110010 n-K %N
What is (n, k) of C?

@ Solutions: Rank of H matrixis 3. So, n=7, k=7-3=4

n minus Kk is in our case, equal to 3 and what is
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check
matrix given by

1001011

0101110

0010111

1110010 H n-k%n

What is (n, k) of C?
@ Solutions: Rank of H matrixis 3. So, n=7. k=7 —

Lok

n, number of columns of this. So that's 1, 2, 3, 4, 5, 6, 7. So
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@ Problem # 1: Consider a linear block code, C with parity check

matrix given by JLLll i
1001011
0101110
W= 0010111 H
1110010 n-K %h
What is (n, k) of C? =
@ Solutions: Rank of H matrixis 3. So, n=7. k=7-3=4

n is 7. So that would then give us k equal to 4. So this

@ Problem # 1: Consider a linear black code, C with parity check

matrix given by JILll i
1001011
0101110
H=10010111 H
1110010 r\*K'*:"
What is (n, k) of C? 3 7

@ Solutions: Rank of H matrixis 3. So, n=7, k=7-3=4

this is an example parity check matrix for a 7 4 linear block code
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Linear block code

@ Problem # 1: Consider a linear block code, C with parity check

matrix given by JLLlldli
1001011
0101110
B 0010111 H
1110010 r\fK'*:"
What is (n, k) of C7 3 7
@ Solutions: Rank of H matrixis 3. So, n=7, k=7 —

| &

(7. 4)

Ok.
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Linear block code

@ Problem # 2: Consider the following binary block code, C,
C = {000000,110011,011101, 111111}

Is C a linear block code? Justify your answer

Now let's look at another problem. You are given a set of codewords. And what are these

codewords? These are binary codewords. So this is all zero,110011,011101and 11 all
1
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@ Problem # 2: Consider the following binary block code, C,

C = {000000,110011,011101, 111111}

Is C a linear block code? Justify your answer

And the question that has been asked is, is this a linear code? Is this a linear code?

(Refer Slide Time 05:04)
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@ Problem # 2: Consider the following binary block code, C,

C = {000000,110011,011101, 111111}

Is C a linear block code? Justify your answer

Now what do we know about linear code? A linear code should have all 0 codewords which

this codeword has. And sum



(Refer Slide Time 05:13)

=] AiBDssmecuaadafy

@ Problem # 2: Consider the following binary block code, C,
i .
€ = {000000,110011,011101, 111111}

Is C a linear block code? lustify your answer.

of any two codewords

(Refer Slide Time 05:15)

is also a valid codeword. So let's see.
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Linear block code

@ Problem # 2: Consider the following binary block code, C,
C = {000000,110011,011101, 111111}

Is C a linear block code? Justify your answer

@ Solutions: No

So let's see if sum of all codewords is already a valid codeword.
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Linear block code

@ Problem # 2: Consider the following binary block code, C,
C = {000000, 110011,011101, 111111}

Is C a linear block code? Justify your answer
@ Solutions: No
@ Sum of two codewords for a linear block code is a valid codeword

So let's see if sum of all codewords is already a valid codeword.
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Linear block code

@ Problem # 2: Consider the following binary block code, C,
o Wi Vi Vi
C = {000000,110011,011101. 111111}
Is C a linear block code? Justify your answer

@ Solutions: No
@ Sum of two codewords for a linear block code is a valid codeword

So let's call this v 0, v 1, v 2 and v 3. So what we want is all possible combinations of v 0, v

1, v 2, v 3 should also be a valid codeword. They should be in C. So let's see.
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Linear block code

@ Problem 3# 2: Consider the following binary block code. C,
C = {000000, 110011,011101. 111111}

Is C a linear block code? Justify your answer
@ Solutions: No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vy = 000000, v; = 110011, v; = 011101, and v3 = 111111, then

vi+ v, v +w, v+, and vy + w2 + vy must also be a valid

codeword
i+ w 101110
i+w 001100
vatw 100010
i+tw+w 010001

So, as I said we take v 0 to means all zero codewords,
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@ Problem # 2: Consider the following binary block code, C,

C = {000000,110011,011101, 111111}

Is C a linear block code? Justify your answer
@ Solutions: No
@ Sum of two codewords for a linear block code is a valid codeword

@ Let vy = 000000, v; = 110011, v; = 011101, and v3 = 111111, then
vi+ v, v + vy, v+ vy, and vy + v2 + vy must also be a valid

codeword.
vi+w 101110
vi+w = 001100
v+ 100010
vi+w+w = 010001

is given by this, this

@ Problem # 2: Consider the following binary block code, C,

€ = {000000, 110011,011101, 111111}

Is C a linear block code? Justify your answer
@ Solutions: No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vy = 000000, v; = 110011, v» = 011101, and v3 = 111111, then

vi+w, v +wvy wv+w, and vy + va + vy must also be a valid

codeword.
vi+w = 101110
vi+wv = 001100
v+t 100010
vi+w+wv = 010001

is v 1, this is v 2 and this is v 3. Now let's see all possible
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@ Problem # 2: Consider the following binary block code, C,

C = {000000,110011,011101. 111111}
T Vi Vs

Is C a linear block code? Justify your answer

@ Solutions: No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vy = 000000, v; = 110011, v» = 011101, and v3 = 111111, then

vi+wv, v +wvy wv+w, and vy + va + vy must also be a valid

codeword.
it+w 101110
it+w 001100
vaitw 100010
vi+wv+ 010001

combinations of v 1, v 2, v 3, the non-zero codewords. So we consider v 1 plus v 2. What is v
1 plus v 2? v 1plusv2is, you can see thisis 1 0 1 1 1 0, it's given by this.
(Refer Slide Time 06:20)
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@ Problem # 2: Consider the following binary block code, C,

C = {000000,110011,.011101, 111111}
T Va Vs

Is C a linear block code? Justify your answer
@ Solutions: No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vy = 000000, v; = 110011, v» = 011101, and v3 = 111111, then

vi+wv, v +wvy va+w, and vy + va + vy must also be a valid

codeword.
vi+w 101110
vi+w = 001100
vt wn 100010
w+wm+wn 010001

Now is this codeword in C? We don't see any codeword which is 1 0 1 1 1 0 listed here. That
means this C

(Refer Slide Time 06:36)
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@ Problem 3# 2: Consider the following binary block code. C,

C = {000000, 110011,011101, 111111}
= T Wy Va Vs
Is C a linear block code? Justify your answer
@ Solutions: No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vy = 000000, v; = 110011, v» = 011101, and v3 = 111111, then

vi+w, v+ v, v+, and vy + v + vy must also be a valid

codeword
Vi + v 101110 ~—
i+WV - DCII.IU'U
vzt v 100010
vi+wtw 010001

is not a linear code. Why it's not a linear code, because sum of any two codewords

(Refer Slide Time 06:45)
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Linear block code

@ Problem # 2: Consider the following binary block code, C.

C = {000000,110011.011101. 111111}
= T Wy Va V3
Is C a linear block code? Justify your answer

@ Solutions: No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vy = 000000, v; = 110011, v» = 011101, and v3 = 111111, then

vi+ v, v + v, v+, and vy + v2 + vy must also be a valid

codeword
v+ w 101110 «—
vi+wvs = 001100
vatw 100010
vi+twvt+wn 010001

is also a valid codeword. Now v 1 and v 2 are valid codewords in C. So sum of v 1 plus v 2
should also be in C. But we notice that 1 0 1 1 1 0, which is sum of v 1 plus v 2 is not there in
C. And that's why we say that C is not a

(Refer Slide Time 07:08)



1 anp # e an e fY |

@ Problem 3# 2: Consider the following binary block code. C,

C = {000000,110011,011101, 111111}
= ¥y Va V3
Is C a linear block code? Justify your answer.
- Solutions:INo.]
@ Sum of two codewords for a linear block code is a valid codeword.

@ Let vy = 000000, v; = 110011, v» = 011101, and v3 = 111111, then
v1-.-|q,vl+Ir'],U!-e-n.aﬂdvlvv;+vjmusta|snbeava|id

codeword.
w+w = 101110 «—
i+w = DOI!U'D
v+ vy = 100010
vi+w+w = 010001

linear block code. Now my next question is can we add additional codewords here

(Refer Slide Time 07:16)

such that C becomes a linear block code? Now how do we do that? To do that, we will have

to ensure all possible combinations of these
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@ Problem # 2: Consider the following binary block code, C,

C = {000000, 110011,011101. 111111}
- BT Va Vs
Is C a linear block code? Justify your answer
@ Solutions:| No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vy = 000000, v; = 110011 v» = 011101, and vy = 111111, then

i+ v v +wv, va+w, and vy + v + vy must also be a valid

codeword.
i +w 101110
vi+w = 001100
vwitw 100010
vi+wvm+ 010001

codewords is also there in C. So let's compute v 1 plus v 3 which is basically givenby 001 1
0 0. Let's look at
(Refer Slide Time 07:37)

@ Problem # 2: Consider the following binary block code, C,

C = {000000, 110011,011101, 111111}
— BT Va Vs
Is C a linear block code? Justify your answer

@ Solutions:| No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vy = 000000, v; = 110011, v» = 011101, and v3 = 111111, then

vi+w, v +wvy wv+wy, and vy + va + vy must also be a valid

codeword.
vi+w = 101110 «—
vi+wv = 001100
vt 100010
nt+wtwn 010001

v 2 plus v 3 which is given by
(Refer Slide Time 07:40)



@ Problem # 2: Consider the following binary block code, C,

C = {000000, 110011,011101, 111111}
= V% Vi vy
Is C a linear block code? Justify your answer
@ Solutions:|No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vp = 000000, v; = 110011, v; = 011101, and v3 = 111111, then

vi+ v, v + vy, v+, and vy + v3 + vy must also be a valid

codeword
v+ w 101110 «—
vi+wvs = 001100
vatw 100010
vi+wvt+w 010001

100 10. And let's look at v 1 plus v 2 plus v 3, is basically given by
(Refer Slide Time 07:48)
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@ Problem # 2: Consider the following binary block code, C,

C = {000000,110011,011101, 111111}
= T Wy Va V3
Is C a linear block code? Justify your answer
@ Solutions:|No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vp = 000000, v; = 110011, v; = 011101, and v3 = 111111, then

vi+w, v+ vy, v+, and vy + v + vy must also be a valid

codeword
v+ w 101110 «—
vi+wvs = 001100
v+ vy 0010
i+wv+w 10001

01000 1. So note that I have listed all possible combinations of these codewords here. Now

none of these sums are there

(Refer Slide Time 08:04)



Linear block code

@ Problem 3# 2: Consider the following binary block code. C,

C = {000000,110011,011101, 111111}
= T Wy Va V3
Is C a linear block code? Justify your answer
@ Solutions:| No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vp = 000000, v; = 110011, v; = 011101, and v3 = 111111, then

vi+ v, v+, v+, and vy + v2 + vy must also be a valid

codeword
vi + w2 101110 «—
vy + W 001100
v+ v 0010 ~—
ntn+wn 10001

in this linear block code. So if we add them in this set of C, set of codewords, then we, our
block code C will become a linear block code. So if we want to make it a linear

(Refer Slide Time 08:20)
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Problem # 2 (contd.)

@ Thus a linear block code should have the following codewords

C = {000000,110011,011101, 111111, 101110, 001100, 100010, 010001}

block code, what do we need to do? In this set of 4 codewords v 0,

(Refer Slide Time 08:26)
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Problem # 2 (contd.)

@ Thus a linear block code should have the following codewords
b

C = {000000,110011,011101, 111111, 101110, 001100, 100010, 010001 }

v 1, v 2 and v 3 we need to add these set of

(Refer Slide Time 08:32)
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Problem #

@ Thus a linear block code should have the following codewords
e Vi Vo Va
C = {000000.110011.011101, 111111, 101110, 001100. 100010. 010001}

codewords which was basically

(Refer Slide Time 08:36)
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Linear block code

@ Problem # 2: Consider the following binary block code, C,

C = {000000, 110011, 011101, 111111}

= Vi Va Vs
Is C a linear block code? Justify your answer

@ Solutions:| No
@ Sum of two codewords for a linear block code is a valid codeword
@ Let vy = 000000, v; = 110011, v» = 011101, and vy = 111111, then

vi+w, W+ v, v+, and vy + v + vy must also be a valid

codeword
w+w = 101110 «—
vi+w = 001100 v~
vatw 0010 ~

w+wu+w 10001

v 1plusv 2. Thisisv 1 plusv 2.
(Refer Slide Time 08:41)
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@ Thus a linear block code should have the following codewords
e Vi Vo Va ViaWy
C = {000000,110011,011101, 111111, 101110, 001100, 100010, 010001 }

This is
(Refer Slide Time 08:43)



@ Problem # 2: Consider the following binary block code, C,

C = {000000,110011.011101. 111111}
= T Va V3
Is C a linear block code? Justify your answer

@ Solutions:| No

@ Sum of two codewords for a linear block code is a valid codeword
@ Let vy = 000000, v; = 110011, v; = 011101, and v3 = 111111, then

i+ w, v+ v, v+, and vy + v + vy must also be a valid

codeword
vi+w = 101110 «—
vi+wv = 001100 v~
v+ v 0010 ~~

vi+twvt+w 10001

v1plusv3,v1plusv3.
(Refer Slide Time 08:49)
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Problem

@ Thus a linear block code should have the following codewords
e Vi Vo Va Ve Vel
C = {000000.110011.011101. 111111, 101110, 001100. 100010. 010001 }

Then this one is

(Refer Slide Time 08:51)



@ Problem 3# 2: Consider the following binary block code. C,

C = {000000,110011,011101, 111111}
= T Wy Va V3
Is C a linear block code? Justify your answer
@ Solutions:|No
@ Sum of two codewords for a linear block code is a valid codeword

@ Let vy = 000000, v; = 110011, v; = 011101, and v3 = 111111, then

vi+w, v+ vy, v+, and vy + v + vy must also be a valid

codeword
vi+w = 101110 «—
vi+wv = 001100 +~
vz + vy 0010 ~~

vi+twv+w 10001

v 2 plus v 3, v 2 plus v 3 and this one was

(Refer Slide Time 08:58)
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Problem #

@ Thus a linear block code should have the following codewords
e Vi Vo Vi Ny VisVy ViV
C = {000000.110011.011101, 111111, 101110, 001100. 100010. 010001}

v 1plusv2plusv 3.
(Refer Slide Time 09:03)




@ Thus a linear block code should have the following codewords
Ve Vi Vo 1'% Viavy VisVy Va4V WiaVgeVy
C = {000000.110011.011101, 111111, 101110, 001100, 100010. 010001 }

So let's look at these 2 codewords. This is v 1 plus v 2 and this is v 1 plus v 2 plus v 3. So if
we add these two, what we will get is v 3. We can double check. So if we consider add these
two, the first bit will be 1, this 0 plus 1 will be 1, then 1 plus 0 will be 1, then 1 plus 0 will be
1, then 1 plus 0 will be 1 and 0 plus 1 will be 1. And this is already there in this set of
codewords. This is v 3, Ok. Similarly take these two.

(Refer Slide Time 09:45)
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Problem # 2 (contd.)

@ Thus a linear block code should have the following codewords
e Vi Wa Va Viavy VisVy Va4V WiageVy
C = {000000,110011,011101, 111111, 101110, 001100, 100010. 010001 }

g

This one is v 1 plus v 2 and this is v 2 plus v 3. If we add them, what we get is v 1 plus v 3.
We will get this. If we consider these two we will get v 2. We will consider this, we will get v
3. If we consider these two, sum of these two, we will get v 3. If we consider sum of these
three, what we will get, we will get v 3. So you can see basically, linear combinations of all
these codewords is already there in

(Refer Slide Time 10:21)
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this C. So this C which contains the set of 8 codewords
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Problem 2 (contd.)

@ Thus a linear block code should have the following codewords
e Vi Vo Va Via¥y Viely  VadVz  ViaVaeVy
C = {000000.110011.011101, 111111, 101110, 001100. 100010. 010001 }

g

is a linear code.

(Refer Slide Time 10:34)
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Problem # 2 (contd.)

@ Thus a linear block code should have the following codewords
C = {000000.110011,011101,111111, 101110, 001100, 100010, 010001 }

@ Thisis a (ﬁ3} linear binary code.

And what are the parameters n and k? Now the length of the codewords is 6.

(Refer Slide Time 10:41)
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Problem # 2 (contd.)

@ Thus a linear block code should have the following codewords
C = {000000,110011,011101,111111, 101110, 001100, 100010, 010001 }

@ Thisis a (63] linear binary code.

Each of these codewords are 6 bits. So that's why n is 6. And there are total
(Refer Slide Time 10:47)
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@ Thus a linear block code should have the following codewords
C = {000000,110011,011101, 111111, 101110, 001100, 100010, 010001}

@ Thisis a @3] linear binary code.

2 k codewords. And in our case 2 k is basically 8. So k is 3. So this
(Refer Slide Time 10:55)
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@ Thus a linear block code should have the following codewords

C = {000000,110011,011101,111111, 101110, 001100, 100010, 010001 }

@ Thisis a @3] linear binary code. 2" = <

K=73

is basically a 6 3 linear

(Refer Slide Time 11:00)



binary code.
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Problem # 2 (contd.)

@ Thus a linear block code should have the following codewords

C = {000000,110011,011101, 111111, 101110, 001100, 100010, 010001}

K

@ Thisis a E3] linear binary code. 7z <
K

=3

Now if I ask you, tell me what is a generator matrix that will generate this set of codewords?

(Refer Slide Time 11:10)



Now how can you do that?
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Problem # 2 (contd.)

@ Thus a linear block code should have the following codewords
C = {000000.110011.011101, 111111, 101110, 001100, 100010. 010001 }

@ Thisis a Eﬂ linear binary code. 2" e T
K=73

So we know the generator matrix. It's basically
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@ Thus a linear block code should have the following codewords

C = {000000,110011,011101, 111111, 101110, 001100, 100010, 010001}

@ This is a (6,3) linear binary code

@ One example of generator matrix for this code

110011
G 011101
1 1111
a k cross n matrix,
(Refer Slide Time 11:18)
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Problem # 2 (contd.)

@ Thus a linear block code should have the following codewords
C = {000000,110011,011101,111111, 101110, 001100, 100010, 010001 }

@ Thisis a (ﬁ3} linear binary code.

@ One example of generator matrix for this code
kE<rn

G

™

—
-
N

11
01
11

right. So if you take basically 3, k in this case is 3, if you take 3 codewords which are linearly
independent basically, if you take them and form them as rows of your generator matrix, then
you get your generator matrix. So I just took this v 1, v2 and v 3

(Refer Slide Time 11:42)
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Problem # 2 (contd.)

@ Thus a linear block code should have the following codewords
C = {000000.110011.011101.111111,101110,001100. 100010. 010001}

@ Thisis a (ﬁ3] linear binary code.

@ One example of generator matrix for this code

1 1
01
11

and you can verify that rank of this matrix G is 3. It's full rank,

(Refer Slide Time 11:50)
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Problem #

@ Thus a linear block code should have the following codewords
C = {000000.110011.011101.111111,101110.001100. 100010. 010001}

@ Thisis a [ﬁ3] linear binary code.

@ One example of generator matrix for this code

110011
i G 011101
Rwk(G)=3 |11 1111

Ok. So then this G will be able to, this generator matrix will be able to generate this set of
codewords.

(Refer Slide Time 12:03)



Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

110011
G 011101
1 2211 1)

Now can we put this, is this generator matrix in systematic form? The answer is no. Because
to get it in systematic form, what we need is our generator matrix should be of the form like
this, or

(Refer Slide Time 12:21)
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form? :
110011 [Tx:P]
G 011101 g
1 ¥ 21T}

something like this, Ok.
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

10011 [ Ix:P]
G

1
011101 =
111111 [P:Ix]

But this is not in this particular form. So we will have to get some identity matrix and some
matrix P. Now by doing elementary row operation, we can put this in systematic form. So

let's do that.

(Refer Slide Time 12:43)
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

11001 1]
G-|011101
1 11111

® Row3 —+ Row 3 + Row 1

[
—
(=]
(=]
[
e

So note, if we want to get, let's say this in the form of identity
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

M1 1 0Jo 1 1]
G 01 1/1 01
111111

@ Row 3 — Row 3 + Row 1
[1 1 0011
G 0111 1
|0 01100

what do we need? We would need basically here, we would need a 0, here we would need a 0,

here we would need a 0, here we would need a 0, right?

(Refer Slide Time 13:00)
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

1 ©0)0 1 1]
G 0 161/1 0 1
(o111

® Row3 —+ Row 3 + Row 1

110011
G 0111 1
001100

So first let's try to get this 1 to 0. Now how can we make this 0? So if we do this

transformation that row 3 is row 3 plus row 1.
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

1 ©0)J0 1 1]
G 0 161/1 0 1
(o011 1 1]

@ Row 3 — Row 3 + Row 1

110011
G 0111 1
001100

So row 3 is row 3 plus row 1, if we do that then 1 plus 1, this will be 0. 1 plus 1, this is 0.

(Refer Slide Time 13:24)
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

120
0 101
10 10 1

110011
G=|011101
001100

. 0 plus 1, this is 1, 0 plus 1, this is 1, 1 plus 1, this is 0 and 1 plus 1, this is 0, Ok.
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Problem # 2 ntd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

@ Row 3

So we got a 0 here, right?

(Refer Slide Time 13:40)
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

s
G 01
1 1

@ Row3 — Row 3 + Row 1
[1 1 00 1 1
6=]011101
0Jo 1100

Next, we want a 0 here. We want
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

@ Row 3

this; we want to make this 0. So how can we do that?

(Refer Slide Time 13:55)

Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

i 00611]
G=|01 1101
1 ¥ X1 1 1

[

@ Row 3 —+ Row 3 + Row 1

@ Row 2 — Row 3 + Row 2

We do this transformation that row 2 is
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

11001 1]
G=|011101
111111

@ Row 3 — Row 3 + Row 1

G 011101
@ Row 2 — Row 3 + Row 2
e

G

==
—
=]
=]
[=]
—

row 3 plus row 1, row 2. So if row 2 is row 2 plus row 3, then what's going to happen? This
will remain 0, this will remain 1 but this 1 will become 0. So let's do that. So this is 0 plus 0

is0.1plus0is 1,1 plus1is 0,1 plus 1is 0, 0 plus 0is 0, and 1 plus 0 is 1, Ok.
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

11001 1]
G=|011101
111111

® Row 3 —+ Row 3 + Row 1

@ Row 2 —+ Row 3 + Row 2
—-—-_.—-—'—_"

(9]
IO.ID =
- o
-0 o
(=1 L

1
Q
0

Ok =

So we got these 0's, we got this 0, Ok now what do we have to do? We will have to get
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Problem
form

@ How to write the generator matrix in systematic form?

11001 1]
G-|/011101
111111

@ Row 3 — Row 3 + Row 1
G 011101

@ Row 2 — Row 3 + Row 2

——eeeeeeeeeee

110011
G 019001
001100
this; here we will have to get a 0.
(Refer Slide Time 14:38)
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

11001 1]
G=|01 1101
111111|]

@ Row 3 — Row 3 + Row 1

o
—
—
o
(=1

@ Row 2 — Row 3 + Row 2
ool s i 3 Sl

(4]
oo -
O l= w0
—-@c
el = =]
O -
O

|

So how can we get a 0 here? We will do
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Problem # 2 (contd.): Generator matrix in systematic

form

@ Row 1 —+ Row 1 + Row 2

G

(= =]
(= =]

-0 O

=N =]

(= = ]

L= =]

this transformation. We will add row 1 and row 2 and replace row 1 by this. So we are going

to add these 2 rows.
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Problem # 2 (contd.): Generator matrix in systematic

form

@ How to write the generator matrix in systematic form?

1]

1 1
G 01
_l 1
® Row3 —+ Row 3 + Row 1
1 1
G 01
00

@ Row 2 — Row 3 + Row 2

(1]
oo —
o= o

0
1
1

-0

.—[#c
-0 o

0
1
1

—

1

1

(=T

1
Q
0

1
1

o= =

If we add these 2 rows, what's going to happen? This

1 will remain 1. 1 plus 1, this will

become 0 and this will remain 0. This will be 0, this will be 1, and this will be 0. So if we do

this transformation, what



(Refer Slide Time 15:11)
Fo iocssrcifeamehssasss s

AT LY

Problem # 2 (contd.): Generator matrix in systematic

form

o Row 1 Row 1+ Row2,

G

==
(=T =]
-0 O
=N =]
L= =

o~ o
[ —

we get is this. Now

(Refer Slide Time 15:14)
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Problem # 2 (contd.): Generator matrix in systematic

form

o Row 1 = Row 1 + Row2,

G

= =1
(=T (=]
e =11=]
el =11=]
=1 =] [

= (=]
[

note that this is our identity matrix.
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Problem # 2 (contd.): Generator matrix in systematic

form

 Row 1> Rowl+Row2

This is 3 cross 3 identity matrix and then this is your another matrix P, Ok. So
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Problem # 2 (contd.): Generator matrix in systematic

form

@ Row 1 —+ Row 1 + Row 2 ;[5 P

by doing elementary row
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operation, we are able to get our generator matrix in a systematic form. And
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10
G=|0 1
00

[l = ]
-0 o
[=N =N
(= =]

@ Similarly parity check matrix in systematic form can be written as

001100
H=|100010
010001

if we have a generator matrix in a systematic form we can very easily find the parity check

matrix in systematic form. So this is like I k P then this H matrix
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Problem # 2 (contd.): Generator matrix in systematic
form

@ Row 1 — Row 1 + Row 2

= b A
[1 0 | [h
G 01

00

-0 O
=N =]

1
0
0

(= =]
L

@ Similarly parity check matrix in systematic form can be written as

001100
H 1 00010
|01 0001
will be P transpose I n minus k.
(Refer Slide Time 15:56)
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Problem # 2 (contd.): Generator matrix in systematic
form

@ Row 1 — Row 1 + Row 2

& Jz::r)
[1 0 | [h
G 01

00

-0 o
=N =]
(=N =N
(=R =]

@ Similarly parity check matrix in systematic form can be written as

(001100 Ko [P": Tna]
H=|[10001 0
010001

So this, this is basically your P transpose. So this
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Problem # 2 (contd.): Generator matrix in systematic

form

@ Row 1 — Row 1 + Row 2

a=J1.:r)
10 [z,
G=|0 1
00

[= N =N
(= =]

@ Similarly parity check matrix in systematic form can be written as

oo 1]100] [P za]
H=|[1 0001 0
010/001

is 0 1 0, this will come here, 0 10,00 1, thisis00 1. And 1 0 0 is this, 1 0 0.
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Problem # 2 (contd.): Generator matrix in systematic

form

@ Row 1 — Row 1 + Row 2

] G [Ia:1])
1 00010

G 01 0001
00 110 0|

@ Similarly parity check matrix in systematic form can be written as

fojop 1 00] [P Tu]
( jﬂl
00

H 1

-0 o
L

And then you have this identity matrix which is here,
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Problem # 2 (contd.): Generator matrix in systematic
form

@ Row 1 — Row 1 + Row 2

i G [Ia:1])
1 00010

G 01 0001
00 1100

@ Similarly parity check matrix in systematic form can be written as

ojo W1 o H~[:p1-, Ton |
H 1(0j01 )
0o

i

= =]
L J

Ok. Next
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Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0
0

we are given a parity check matrix H of a linear
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Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0|

0
Hy H

0
1 Lll-l 1

block code

(Refer Slide Time 16:33)
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Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n.k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0|
0

with parameter n and k. And it is given that this code C has both odd weight codewords and

even weight codewords. In
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Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n.k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0|
?]

Hy H
0

1 |111---1

other words, the number of 1's in the codewords, it contains both odd number of 1's as well as

even number of 1's. And we are constructing a new code that we are calling as C 1
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Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n.k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0|
0

-
-

and the parity check matrix of the new code C 1 is given by this.
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@ Problem # 3: Let H be the parity check matrix of an (n.k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0
0

So how do we find this new matrix, parity check matrix H 1? We are adding a new column
which is 0 in the initial rows except in the last row which is a 1 and here we have put our

original n minus k cross n matrix. And the last row

(Refer Slide Time 17:35)

A0 e masa

SN - S 1

a L
Faorremas-cif-caniinmmanan® =— 4

Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0
0

H; = e~

is basically all 1's,
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@ Problem # 3: Let H be the parity check matrix of an (n.k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

Ok. So the dimension of this matrix is, so number of rows is n minus k plus 1 and number of

columns are

(Refer Slide Time 17:51)
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Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n.k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

n=-kK +1

nplus 1
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@ Problem # 3: Let H be the parity check matrix of an (n.k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

n-K +|

N\

(Refer Slide Time 17:57)
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@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0
0

Hy H
0

1 |11---1

@ Show that C; is an (n + 1, k) linear code

Now you are asked to show that the code generated by this
(Refer Slide Time 18:03)
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@ Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

ol
0

@ Show that C; is an (n + 1, k) linear code

parity check matrix H 1 is a linear code with parameters

(Refer Slide Time 18:10)
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@ Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

ol
0

@ Show that C; is an (n+ 1, k) linear code

n plus 1 and k. Second thing you are



Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0
0

Hy H
0

1 |11---1
@ Show that C; is an (n + 1, k) linear code
@ Show that every codeword of C; has even weight

asked to prove is that all the codewords
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Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0
0

Hy H
0

1 |11-.-1
@ Show that C; is an (n + 1, k) linear code
@ Show that every coM_if_QL has even weight

of this new code C 1 will have even weight. That means they will have even number of 1's in

them.
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@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0
0

Hy H
0

1 |11-.-1
@ Show that C; is an (n + 1, k) linear code
@ Show that every codeword of C; has even weight

@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows

The third thing you have to prove is, this new code C 1 is obtained from old code C by

adding an additional parity bit which we are denoting by v infinity
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@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0
0

Hy H
0

1 |11---1
@ Show that C; is an (n + 1, k) linear code
@ Show that every codeword of C; has even weight

@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v to the left of each codeword v as follows

to the left of this codeword and how do you select this parity bit v infinity?
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Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0
0

Hy H
0

1 11---1
@ Show that C; is an (n + 1, k) linear code
@ Show that every codeword of C; has even weight
@ Show that C; can be obtained from C by adding an extra parity

check digit, denoted by v.. to the left of each codeword v as follows
1) if v has odd weight, then v 1, and

If the original codeword has odd weight, then you put v infinity as 1 otherwise

(Refer Slide Time 18:58)
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@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0
0

Hy H
0

1 |11---1
@ Show that C; is an (n + 1, k) linear code
@ Show that every codeword of C; has even weight
@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v to the left of each codeword v as follows

1) if v has odd weight, then v 1, and
2) if v has even weight, then v 0

if the original codeword has even weight then you put this v infinity as 0.
So let's prove one by one. Let's first prove this that code generated by this new parity check

matrix
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Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0|

@ Show that C; is an (n + 1, k) linear code.
@ Show that every codeword of C; has even weight
@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows
1) if v has odd weight, then v 1, and
2} if v has even weight, then v, 0

is basically a new code with n given by n plus 1 and k given by k. So

(Refer Slide Time 19:24)
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Problem # 3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n + 1) matrix

as we know that this H matrix has these dimensions because we are adding
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Problem # 3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n + 1) matrix
e e

a new column and we are adding a new row. Next,
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Problem # 3 (contd.)

@ The matrix Hy is an (n— k + 1) x (n + 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of H; are also linearly independent

now what is the rank of the original matrix H? The rank of the original matrix H is
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n minus k. That means
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@ The matrix Hy is an (n — k + 1) x (n + 1) matrix.

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (# — k) rows of H, are also linearly independent.

the n minus k rows of the original
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parity check matrix H are linearly independent, Ok. Now go back
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@ The matrix Hy is an (n — k + 1) x (n + 1) matrix.

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (a — k) rows of H; are also linearly independent.




@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix
e

and look at the new
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Linear block code

@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0
0

Hy H
0

1 |11-.-1
@ Show that C; is an (n + 1, k) linear code.
@ Show that every codeword of C; has even weight
@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v to the left of each codeword v as follows

1) if v has odd weight, then v 1, and
2) if v has even weight, then v 0

construction. So these n minus k rows are linearly independent.
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@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0

@ Show that C; is an (n + 1, k) linear code. ~~
@ Show that every codeword of C; has even weight
@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows
1) if v has odd weight, then v 1, and
2) if v has even weight, then v 0

And what have we added here? We have added 0 here. So these new rows, these new n minus

k rows will also be

(Refer Slide Time 20:20)
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@ Problem # 3: Let H be the parity check matrix of an (n.k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

@ Show that C; is an (n + 1, k) linear code.
@ Show that every codeword of C; has even weight
@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows
1) if v has odd weight, then v 1, and
2) if v has even weight, then v~ 0

linearly independent.
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Problem # 3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n + 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of H; are also linearly independent

So that's what we are saying that since n minus k
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Problem # 3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of Hy are also linearly independent

rows of the original parity check matrix H are linearly independent, so
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Problem #

@ The matrix Hy is an (n — k + 1) x (n + 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of Hy are also linearly independent

the first n minus k

8)
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Problem # 3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of Hy are also linearly independent

rows of the original parity check matrix H 1 will also be linearly independent.
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Problem # 3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of Hy are also linearly independent

Now let's look at

(Refer Slide Time 20:49)
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@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of H; are also linearly independent

@ The last row of Hy has a "1” at its first position but other rows of
H; have a “0" at their first position. Any linear combination
including the last row of Hy will never yield a zero vector

the last row of this new parity check

(Refer Slide Time 20:54)
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¢ 3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of H are also linearly independent

(Refer Slide Time 20:55)
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@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix
—

matrix H 1.

(Refer Slide Time 20:56)
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@ Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

@ Show that G, is an (n + 1, k) linear code. ~~
@ Show that every codeword of C; has even weight
@ Show that €, can be obtained from C by adding an extra parity
check digit, denoted by v to the left of each codeword v as follows
1) if v has odd weight, then v 1, and
2) if v has even weight, then v 0

Note that we have 1 here. And these are all

(Refer Slide Time 21:02)
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@ Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

0| ——

——

Hy H
——

@l ]
@ Show that C; is an (n + 1, k) linear code. ~*
@ Show that every codeword of C; has even weight
@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v to the left of each codeword v as follows

1) if v has odd weight, then v 1, and
2) if v has even weight. then v 0

(Refer Slide Time 21:04)
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@ Problem # 3: Let H be the parity check matrix of an (n,k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

o | ——

—

H, H
——

e TS
Ola 13
@ Show that C, is an (n+ 1, k) linear code. ~~
@ Show that every codeword of C; has even weight
@ Show that C, can be obtained from C by adding an extra parity
check digit, denoted by v to the left of each codeword v as follows

1) if v has odd weight. then v 1, and
2) if v has even weight. then v 0

Whereas here, all of these are 0's. So this new row will also be linearly independent from any

of the other rows of this parity check matrix H 1.
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Problem # 3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of H, are also linearly independent.

@ The last row of Hy has a "1” at its first position but other rows of
H; have a “0" at their first position. Any linear combination
including the last row of Hy will never yield a zero vector

So any linear combination including the last row of H 1 will never result in a all zero vector.

So what does it mean? It means that
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n minus k plus one rows of our new parity check matrix H one are linearly independent.
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Problem

@ The matrix Hy is an (n — k + 1) x (n + 1) matrix.

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of H; are also linearly independent.

@ The last row of Hy has a “1” at its first position but other rows of
H; have a “0" at their first position. Any linear combination
including the last row of Hy will never yield a zero vector.

Hence



(Refer Slide Time 21:46)

i mp f e

=]
Farresmn-cal

3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of Hy are also linearly independent.

@ The last row of Hy has a "1” at its first position but other rows of
H; have a “0” at their first position. Any linear combination
including the last row of Hy will never yield a zero vector

@ Thus all the rows of Hy are linearly independent. Hence the row
space of Hy has dimension n-k+1

the dimension of H 1 is

(Refer Slide Time 21:49)
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Problem # 3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix.

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of Hy are also linearly independent.

@ The last row of Hy has a "1” at its first position but other rows of
H; have a “0" at their first position. Any linear combination
including the last row of Hy will never yield a zero vector

@ Thus all the rows of H; are linearly independent. Hence the row
space of Hy has dimension n-k+1

n minus k plus 1. Now how do we find



Problem # 3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of H; are also linearly independent.

@ The last row of Hy has a "1” at its first position but other rows of
H; have a “0" at their first position. Any linear combination
including the last row of Hy will never yield a zero vector

@ Thus all the rows of H; are linearly independent. Hence the row
space of Hy has dimension n-k+1

@ The dimension of its null space, C; . is then equal to

dm(G)=(n+1)—(n—k+1)=k

the dimension of basically, the null space of this parity check matrix H 1? It is given by, so

number of columns is n plus 1. The dimension of H 1 is given by this.

(Refer Slide Time 22:10)
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Problem # 3 (contd.)

@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix.

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of H; are also linearly independent.

@ The last row of Hy has a "1” at its first position but other rows of
H; have a “0” at their first position. Any linear combination
including the last row of Hy will never yield a zero vector

@ Thus all the rows of H; are linearly independent. Hence the row
space of Hy has dimension n-k+1

@ The dimension of its null space, C; . is then equal to

dim(G)=(a+1)-(n—k+1)=k

pe———

So this is the dimension of the null space of this parity check matrix. So then basically
number of information bits is then k and number of coded bits is n plus 1. So this proves that

Clisan



3 (contd.)

@ The matrix Hy isan (n — k + 1) x (n+ 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of H; are also linearly independent.

@ The last row of Hy has a "1” at its first position but other rows of
H; have a “0" at their first position. Any linear combination
including the last row of Hy will never yield a zero vector

@ Thus all the rows of H; are linearly independent. Hence the row
space of Hy has dimension n-k+1

@ The dimension of its null space, C; . is then equal to
dim(G)=(n+1)—(n—k+1)=k

@ Hence G is an (n + 1. k) linear code

n plus 1 k linear code.

@ The matrix Hy is an (n — k + 1) x (n+ 1) matrix

@ First we note that the n — k rows of H are linearly independent. It is
clear that the first (n — k) rows of H; are also linearly independent.

@ The last row of Hy has a “1” at its first position but other rows of
H; have a “0" at their first position. Any linear combination
including the last row of H; will never yield a zero vector

@ Thus all the rows of H; are linearly independent. Hence the row
space of Hy has dimension n-k+1

@ The dimension of its null space, C; . is then equal to
dim(G)=(n+1)~(n—k+1)=k

@ Hence G is an (n + 1., k) linear code

Next we are going to show is



(Refer Slide Time 22:36)

= - Q ¢ == i 5 0 8 & f3
Fo rresmn- cif++»nal0euEmn 8 ——:

Problem # 3 (contd.)

@ Show that every codeword of C; has even weight

every codeword of C 1 has even weight. So how do we prove this?
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Problem # 3 (contd.)

@ Show that every codeword of C; has even weight
@ Solution: The last row of H, is an all-one vector

Please note that the last row of this parity check matrix H 1 contain all 1 vector. If you go

back, recall the last row of this parity check matrix has all 1's.
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@ Problem # 3: Let H be the parity check matrix of an (n k) linear
code C that has both odd and even-weight codewords. Construct a
new linear code C; with the following parity-check matrix

Hy ; H

-1

@ Show that C; is an (n + 1, k) linear code.
@ Show that every codeword of C; has even weight
@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows
1) if v has odd weight, then v 1, and
2) if v has even weight. then v 0

And if v is a valid codeword what property does it satisfy? If v is a

(Refer Slide Time 23:09)
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@ Show that every codeword of C; has even weight
@ Solution: The last row of Hy is an all-one vector

@ The inner product of a vector with odd weight and the all-one vector
is “17 . Hence, for any odd weight vector v,

ler #0

and v cannot be a code word in G

valid codeword then
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v H transpose should be 0. Now let us take
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@ Show that every codeword of C; has even weight.
@ Solution: The last row of Hy is an all-one vector.

@ The inner product of a vector with odd weight and the all-one vector
is “17 . Hence, for any odd weight vector v,

vH #0

and v cannot be a code word in C;.

a codeword, let's say there exists a codeword with odd weight which is generated by,

described by this parity check matrix H 1. Now if we do v H transpose, so when you are
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@ Show that every codeword of C; has even weight.
@ Solution: The last row of Hy is an all-one vector.

@ The inner product of a vector with odd weight and the all-one vector

is “1” . Hence, for any odd weight vector v, -
vH =0

vH #0

and v cannot be a code word in ;.

going to take the inner product of this code vector v with the last row of this parity check

matrix what will you get?

(Refer Slide Time 23:45)
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Problem # 3 (contd.)

@ Show that every codeword of C; has even weight
@ Solution: The last row of H, is an all-one vector

@ The inner product of a vector with odd weight and the all-one vector

is “17 . Hence, for any odd weight vector v, T
N -
vH,r #0

and v cannot be a code word in G

if you do v H transpose so your H is of the, so v H transpose where H is, H 1 transpose where
H 1 is given like this. This is all 0's. You have your parity check matrix H and you have here

all 1 matrix,
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Problem # 3 (contd.)

@ Show that every codeword of C; has even weight
@ Solution: The last row of H; is an all-one vector

@ The inner product of a vector with odd weight and the all-one vector
is “1”7 . Hence, for any odd weight vector v,

e HL
-]
and v cannot be a code word in G 0

sorry you have your, this is 1, this is 1 and this is all 1 vector. Now when you do v H

transpose
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Problem # 3 (contd.)

@ Show that every codeword of C; has even weight
@ Solution: The last row of H, is an all-one vector

@ The inner product of a vector with odd weight and the all-one vector
is “17 . Hence, for any odd weight vector v,

ler #0 W, = ﬂ "
[}
and v cannot be a code word in G 1 o

so let's say v is your v 0 to v n minus 1. When you do v H 1 transpose what you will get
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Problem # 3 (contd.)

@ Show that every codeword of C; has even weight
@ Solution: The last row of Hy is an all-one vector

@ The inner product of a vector with odd weight and the all-one vector
is “17 . Hence, for any odd weight vector v,

vH #0 H, = " H
o
and v cannot be a code word in G 1 o

isv 0 plus v 1 plus v 2 up to v n minus 1 is going to
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Problem # 3 (contd.)

@ Show that every codeword of C; has even weight
@ Solution: The last row of H, is an all-one vector

@ The inner product of a vector with odd weight and the all-one vector
is “17 . Hence, for any odd weight vector v,

=
T 4
ot % u=[2|n
o
and v cannot be a code word in G J p [
- e
| Ve - V‘...-]
Vo Vi # .4‘“‘{"“‘0

be 0. Now if this v has odd number of 1's this sum cannot be 0, right? Hence we prove that v
has to have even number of 1's because we know if v is a valid codeword then v H 1
transpose should be 0. So if we do v H transpose because the last row of this parity check
matrix H 1 is all 1, the condition that we will get is the individual components of this parity,
code vector v, v 0 plus v 1 plus v 2 plus v 3 up to v n minus 1, basically v n minus 1 they

should all add up to 0. Hence we cannot have an odd weight vector which will give
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Problem # 3 (contd.)

@ Show that every codeword of C; has even weight
@ Solution: The last row of Hy is an all-one vector

@ The inner product of a vector with odd weight and the all-one vector
is “17 . Hence, for any odd weight vector v,

vH\Tf -
= 76 u=[2|n
o
and v cannot be a code word in G JL p o
[eeav]™
Vo 4+ Uf # + Vpt=0

v H transpose, v H 1 transpose to be 0. Hence every codeword
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Problem # 3 (contd.)

@ Show that every codeword of C; has even weight
@ Solution: The last row of Hy is an all-one vector

@ The inner product of a vector with odd weight and the all-one vector
is “17 . Hence, for any odd weight vector v,

ler =0

and v cannot be a code word in C;
@ Therefore, C; consists of only even-weight code words.

in C 1 has even weight.
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s IR =

Farreasmas

@ Show that every codeword of C; has even weight
@ Solution: The last row of Hy is an all-one vector

@ The inner product of a vector with odd weight and the all-one vector
is “17 . Hence, for any odd weight vector v,

-
vH; #0

and v cannot be a code word in C;
@ Therefore, C; consists of only even-weight code words.
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@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows

Next we are going to show, prove how we can generate this new

(Refer Slide Time 25:57)

code C 1 from the original code C and what did we mention?
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Problem # 3 (contd.)

@ Show that C; can be obtained from C by adding an extra parity
check digit. denoted by v.. to the left of each codeword v as follows

We mentioned that this new code C 1 can be
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Problem # 3 (contd.)

@ Show that C; can be obtained from C by adding an extra parity
check digit. denoted by v.. to the left of each codeword v as follows
1) if w has odd weight, then v 1, and
2) if v has even weight, then v.. =0

obtained from the original code C by adding an extra parity bit which we are denoting by v

infinity to the left of the original codeword v in this fashion.
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Problem # 3 (contd.)

@ Show that C; can be obtained from C by adding an extra parity
check digit. denoted by v.. to the left of each codeword v as follows
1) if w has odd weight, ‘th_en Vi 1, and
2) if v has even weight, then v.. =0

If v has odd weight then v infinity is odd parity and if v has even weight then v infinity is
zZero parity, is zero, is even parity.

(Refer Slide Time 26:34)
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Problem # 3 (contd.)

@ Show that C; can be obtained from_C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows
1) if v has odd weight, then v.. = 1, and
2) if v has even weight, then v.. =0

So let's prove this. So let's see,
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Problem # 3 (contd.)

@ Show that C; can be obtained from C by adding an extra parity
check digit. denoted by v.. to the left of each codeword v as follows
1) if w has odd weight, then v 1, and
2) if v has even weight, then v.. =0
@ Solution: Let v be a code word in C. Then vH™ = 0. Extend v by
adding a digit v to its left

let v be a codeword in C. Then v H transpose will be 0.
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@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows

1) if w has odd weight, then v 1. and
2) if v has even weight, then v.. =0
@ Solution: Let v be a code word in C. Then vH” = 0. Extend v by
adding a digit v to its left

Now we are extending this original code v by adding a bit
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Problem # 3 (contd.)

@ Show that C; can be obtained from C by adding an extra parity
check digit. denoted by v.. to the left of each codeword v as follows
1) if w has odd weight, then v 1, and
2) if v has even weight, then v.. =0
@ Solution: Let v be a code word in C. Then vHT = 0. Extend v by
adding a digit v to its left T

v infinity to its left. So we are defining a new codeword
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Problem # 3 (contd.)

@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows
1) if w has odd weight, then v, 1, and
2) if v has even weight, then v.. =0

@ Solution: Let v be a code word in C. Then vH” = 0. Extend v by
adding a digit v to its left.

@ This results in a vector of n+1 digits,

Vi (V\‘U) (V\.-VO-V"I-' + Va 1)-

of length n plus 1 which is defined as follows. So this is your original codeword v which is
basically
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Problem # 3 (contd.)

@ Show that C; can be obtained from C by adding an extra parity
check digit. denoted by v.. to the left of each codeword v as follows
1) if w has odd weight, then v 1, and
2) if v has even weight, then v.. =0
@ Solution: Let v be 3 code word in C. Then vH™ = 0. Extend v by
adding a digit v to its left
@ This results in a vector of n+1 digits,

Vi {Vn@ (V\-VU-V'I-" + ¥a 1)-

v 0 to v n minus 1 and then this is the additional parity bit

@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v to the left of each codeword v as follows

1) if w has odd weight, then v, 1, and
2) if v has even weight, then v.. =0
@ Solution: Let v be a code word in C. Then vH = 0. Extend v by
adding a digit v to its left

@ This results in a vector of n+1 digits,

v rv‘.@ (Vacs V0. W, ==+ o V1)

that you added to the left. Now if
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@ Show that C, can be obtained from C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows
1) if v has odd weight, then v 1, and
2) if v has even waight, then v, 0
@ Solution: Let v be a code word in C. Then wHT = 0. Extend v by
adding a digit v to its left.

@ This results in a vector of n+1 digits,
Vi = (Voo ¥) = (Ve V0. V1, 0, V1)
@ For v; to be a vector in ; , we must require that

L Hr 0

v 1 is a valid codeword, then it should satisfy the property that v 1 H 1 transpose should be 0.
And what is our H 1? Again please recall, our H 1 is of form like this. So the first column

here is 0, then you have here the original H matrix H, and this is all 1 vector. So when we do
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@ Show that C; can be obtained from C by adding an extra parity
check digit. denoted by v to the left of each codeword v as follows
1) if v has odd weight, then v.. 1. and
2) if v has even weight. then v. 0

@ Solution: Let v be a code word in C. Then vHT = 0. Extend v by
adding a digit v to its left.

@ This results in a vector of n+1 digits,

v = (Voo ¥) = (Ve , W0, W1, + , V1)

@ For v; to be a vector in {; , we must require that

L Hr D

v H transpose, so when v 1 will be multiplied by this last row what we will get is condition of
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@ Note that the inner product of v with any of the first n-k rows of
H| is0

this form
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Problem # 3 (contd.)

@ Note that the inner product of v with any of the first n-k rows of
H| is0

@ The inner product of vy with the last row of Hy s

Vg T+ V] + T Vp-1

v infinity plus v 0 plus v 1 plus v 2 plus v n minus 1, that's basically should be equal to 0, Ok.

Now how are we getting this condition again? We are making
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@ Note that the inner product of v with any of the first n-k rows of
H| is0

use of the

(Refer Slide Time 28:13)
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@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows
1) if w has odd weight, then v 1, and
2) if v has even weight, then v. 0

@ Solution: Let v be a code word in C. Then wH" = 0. Extend v by
adding a digit v to its left.

@ This results in a vector of n+1 digits,

V1 = (Vo ¥) = (Ve , V0. W1, -7 V1)

@ For v; to be a vector in ; , we must require that

L Hr 0

factthatv1 H 1
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@ Show that C; can be obtained from C by adding an extra parity
check digit, denoted by v.. to the left of each codeword v as follows
1) if w has odd weight, then v 1, and
2) if v has even weight, then v. 0

@ Solution: Let v be a code word in C. Then wH" = 0. Extend v by

adding a digit v to its left.

@ This results in a vector of n+1 digits,

Vi = (Ve ¥) = (Voe, V0. V1, oo+ V1)

@ For v; to be a vector in C; , we must require that

Vv Hr D

transpose is 0 and H 1 is of form like this. So when we do v 1 H 1 transpose, the last row
which will be H transpose will be last column. If we multiply v with that H 1 transpose

column what we would get is something of this
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Problem # 3 (contd.)

@ Note that the inner product of v with any of the first n-k rows of
H| is0

form.
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Problem # 3 (contd.)

@ Note that the inner product of v with any of the first n-k rows of
H| is0

@ The inner product of vy with the last row of Hy is

Vg TW+ V] + T Vp-1

M

Now this should be equal to 0 if v 1 is a valid codeword, right? So
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Problem # 3 (contd.)

@ Note that the inner product of v with any of the first n-k rows of
H| is0

@ The inner product of vy with the last row of Hy is
Vg TW+ V] + T Vp-1

@ For this sum to be zero, we must require that v, = 1 if the vector v
has odd weight and v.. 0 if the vector v has even weight

if the sum has to be 0, what do we need? See the original codeword is odd weight codeword.
We need v infinity to be 1. And if the original codeword is even parity, then this new parity
bit should be 0 and that's basically the proof how we can extend the original code to construct

a new code. And this is basically,



(Refer Slide Time 29:18)
8 G inssa -

Fa rre=smas

@ Note that the inner product of v with any of the first n-k rows of
H| is0

@ The inner product of w; with the last row of H; is

Vg TW+ V] + T Vp-1

@ For this sum to be zero, we must require that v, = 1 if the vector v
has odd weight and v.. = 0 if the vector v has even weight

@ Therefore, any vector v; formed as above is a codeword in C;, there
are 2* such codewords

if this is equal to 0, we know that v H transpose, v 1 H 1 transpose is 0, so v 1 is the valid

codeword in C 1.
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@ Note that the inner product of v with any of the first n-k rows of
H| is0

@ The inner product of v; with the last row of H; is

Vg TW+ W]+ -1 Vp-1

@ For this sum to be zero, we must require that v, = 1 if the vector v
has odd weight and v.. = 0 if the vector v has even weight

@ Therefore, any vector v; formed as above is a codeword in C;, there
are 2* such codewords

@ The dimension of C; is k, these 2* codewords are all the code words
of G

And total there are 2 k codewords. This we have already proved in the first part
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@ Note that the inner product of vy with any of the first n-k rows of
Hyis0.
@ The inner product of v; with the last row of H; is

Voo +WO+ W+t Ve

@ For this sum to be zero, we must require that v, = 1 if the vector v
has odd weight and v, = 0 if the vector v has even weight.

@ Therefore, any vector v; formed as above is a codeword in C;, there
are 2* such codewords.

@ The dimension of C; is k, these 2* codewords are all the code words
of C] .

that there are total

(Refer Slide Time 29:39)

2 k codewords of length n plus 1,
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@ Note that the inner product of v with any of the first n-k rows of
Hl is0.

@ The inner product of w; with the last row of H; is
Voo + W+ W+ Vo

@ For this sum to be zero, we must require that v, = 1 if the vector v
has odd weight and v.. = 0 if the vector v has even weight.

@ Therefore, any vector v; formed as above is a codeword in C;, there
are 2* such codewords.

@ The dimension of C; is k, these 2* codewords are all the code words
of C]

Ok. So with this,
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I will conclude this lecture. Thank you



