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Convergence of turbo codes
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Today we are going to talk about how to analyze the performance of turbo code in low S N R.
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Lecture #18: Convergence of turbo codes

So we are going to talk about convergence, how to track the convergence
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of turbo iterative decoding algorithm and that's the topic of our discussion, convergence of

turbo codes. So with brief introduction, we will talk about
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Qutline of the lecture

@ Introduction
@ Measures for convergence analysis of turbo codes

what are the various measures for convergence analysis
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@ Introduction
@ Measures for convergence analysis of turbo codes
@ El Gamal's method

and in particular we will, are going to talk about these three methods, the first method
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Qutline of the lecture

@ Introduction
@ Measures for convergence analysis of turbo codes
s El Gamal's method

@ Density evolution
@ EXIT charts

which is based on Gaussian approximation and which involves tracking the mean of the
extrinsic values, a method proposed by El Gamal. Next we will talk about a method which is
proposed by Divsalar and others using density evolution and then a method which is based on

mutual information, tracking mutual information proposed by ten Brink.
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Qutline of the

@ Introduction
@ Measures for convergence analysis of turbo codes
s El Gamal’s method

@ Density evolution
@ EXIT charts

@ Transfer Characteristics of the turbo decoder

And then we will talk about what do we mean by a
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transfer characteristic of a turbo
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Qutline of the lecture

@ Introduction

@ Measures for convergence analysis of turbo codes
@ El Gamal's method
@ Density evolution
e EXIT charts

@ Transfer Characteristics of the turbo decoder

decoder and how we can use it to compute the convergence threshold
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Qutline of the lecture

@ [ntroduction

@ Measures for convergence analysis of turbo codes
@ El Gamal’s method
@ Density evolution
e EXIT charts

@ Transfer Characteristics of the turbo decoder

@ Threshold Calculation

of a turbo code.
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@ Convergence analysis is used to explain the performance of the turbo
code in the waterfall region. -

So this is a typical performance of a turbo code. If we take a larger block size, this is for a

block size, I think 65000 plus, so if you take a large block size, this is typical performance of

a turbo code. On x axis, I have signal to noise ratio and on the y axis, I have plotted
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@ Convergence analysis is used to explain the performance of the turbo
code in the waterfall region. .

bit error rate. Now you will see there is a region, so this region which we are calling
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@ Convergence analysis is used to explain the performance of the turbo
code in the waterfall region.

waterfall region where there is a steep fall
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in bit error rate performance and there
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@ Convergence analysis is used to explain the performance of the turbo
code in the waterfall region.

is a region, we call it error flow region
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@ Convergence analysis is used to explain the performance of the turbo
code in the waterfall region.

where
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the b e r does not improve much. So today's
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@ Convergence analysis is used to explain the performance of the turbo
code in the waterfall region.

topic of discussion is this waterfall region. What determines
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the performance of turbo code in this region where it falls sharply and how can we get some

guidelines on how to choose constituent encoders so that we get a steep fall like this.
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Introduction

Channel | 1 Exininsic
- - - E
L values SISO L-values
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L-values | s

Inputs and Outputs of a soft-input, soft-output (SISO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

So before we study the convergence



(Refer Slide Time 02:44)

analysis, convergence of turbo code, let's pay close attention to the basic block diagram of

our turbo decoder.
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Inputs and Outputs of a soft-input, soft-output (SISQO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

The heart of the turbo decoder is the soft input soft output decoder and if you recall this soft

input soft output
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decoder takes in as input the channel
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Inputs and Outputs of a soft-input, soft-output (SI1SO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

received values corresponding to the information



(Refer Slide Time 03:10)

and parity bits,
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Inputs and Outputs of a soft-input, soft-output (SISO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

a priori value which



(Refer Slide Time 03:15)

it receives from the other decoder, which are the extrinsic values passed on to the

decoder and it
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Inputs and Outputs of a soft-input, soft-output (SISO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

computes extrinsic values as well as A P P L values

other
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where you take a hard decision to get back your decoded bits. So if you look at a turbo
decoder, this is the heart of the turbo decoder. There are two such soft input soft output
decoder and if you look for a particular signal to noise ratio, if we look at turbo decoder as a

function of iteration you will notice the only thing changing with iteration is this
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Inputs and Qutputs of a soft-input, soft-output (SISO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

extrinsic value and
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Inputs and Qutputs of a soft-input, soft-output (SI1SO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

a priori value. So with iteration,
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your, initially you do not have any estimate on a priori value, you assume that the bits are
equally likely to be zero and 1 but subsequently with iteration when your extrinsic values are
generated, those are passed on as a priori value. Now the channel L values remain same for a
fixed signal to noise ratio; for a received bit, the channel L value remains same. Only thing

changing with iteration are these two quantities,



(Refer Slide Time 04:35)
doBi®nseesssiaaaaand

PG 7TooMMA ol co mEENEDEONEO 0 W swmoms

Channe! 1 Extrinsic
—_— _1‘ E l
z L-values SIS0 L=values E
B : priori | Decoder | Decoded -
values —  hits

Inputs and Qutputs of a soft-input, soft-output (SISO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

this a priori value and the
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extrinsic value. So if we can track with iteration how our extrinsic information is growing
with this a priori information, that will give us some clue about the performance of turbo

code at waterfall region.
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Inputs and Outputs of a soft-input, soft-output (SISO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

@ |nitially, the decoder has no a-priori information about the
information bits.

So as I said, initially we do not have any a priori value but subsequently after one half

iteration
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extrinsic information are generated and that's passed on as a priori value
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Inputs and Outputs of a soft-input, soft-output (SISO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from ane
decoder is fed as a-priori information to the other decoder.

@ |Initially, the decoder has no a-priori information about the
information bits.

to this soft input soft output
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Inputs and Outputs of a soft-input, soft-output (SISO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

@ Initially, the decoder has no a-priori information about the
information bits.

@ With increasing iterations, only input to the decoder that is
changing is the a-priori information.

decoder. And again I emphasize, the only thing changing with iteration are
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Inputs and Outputs of a soft-input, soft-output (SISO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

@ Initially, the decoder has no a-priori information about the
information bits.

@ With increasing iterations, only input to the decoder that is
changing is the a-priori information.

these extrinsic values and
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Inputs and Outputs of a soft-input, soft-output (SISO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

@ |nitially, the decoder has no a-priori information about the
information bits.

@ With increasing iterations, only input to the decoder that is
changing is the a-priori information.

a priori values. So if
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you want to track how your turbo decoder is working with iteration, you need to track these
two quantities
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Inputs and Outputs of a soft-input, soft-output (SISO) turbo decoder

@ For turbo iterative decoding, the extrinsic information from one
decoder is fed as a-priori information to the other decoder.

@ |Initially, the decoder has no a-priori information about the
information bits,

@ With increasing iterations, only input to the decoder that is
changing is the a-priori information.

and we are going to talk about what are the various measures
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that we can use to track these two quantities.
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@ Basic idea of convergence analysis is to track how extrinsics
information evolve with increasing iterations.

So basic idea of convergence of turbo code, convergence analysis of turbo code is to track

how these extrinsic information are evolving with increased iteration. So if you feed in
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better a priori value, how is your extrinsic information
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@ Basic idea of convergence analysis is to track how extrinsics
information evolve with increasing iterations.

@ For a given Ej /Ny, convergence analysis methods relate a parameter
related to the extrinsic information of the turbo decoder to a
parameter related to the a-prior information of the turbo decoder.

evolving? So what we do is, for a fixed signal to noise ratio we have a set of received values.
So what we do is we try to relate a parameter which is related to the extrinsic information of

the turbo decoder and
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we try to relate it to the parameter
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@ Basic idea of convergence analysis is to track how extrinsics
information evelve with increasing iterations.

@ For a given E,/Np. convergence analysis methods relate a parameter
related to the extrinsic information of the turbo decoder to a

parameter related to the a-prior information of the turbo decoder.

which is related to the a priori information. As
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I said in this soft input soft output decoder, only thing changing is this a priori information
and this extrinsic information. So we want to track how these extrinsic information and a
priori information are growing with iteration. So what we are going to do in this convergence

analysis is we are going
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@ Basic idea of convergence analysis is to track how extrinsics
information evelve with increasing iterations.

@ For a given E,/Np. convergence analysis methods relate a parameter
related to the extrinsic information of the turbo decoder to a
parameter related to the a-prion information of the turbo decoder.

to track a parameter which is related to extrinsic
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information and we will see how that parameter will change when the parameter at the input

side which is a priori value is also changed.

(Refer Slide Time 07:10)
dlBla®alselksgsieaqanEd
a0 rToOmmua o pfsbe EEEEDOEE O W s 2

@ Basic idea of convergence analysis is to track how extrinsics
information evolve with increasing iterations.

@ For a given E,/Ny, convergence analysis methods relate a parameter
related to the extrinsic information of the turbo decoder to a
parameter related to the a-prieri information of the turbo decoder.

@ For asymptotically large block lengths, the smallest channel SNR for

which iterative decoding converges is known as the jterative
decoding threshold.

And for an asymptotically large block size the smallest channel S N R for which iterative

decoding algorithm converges is known as decoding threshold. So this iterative
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decoding threshold will be away from your channel capacity, typically.
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@ Basic idea of convergence analysis is to track how extrinsics
information evelve with increasing iterations.

@ For a given Ej /Ny, convergence analysis methods relate a parameter
related to the extrinsic information of the turbo decoder to a
parameter related to the a-priori information of the turbo decoder.

9 For asymptotically large block lengths, the smallest channel SNR for
which iterative decoding converges is known as the iterative
decoding threshold.

@ Convergence analysis methods provide a tool to compute
convergence thresholds for concatenated coding schemes using
iterative decoding.

Now this convergence analysis tool is a very, very powerful tool to analyze these kinds of
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iterative decoding algorithms. It gives us tool to analyze the performance of concatenated
schemes that use iterative decoding algorithm. It gives us tool to design our constituent
encoders. It gives us tool to design our puncturing pattern, uh so it is a very, very interesting

tool for analysis in the waterfall region.
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sures for conv 1ce analysis of turbo codes

@ SNR [1].
@ Density evolution [2].
@ EXIT charts [3].

1. H. E. Gamal et al., “Analyzing the turbo decoder using the
Gaussian approximation,” |EEE Trans. Inform. Theory, vol. 47, pp.
671-686, Feb 2001.

2. D. Divsalar et. al, “lterative Turbo Decoder Analysis Based on
Density Evolution,” |IEEE JSAC, vel. 19, pp. 891-907, May 2001

3. S. ten Brink, "Convergence behaviour of iteratively decoded parallel
concatenated codes,” IEEE Trans. Comm., vol. 49, Oct 2001.

So as I said there are three
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popularly known techniques for
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1ce analysis of turbo codes

@ SNR [1].
@ Density evolution [2].
@ EXIT charts [3].

1. H. E. Gamal et. al., “Analyzing the turbo decoder using the
Gaussian approximation,” |EEE Trans. Inform. Theory, vol. 47, pp.
671-686, Feb 2001.

2. D. Divsalar et. al, “lterative Turbo Decoder Analysis Based on
Density Evolution,” |IEEE JSAC, vel. 19, pp. 891-907, May 2001

3. S. ten Brink, "Convergence behaviour of iteratively decoded parallel
concatenated codes,” |EEE Trans. Comm., vol. 49, Oct 2001.

convergence analysis and as I said the idea
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of these techniques is track one parameter which is related to the extrinsic information and

track the same parameter related to the a priori information. So this technique by El Gamal
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sures for : e analysis of turbo

@ SNR [1].
@ Density evolution [2].
@ EXIT charts [3].

1. H. E. Gamal et. al., “Analyzing the turbo decoder using the
Gaussian approximation,” IEEE Trans. Inform. Theory, vol. 47, pp.
671-686, Feb 2001.

2. D. Divsalar et. al, "lterative Turbo Decoder Analysis Based on
Density Evolution,” IEEE JSAC, vel. 19, pp. 891-907, May 2001

3. S. ten Brink, “Convergence behaviour of iteratively decoded parallel
concatenated codes,” |EEE Trans. Comm., vol. 49, Oct 2001.

makes use of Gaussian approximation and it tracks the signal to noise ratio, so it tracks the

signal to noise
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ratio of the extrinsic information and observes how this S N R extrinsic information grows

when you change the S N R of the a priori information. In the density
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e analysis of turbo

@ SNR [1].
@ Density evolution [2].
@ EXIT charts [3].

1. H. E. Gamal et. al., “Analyzing the turboe decoder using the
Gaussian approximation,” IEEE Trans. Inform. Theory, vol. 47, pp.
671-686, Feb 2001.

2. D. Divsalar et. al, "lterative Turbo Decoder Analysis Based on
Density Evolution,” IEEE JSAC, vel. 19, pp. 891-907, May 2001

3. S. ten Brink, “Convergence behaviour of iteratively decoded parallel
concatenated codes,” |IEEE Trans. Comm., vol. 49, Oct 2001.

evolution method by Divsalar and others they actually see the
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density of this extrinsic information, how does it grow with iteration and this
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@ SNR [1].
@ Density evolution [2].
@ EXIT charts [3].

1. H. E. Gamal et. al., “Analyzing the turbo decoder using the
Gaussian approximation,” |EEE Trans. Inform. Theory, vol. 47, pp.
671-686, Feb 2001.

2. D. Divsalar et. al, “lterative Turbo Decoder Analysis Based on
Density Evolution,” IEEE JSAC, vel. 19, pp. 891-907, May 2001

3. S. ten Brink, “Convergence behaviour of iteratively decoded parallel
concatenated codes,” |EEE Trans. Comm., vol. 49, Oct 2001.

approach of ten Brink which is known as extrinsic information transfer chart, it
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uses mutual information as a parameter to
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@ SNR [1].
@ Density evolution [2].
@ EXIT charts [3].

1. H. E. Gamal et. al., "Analyzing the turbo decoder using the
Gaussian approximation,” |EEE Trans. Inform. Theory, vol. 47, pp.
671-686, Feb 2001.

2. D. Divsalar et. al, “lterative Turbo Decoder Analysis Based on
Density Evolution,” |IEEE JSAC, veol. 19, pp. 891-907, May 2001

3. S. ten Brink, "Convergence behaviour of iteratively decoded parallel
concatenated codes,” |IEEE Trans. Comm., vol. 49, Oct 2001.

observe how, with iteration your extrinsic information is growing. And these are the three
references, the first one corresponding to this S N R technique, the second one corresponding

to this density evolution technique and third corresponds to this EXIT chart technique.
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So the El Gamal approach is based on Gaussian
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El-Gamal's approach

Channel Extrinsic
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A-priori Decoder | Decoded
-
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A D

@ This method is based on Gaussian approximation of the output
extrinsic information.

approximation of this output extrinsic information. So note,
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@ This method is based on Gaussian approximation of the output
extrinsic information.

there are 2 inputs to my soft input soft output decoder; one which I am referring by Z
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@ This method is based on Gaussian approximation of the output
extrinsic information.

which is just channel received L
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values. The second
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El-Gamal's approach

Channel ] Exirinsic
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L-values SISO L-values @
A-priofi Decoder | Decoded
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A

@ This method is based on Gaussian approximation of the output
extrinsic information.

one is this a priori
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El-Gamal's apy
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@ This method is based on Gaussian approximation of the output
extrinsic information.

values and there are 2 outputs, one is this extrinsic information and other one is AP P L

values, if I take a hard decision

(Refer Slide Time 10:22)

on that, what I get is my decoded bits.
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@ This method is based on Gaussian approximation of the output
extrinsic information.

Now

(Refer Slide Time 10:28)
d = ® 0 rewsilaaasaE
7o /ToomE g Aoy pERE OO EEO 0 W o 2

Channel Extninsic

L-values 5150 L-values

A~ prion Decoder Decoded
-

A =D

L-valugs S his

@ This method is based on Gaussian approximation of the output
extrinsic information.

@ The Gaussian approximation allows characterization of the turbo
decoder by its SNR.

we are using this Gaussian
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El-Gamal's approach

Channel 1 Exininsic
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L-values SIS0 L-values
A-prion Decoder | Decoded
A * e o
L-values —~ hars

@ This method is based on Gaussian approximation of the output
extrinsic information.

@ The Gaussian approximation allows characterization of the turbo
decoder by its SNR.

@ For an AWGN channel,
Z2=Xx+n

where z is the received channel value, x is the transmitted bit (= +
1), and n is Gaussian distributed with zero mean and variance Np/2.

approximation so assume, so we have Gaussian channel. So if x was your modulated signal

and n is my Gaussian noise, so what I receive is

(Refer Slide Time 10:42)
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Chaninel 1 Extrinsic
- -
L-values 5150 L-values

A-prion Decoder | Decoded
=

A = I

L-valugs 5 has

@ This method is based on Gaussian approximation of the output
extrinsic information.

@ The Gaussian approximation allows characterization of the turbo
decoder by its SNR.

@ For an AWGN channel, 2 k2
2=x+n

+

where z is the received channel value, x is the transmitted bit (= +
1), and n is Gaussian distributed with zero mean and variance Np/2

Now
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@ The log-likelihood or L-values are calculated as:

plz|x = +1) _ . plu=+1)
plz|x = —1) el plu=-1)’

where u(= +1) represents an information bit.

£=In

the likelihood ratio of Z we can write it like this, similarly this a priori information, the L

value of that I can write
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it like this.
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El-Gamal's approach

@ The log-likelihood or L-values are calculated as:

plz|x = +1) plu=+1)
=lh=——= A==
plz|lx = -1) plu=-1)
where u(= +1) represents an information bit.

@ For large blocksizes, the probability distribution of the a-priori
L-values pa, are assumed to be Gaussian. In particular, the a-priori
L-value A can be modeled as

A=jia-u+na

where the na is a zero mean Gaussian random variable with variance
% that satisfies the following condition
7

pa =3 (consistency condition)

Now for large block sizes this a priori distribution is assumed to be Gaussian. So we model

this a priori L value in this particular way in this
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@ The log-likelihood or L-values are calculated as:

plz|x = +1) o plu = +1)

z_lnp(z\x— 1) ply=-1Y)

where u(= +1) represents an information bit.
@ For large blocksizes, the probability distribution of the a-priori

L-values pa, are assumed to be Gaussian. In particular, the a-priori

L-value ACan be modeled as

——

where the na is a zero mean Gaussian random variable with variance
ni that satisfies the following condition

2
T4 - ss
g = T"'. (consistency condition)

El Gamal's approach. So in El Gamal's approach we modeled our a priori information as
Gaussian and we generated like this, A is mu A times input plus some Gaussian noise and

they have also observed what they call consistency condition.
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@ The log-likelihood or L-values are calculated as:

plz|x = +1) plu = +1)
Z—Inm A—ll’!m.

where u(= +1) represents an information bit.

@ For large blocksizes, the probability distribution of the a-priori
L-values pa, are assumed to be Gaussian. In particular, the a-priori
L-value Acan be modeled as =

.

pr——

! A=pa-u+na

where the na is a zero mean Gaussian random variable with variance
% that satisfies the following condition

(consistency condition)

So they assume the mean and variance are related in this particular fashion. So what happens
is if you make this Gaussian assumption and you make this assumption that mean and

variance are related, then you essentially need to track only
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one parameter. So you, for example, with just the mean you can track your
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El-Gamal's approach

@ The log-likelihood or L-values are calculated as:

oplalx=+1) - plu=+1)
plz|x = -1) pluv=-1)
where u(= +1) represents an information bit.
@ For large blocksizes, the probability distribution of the a-priori

L-values p4, are assumed to be Gaussian. In particular, the a-priori
L-value A can be modeled as
—————

where the n,4 is a zero mean Gaussian random variable with variance
o} that satisfies the following condition

(consistency condition)

Gaussian distribution because mean and variance are related.
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@ The a-priori information at the input of the decoder can be
characterized by input SNR,

SNR; = @ = £A

A

a

Now similarly we can define input S N R of the a priori information.
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@ The a-priori information at the input of the decoder can be
characterized by input SNR,

This is mu A square by sigma square. Now sigma square by 2
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@ The log-likelihood or L-values are calculated as:

plz|x = +1) A plu = +1)

plz|x = -1) plu=-1)
where u(= +1) represents an information bit.

@ For large blocksizes, the probability distribution of the a-priori

L-values pa, are assumed to be Gaussian. In particular, the a-priori
L-value A can be modeled as

——

where the na is a zero mean Gaussian random variable with variance
ﬂf‘ that satisfies the following condition

» '
Ty ® Bw
fa = TA- (consistency condition)
U

2=l

is mu A. So our
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@ The a-priori information at the input of the decoder can be
characterized by input SNR,

input S N R is given by the mean of the a priori information divided by 2.
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@ The a-priori information at the input of the decoder can be
characterized by input SNR,

"
1 1
SNR; = £4 = £A
T 2
@ The extrinsic information at the output of the decoder can be
characterized by output SNR calculated as follows

P. = Q(+v/(25NRy))

where P, is the bit error probability of the extrinsic information at
the output of SISO decoder.

And since our output is approximated as Gaussian, so we can calculate the output probability

of error as a function of
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@ The a-priori information at the input of the decoder can be
characterized by input SNR,

SNR, = £3 _ £A

@ The extrinsic information at the output of the decoder can be
characterized by output SNR calculated as follows

!ﬂ = Q(V/(25NRo)) ‘

where P, is the bit error probability of the extrinsic information at
the cutput of SISO decoder.

output S N R and they are related to the, using this Q function. Now,
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@ The a-priori information at the input of the decoder can be
characterized by input SNR,
SNR; = % = £
a5 2
@ The extrinsic information at the output of the decoder can be
characterized by output SNR calculated as follows

Pe = Q(v/(25NRo))

where P, is the bit error probability of the extrinsic information at
the output of SISO decoder.

@ Viewing SNRg as a function of E,/Np, and SNR;, the transfer
characteristics of the decoder can be written as,

SNRg = T(SNR;. Ey/No)

so what we can do is we can write this output S N R
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@ The a-priori information at the input of the decoder can be
characterized by input SNR,

2
SNR; = £4 = £4
a5 2
@ The extrinsic information at the output of the decoder can be
characterized by output SNR calculated as follows

P. = Q(+/(25NRg))

where P, is the bit error probability of the extrinsic information at
the output of SISO decoder.

@ Viewing SNRy as a function of E,/Np, and SNR;, the transfer
characteristics of the decoder can be written as,

. T(SNR;. E,/No)

in terms of input S N R and our operating signal to noise ratio. So what we can do is we can

view the output S N R of the extrinsic
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information as a function of input S N R of a priori information as well as the channel

operating signal to noise ratio. So
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El-Gamal's approach

@ The a-priori information at the input of the decoder can be
characterized by input SNR,

2
Ha _ Ha
NRi === —
S o5 2

@ The extrinsic information at the output of the decoder can be
characterized by output SNR calculated as follows

P. = Q(+/(25NRy))

where P, is the bit error probability of the extrinsic information at
the output of SISO decoder.

@ Viewing SNR; as a function of E;/Np, and SNR;, the transfer
characteristics of the decoder can be written as,

[5ved- misme, &

this is crucial, so this is basically what I call the transfer characteristics of the decoder.

Because my decoder is a function of
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a priori inputs as well as channel received values. Now channel received value is the function
of channel operating S N R and what I get, a priori information is the function of a priori

input S N R. So I can view S N R of the extrinsic information, I can
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El-Gamal's approach

@ The a-priori information at the input of the decoder can be
characterized by input SNR,

2
SNR; = 'u—; — &4
T 2
@ The extrinsic information at the output of the decoder can be
characterized by output SNR calculated as follows

Pc — Q(V (2SNRQ))

where P, is the bit error probability of the extrinsic information at
the output of SISO decader.

@ Viewing SNRy as a function of Ey/Np, and SNR;, the transfer
cwr can be written as,

[ownd= risaes, 5/

view it as a function of input S N R of a priori values as well as channel, operating channel

signal to noise ratio. So this relation characterizes how my decoder will behave. Because

remember with iteration your extrinsic information is changing as a function of
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a priori value and what is your operating channel S N R. So this transfer function will give
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El-Gamal's approach

@ The a-priori information at the input of the decoder can be
characterized by input SNR,

2
Ha _ HA
NR; = & = —
S ﬂi 2

@ The extrinsic information at the output of the decoder can be
characterized by output SNR calculated as follows

P, = Q(+/(25NRg))

where P, is the bit error probability of the extrinsic information at
the output of SISO decoder.

o Viewing SNRy as a function of E,/Ny, and SNR;, the transfer
cwr can be written as, e

me how my decoder, this soft input soft output
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decoder, how it will perform as a function of a priori value and the channel operating S N R.
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r characteristi

Step 1 : For a given SNR E,/Np, the distribution of a-priori L-value is
generated for a particular mean j14, and transmitted bits u.

So then how do we draw the transfer characteristics? For a given signal to noise ratio, the
distribution of a priori L values is generated for a particular mean mu a and transmitted bit u.

How?
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@ The a-priori information at the input of the decoder can be
characterized by input SNR,

2
i 1
SNR; = £a - £4
T3 2
@ The extrinsic information at the output of the decoder can be
characterized by output SNR calculated as follows

P, = Q(+/(25NRy))

where P, is the bit error probability of the extrinsic information at
the output of SISO decoder.

We know that we are modeling
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@ The a-priori information at the input of the decoder can be
characterized by input SNR,

our a priori
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El-Gamal's approach

@ The log-likelihood or L-values are calculated as:

_ o plzlx = +1) _ o Plu=+1)
A= pi(zlx — A=In pi(u =1)’

where u(= +1) represents an information bit.

@ For large blocksizes, the probability distribution of the a-priori
L-values pa, are assumed to be Gaugiap. In particular, the a-priori
L-value A can be modeled as
e

where the n,4 is a zero mean Gaussian random variable with variance
a? that satisfies the following condition

(consistency condition)

information like this. And of course we are assuming consistency condition so the mean and

(Refer Slide Time 15:14)

variance of the mutual, the a priori information is related like this.
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@ The log-likelihood or L-values are calculated as:

P plz|x = +1) A= np{u— I-L)‘
plz|x = -1) plu=-1)
where u(= +1) represents an information bit.
@ For large blocksizes, the probability distribution of the a-priori

L-values pa, are assumed to be Gaussian. In particular, the a-priori
L-value A can be modeled as

—
! A= pa-u+ny f

where the ny is a zero mean Gaussian random variable with variance
r?i that satisfies the following condition

pa =2t ¥~ (consistency condition)

So next
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Step 1 : For a given SNR Ep/ Ny, the distribution of a-priori L-value is
generated for a particular mean 14, and transmitted bits u.

Step 2 : A SISO MAP decoder module is simulated. The inputs to the
SISO module are the channel L-values, and the a-priori L-value
generated in Step 1.

step is we simulate a soft input soft output decoder. So we feed in these two input. One is this

channel received
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S N R and other is this a priori information which
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Step 1 : For a given SNR E/Np, the distribution of a-priori L-value is
generated for a particular mean j14, and transmitted bits u.

Step 2 : A SISO MAP decoder madule is simulated. The inputs to the
SISO module are the channel L-values, and the a-priori L-value
generated in Step 1.

we modeled as Gaussian. We feed these two inputs to the decoder and what comes out as

output
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are these extrinsic values.
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- characteris

Step 1 : For a given SNR E /Ny, the distribution of a-priori L-value is ‘
generated for a particular mean p14, and transmitted bits u.

Step 2 : A SISO MAP decoder module is simulated. The inputs to the
SISO module are the channel L-values, and the a-priori L-value
generated in Step 1.

Step 3 : The mean, ug, of the extrinsic information generated in step 2 is
calculated.

And we compute the mean of the extrinsic values.



(Refer Slide Time 15:58)
dhEieg eksgsiaaaasE

Fﬂ TO=m B MO c@|-+o BEENETDEECC] B S nom | 12

Transfer characteristics of a SISO d

Step 1 : For a given SNR E,/ N, the distribution of a-priori L-value is
generated for a particular mean j14, and transmitted bits u.

Step 2 : A SISO MAP decoder module is simulated. The inputs to the
SISO module are the channel L-values, and the a-priori L-value
generated in Step 1.

Step 3 : The mean, ug, of the extrinsic information generated in step 2 is
calculated.

Step 4 : The mean 14 is varied from zero to a large number and the steps
1-3 are repeated.

Now we know that our signal to noise ratio, because we are making

(Refer Slide Time 16:04)

Gaussian assumption, our signal to noise ratio is related to the mean. Now as I said with

iteration, my a priori information is changing. So now we are going to
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Transfer charact

Step 1 : For a given SNR E, /Ny, the distribution of a-priori L-value is
generated for a particular mean j14, and transmitted bits u.

Step 2 : A SISO MAP decoder module is simulated. The inputs to the
SISO module are the channel L-values, and the a-priori L-value
generated in Step 1.

Step 3 : The mean, ug, of the extrinsic information generated in step 2 is
calculated.

Step 4 : The mean 1, is varied from zero to a large number and the steps
1-3 are repeated.

change the mean of the a priori information. And then we will again simulate

(Refer Slide Time 16:23)

this soft input soft output decoder and we will try to see what happens to the extrinsic

information mean. How much it is growing with change in input a priori information mean?
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Transfer characteristics of a SISO decoder

Step 1 : For a given SNR E, /Ny, the distribution of a-priori L-value is
generated for a particular mean 14, and transmitted bits u.

Step 2 : A 51SO MAP decoder module is simulated. The inputs to the
SISO madule are the channel L-values, and the a-priori L-value
generated in Step 1

Step 3 : The mean, ug, of the extrinsic information generated in step 2 is
caleulated.

Step 4 : The mean ji4 is varied from zero to a large number and the steps
1-3 are repeated.

So this process is done. So we repeat this by varying our a priori information mean.
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Transfer characteristics of a SISO decoder

Step 1 : For a given SNR E, /Ny, the distribution of a-priori L-value is
generated for a particular mean 14, and transmitted bits u.

Step 2 : A SISO MAP decoder module is simulated. The inputs to the
SISO maedule are the channel L-values, and the a-priori L-value
generated in Step 1.

Step 3 : The mean, ug, of the extrinsic information generated in step 2 is
caleculated.

Step 4 : The mean i, is varied from zero to a large number and the steps
1-3 are repeated.

Step 5 : The set of (SNR;, SNRg) for different values of ; is plotted. This
is then used as the transfer characteristics for the SISO module for
that particular code, and channel SNR Ej/Ny.

And finally what we do, we plot this input output relation for a particular channel S N R. So
this is my input a priori S N R, this is the extrinsic information S N R. We plot it for a
particular value of signal to noise ratio and this is my transfer characteristic for that particular

decoder
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which is a function of channel operating S N R and of course it is the function of the

constituent encoders that I have used.
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Transfer characteristics of a ¢

Step 1 : For a given SNR E/Ng. the distribution of a-priori L-value is |
generated for a particular mean 14, and transmitted bits u.

Step 2 : A SISO MAP decoder module is simulated. The inputs to the
SISO medule are the channel L-values, and the a-priori L-value
generated in Step 1. [

Step 3 : The mean, jug, of the extrinsic information generated in step 2 is
caleulated.

Step 4 : The mean i, is varied from zero to a large number and the steps
1-3 are repeated

Step 5 : The set of (SNR;, SNRy) for different values of j, is plotted. This
is then used as the transfer characteristics for the SISO madule for ‘

that particular code, and channel SNR Ep /Ny,
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Transfer characteristics of a SISO decoder

Tearsiar chameimeistics of @ s f=1/3 lartsa code

= [t _1e0epne’so)
Bl G

So here basically I have plotted, with red curve I have plotted transfer characteristics of one

such code. It is a 8 state code. What I have here at the input side is
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Transfer characteristics of a SISO decoder

Traraler charciarisic ol a e =173 lurbo code

= FaDe D oY
BN =hR

S N R of a priori information and what I have here on the output side is
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Transfer characteristics of a SISO decoder

Trarsier chameiarisics of @ mtm f=1/3 lart code

= [1_1+0epnen’sa)
BhR =GR

S N R of the extrinsic information. And this is how my; so initially
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Transfer characteristics of a SISO decoder

Trarsier chameinrisics of @ i ft=1/3 lart code

= [1_1oepinegiee |
Bt S0l |

I don't have any a priori knowledge, the extrinsic information will, this is the amount of

extrinsic information which is generated. So this transfer characteristics will tell me, if I have

a particular input a priori information then what is the corresponding
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Transfer characteristics of a SISO decoder

Tearsier chamciaristics of @ s ft=1/3 larts code

= [1_1e0epnen’so)
BHR =R

extrinsic information S N R. And for comparison sake I have drawn this line which is the S N
Rin
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Transfer characteristics of a SISO decoder

Trarslor charciarisics ol @ iafe =173 lurba code

= (1 feDel Dl
‘L\wul-:;m L

equal to S N R out. Now if you have a symmetric turbo code, you obviously would like your

transfer characteristics to be above this line.
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shold Calculation

Step 1 : For a particular Es/Np, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

Now how do we compute, how do we use these

(Refer Slide Time 18:46)

transfer characteristics to compute the decoding threshold? So how do we find out the S N R,
minimum S N R under which our iterative algorithm will converge? For that we need to do

this threshold computation. So how do we do this threshold computation? So for a
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Threshold Calculation

Step 1 : For a particular Ey/Ny, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

particular signal to noise ratio, we plot the transfer characteristics of this soft input soft output
decoder. We plot them on reverse set of axes. Now what do I mean by reverse set of axes? So

for the first, my S N R in is on x axis, and

(Refer Slide Time 19:30)

S N R out is on the y axis. Now for the second decoder, my S N R in is on the y axis and S N
R out is on the x axis. Now why do I do this? Because the extrinsic information of first
decoder is input to the second decoder. So S N R out of the first decoder becomes S N R in of
the second decoder. And that's why I put the S N R in of the second decoder as y axis and the
S N R out of the second decoder is S N R in for the first decoder because the extrinsic
information from the second decoder is coming as input to the, as a priori input to the first

decoder. And that is the reason I plot these transfer characteristics on reverse axes.
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Threshold Calculation

Step 1 : For a particular Es/ Ny, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

Step 2 : If a tunnel exists, the channel SNR E; /Ny is reduced until the
transfer characteristics touch or cross each other.

Now if these transfer characteristics do not cross, there is a tunnel in the sense they do not
touch each other, then what we do is the channel, operating channel S N R is reduced until

these transfer characteristics just about touch.

(Refer Slide Time 21:01)

So what is the effect of channel S N R? So as you reduce the channel S N Rs these transfer
characteristics which have been plot on reverse axes, they come closer when you reduce the
channel S N R. So the smallest S N R for which there is still a tunnel, that's your decoding

threshold for that particular
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Step 1 : For a particular E,/Np, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes

Step 2 : If a tunnel exists, the channel SNR E, /Ny is reduced until the
transfer characteristics touch or cross each other.

code.
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Step 1 : For a particular Ey/Np, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

Step 2 : If a tunnel exists, the channel SNR E;/Ng is reduced until the
transfer characteristics touch or cross each other.

Step 3 : If the transfer characteristics touch or cross each other, the
channel SNR E/ Ny is increased until a tunnel exists.

So if the transfer characteristics touch or cross each other, what we need to do is we need to

increase the S N R until there is a tunnel, still a tunnel.
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[hreshold Calculation

Step 1 : For a particular Ep/Ny, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

Step 2 : If a tunnel exists, the channel SNR E;/Np is reduced until the
transfer characteristics touch or cross each other.

Step 3 : If the transfer characteristics touch or cross each other, the
channel SNR E,/Nj is increased until a tunnel exists.

Step 4 : The smallest channel SNR Ep/ Ny for which the transfer
characteristics do not touch and a tunnel exists is the convergence
threshaold for that particular code.

So the smallest channel S N R for which these two transfer characteristics which have been
plotted on reverse axes, they do not touch and a tunnel exist is basically the convergence
threshold for that particular code. So that would give the S N R, minimum S N R under which

that particular code will converge and it will have a

(Refer Slide Time 22:11)

waterfall kind of behavior if you take large enough block size.
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This is one example. Now note here, this is plotted for channel operating
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Threshold Calculation
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S N R of minus point 2 d B so this is, in red curve is my decoder 1 and
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in blue curve I have decoder 2. Note that these 2 are crossing each other so there is no tunnel.
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Now
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same code, now I increase my S N R and I have made it point 2 d B. Now you can see there

is a tunnel between them. There is a tunnel, Ok.
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Decoding trajectory of a Turbo decoder

Step 1 : For a particular Ep/ Ny, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

Now let us see how
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we can draw a decoding trajectory of a turbo decoder with the help of these transfer

characteristics. So
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Decoding trajectory of a Turbo de

Step 1 : For a particular E,/Ny, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

what we do is for a particular signal to noise ratio as I said, we plot these transfer
characteristics of two constituent encoders on reverse set of axes. So for decoder 1, S N R in

will be on
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x axis, S N R out will be on y axis, where as for decoder 2, S N R in will be on y axis and S N

R out will be on x axis.
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oding trajectory of a Turbo

Step 1 : For a particular Es/Ny, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

Step 2 : For a given E,/Np, initially SNR; = 0 corresponding to the first
iteration of decoder 1, we determine the resulting SNRy (vertically)
using the transfer characteristics for decoder 1.

So initially, because you don't have any a priori knowledge about the information bits, so

initially the
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a priori S N R is zero. And this
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Step 1 : For a particular Ep/ Ny, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

Step 2 : For a given Ep/Np, initially SNR; = 0 corresponding to the first
iteration of decoder 1, we determine the resulting SNRy (vertically)
using the transfer characteristics for decoder 1.

corresponds to, and so we are first going to look at the transfer characteristics of the first

decoder. So input we will get zero, so we will try to see what is the
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output S N R corresponding to this decoder 1. So we determine
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Step 1 : For a particular Ep/Np, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

Step 2 : For a given Ep/N, initially SNR; = 0 corresponding to the first
iteration of decoder 1, we determine the resulting SNRy (vertically)
using the transfer characteristics for decoder 1.

the resulting output S N R which we look vertically for using the transfer characteristics for

decoder 1.
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Decoding traje s of a Turbo decoder

Step 1 : For a particular E,/ Ny, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

Step 2 : For a given Ep/Np, initially SNR; = 0 corresponding to the first
iteration of decoder 1, we determine the resulting SNRy (vertically)
using the transfer characteristics for decoder 1.

Step 3 : Since the extrinsic information at the output of decoder 1 becomes
the a-priori information at the input of decoder 2, the value of SNRy
from decoder 1 becomes SNR; for the first iteration of decoder 2,
and the resulting SNRy for decoder 2 is determined (horizontally)
using the transfer characteristics for decoder 2.

Now as I said, since the extrinsic information from the first decoder is actually a priori value
for the second decoder, so what we are going to do is that particular extrinsic information will

now become S N R in for the decoder 2. So the
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S N R out that we got from the transfer characteristics of decoder 1, that is our new a priori S
N R in for decoder 2. Now we are going to look at the transfer characteristics of decoder 2
and we are going to go horizontal and find a point corresponding to that particular a priori S

N R what is the output S N R.
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Decoding trajectory of a Turbo decoder

Step 1 : For a particular E;/ Ny, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

Step 2 : For a given Ep/Np, initially SNR; = 0 corresponding to the first
iteration of decoder 1, we determine the resulting SNRy (vertically)
using the transfer characteristics for decoder 1.

Step 3 : Since the extrinsic information at the output of decoder 1 becomes
the a-priori information at the input of decoder 2, the value of SNRy
from decoder 1 becomes SNR; for the first iteration of decoder 2,
and the resulting SNRy for decoder 2 is determined (horizontally)
using the transfer characteristics for decoder 2.

And this process we are going to repeat to draw the decoding trajectory of turbo decoder.
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Decoding trajectory of a Turbo decoder

Step 1 : For a particular E;/ Ny, plot the transfer characteristics of SISO
decoder for two constituent encoders on a reverse set of axes.

Step 2 : For a given Ep/Np, initially SNR; = 0 corresponding to the first
iteration of decoder 1, we determine the resulting SNRy (vertically)
using the transfer characteristics for decoder 1.

Step 3 : Since the extrinsic information at the output of decoder 1 becomes
the a-priori information at the input of decoder 2, the value of SNR;
from decoder 1 becomes SNR; for the first iteration of decoder 2,
and the resulting SNRy for decoder 2 is determined (horizontally)
using the transfer characteristics for decoder 2.

Step 4 : This procedure is repeated to trace the trajectory of iterative
decoding.

Step 5 :If a tunnel exists between the two transfer characteristics, iterative
decoding converges.

If while drawing this decoding trajectory, our
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decoding trajectory does not get stuck, our decoding trajectory will not get stuck if there is a
tunnel and if there is these transfer characteristics cross each other, then our decoding

trajectory will get stuck.
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So this is an example. So I have this with red that you see, that is the transfer characteristics

of the first decoder. This is decoder 1. This is transfer characteristics of decoder 1.
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Decoding trajectory of a Turbo decoder

Docoding Ingecory of o i =1 luio code
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And what you see in blue is the transfer characteristics of decoder 2. They are the
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Ducoding Irseciory of o i 113 luibo code

Decoder 2=
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same encoder; this is the symmetric turbo code I am considering. So how do I start? So
initially I will look at the transfer characteristics of the first decoder. This is where I will look.
So initially I don't have any a priori knowledge. So I will start from this point and I am
looking at this curve. So this is my extrinsic S N R corresponding to zero input. Now note
that this extrinsic information that we are getting from decoder 1 is going to be the a priori
information for decoder 2. So then what we will do? So we will now look at this curve which
is transfer characteristics of decoder 2. For decoder 2, this side is input and this side is output,

this is input and this is output. So we will look here and we will look horizontally. So this is



the point. So this is the point corresponding to S N R out corresponding to decoder 2. Now

note this extrinsic information is getting fed as a priori information to

(Refer Slide Time 27:44)

decoder 1. So we will look at

(Refer Slide Time 27:47)
dOEi80: ¢eesssiaaaand
?ﬂ ZTOm MM A oL|r co ARMEEDOENE D W swsnoms |12

Docoding Irgeciony of a ris =173 lurbo code

decoder 1 transfer characteristics and this is the point. So you can see I am going like this.

You see
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Dncoding Irsecory of o min =13 luio code

this is how basically my decoding trajectory of my turbo decoder is happening.
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@ This method is based on tracking the actual densities of the extrinsic
information during each half iteration.

Now what would have happened
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Decoding trajectory of a Turbo decoder

Dncoding Irnseciory of o i =13 luio code

if these curves would have got crossed? So let's look at scenario. Let us say I had some

curves which are like this. So let's say this is my decoder 1 and this is my decoder 2.
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Decoding trajectory of a Turbo decoder
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Decoder 2-

Then what would have happened is, so I would have initially started with zero, I have got
this, then I got this. Let me draw slightly better transfer characteristics. So (()) second. So you

draw it, basically you draw it like this, Ok. Now
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Decoding trajectory of a Turbo decoder

Ducoding Insecory of o min =13 luib code

E M, = 0208

Decoder 2=
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let's draw the decoding. So this is transfer characteristics of decoder 1
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Decoding trajectory of a Turbo decader

Dncoding Irseciory of o i 1213 luro code
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and this is transfer characteristics of decoder 2. So what
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happens here? So you start off with S N R 0 point, you are getting this output S N R from the
decoder 1. Now this is input to decoder 2. So you will get to this point. Then from here you
will get to this point. Then you get to this point. And then here you are stuck because these 2
graphs cross each other. So what you will notice is if there is no tunnel then your decoding

algorithm

(Refer Slide Time 29:38)

will get sruck and the extrinsic values will not improve whereas if there is a tunnel existing
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like in this particular case, you saw that, with iterations your extrinsic information is growing.
And that's what we would like. So we would like to choose our encoders in such a way such

that they match up in a way that there is a tunnel if we plot

(Refer Slide Time 30:04)

the decoding trajectories on reverse axes.
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@ This method is based on tracking the actual densities of the extrinsic
information during each half iteration.

This was the method of El Gamal.

Now the method of Divsalar, they actually used the actual densities of the extrinsic

information and they track it for finding
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@ This method is based on tracking the actual densities of the extrinsic
information during each half iteration.

@ Generate input a-priori distribution based on the observed extrinsic
information distribution.

out how it is growing for iteration. So they generated some input a priori distribution based

on observed extrinsic information and then they
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@ This method is based on tracking the actual densities of the extrinsic
information during each half iteration.

@ Generate input a-priori distribution based on the observed extrinsic
information distribution.

@ Simulate SISO decoder, and from the generated extrinsic
information find the distribution of the extrinsic information.

simulate this soft input soft output decoder using this generated distribution of a priori

information and they find out the distribution of extrinsic
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@ This method is based on tracking the actual densities of the extrinsic
information during each half iteration.

@ Generate input a-priori distribution based on the observed extrinsic
information distribution.

@ Simulate SISO decoder, and from the generated extrinsic
information find the distribution of the extrinsic information.

@ The a-priori/extrinsic information can be characterized by the
SNR;/SNRg, where mean and variance of the a-priori/extrinsic
information is calculated empirically

information. And similarly they characterized
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the S N R of the input distribution as well as the output distribution using mean and
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Density Evolution

@ This method is based on tracking the actual densities of the extrinsic
information during each half iteration.

@ Generate input a-priori distribution based on the observed extrinsic
information distribution.

@ Simulate SISO decoder, and from the generated extrinsic
information find the distribution of the extrinsic information.

@ The a-priori/extrinsic information can be characterized by the
SNR;/SNRy, where mean and variance of the a-priori /extrinsic
information is calculated empirically.

variance which was empirically computed. So they did not assume that consistency criteria

which EI Gamal and others did, they actually
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used the observed density. They generated a priori information based on the observed

distribution of the extrinsic information.
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Extrinsic Information Transfer Charts
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@ Mutual Information is used to describe the flow of extrinsic
information through soft in/soft out decoders.

The third method which was proposed is based on mutual information. So mutual information

was used to describe the flow
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of information through this soft input soft output decoder. So there
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@ Mutual Information is used to describe the flow of extrinsic
information through soft in/soft cut decoders.

@ The information content of the a-priori probabilities is measured by
the mutual information /4=I(U;A) between the information bits U
and the a-priori L-values A.

were 2 quantities which were described here. Basically one was this input mutual information
which is the mutual information between the information bits and the a priori value and the

second
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Extrinsic Information Transfer Charts

Channel — 1 Extninsic
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@ Mutual Information is used to describe the flow of extrinsic
information through soft in/soft cut decoders.

@ The information content of the a-priori probabilities is measured by
the mutual information /4=I(U;A) between the information bits U

and the a-priori L-values A.
@ The input mutual Information /(U; A) is calculated as:

1 Pt pa(€|U = u)
WAL 5 T [ patel = uyiog 280 = e
2 i.J'Z:l-I' - PA(&}

term which was defined here was
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Extrinsic Information Transfer Charts

@ The information content of the extrinsic a-posteriori probabilities is
measured by the mutual information /g=I(U;E) between the
information bits U and the extrinsic L-values E.

the extrinsic mutual information which is the mutual information between the input bits and

the extrinsic values. So
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Extrinsic Information Transfer Charts

@ The information content of the extrinsic a-posteriori probabilities is
measured by the mutual information le=I(U;E) between the
information bits U and the extrinsic L-values E.

@ The probability distribution of the extrinsic L-values pg, is computed
experimentally from Monte Carlo simulations. pe is then used to
calculate the output mutual information /(U; E).

al pe(€|U = U)
U E)= = (e|JU = EEGI - — )
UZ [ Pe( u) Pe(£)

what was done in
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Extrinsic Information Transfer Charts

@ The information content of the extrinsic a-posteriori probabilities is
measured by the mutual information le=I(U;E) between the
information bits U and the extrinsic L-values E.

@ The probability distribution of the extrinsic L-values pg, is computed
experimentally from Monte Carlo simulations. pe is then used to
calculate the output mutual information /(U; E).

PE(§|U = u)
I(U; E) 2 Z [ Pe(€|U = u)log 225 == oe (@) e i df

@ Viewing g as a function of 14 and Ey/N,, the extrinsic information
transfer characteristic of an encoder is defined as

Ie = T(la, En/Ns).

this technique was you can view the mutual information corresponding
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Extrinsic Information Transfer Charts

@ The information content of the extrinsic a-posteriori probabilities is
measured by the mutual information lz=I(U;E) between the
information bits U and the extrinsic L-values E.

@ The probability distribution of the extrinsic L-values pg, is computed
experimentally from Monte Carlo simulations. pe is then used to
calculate the output mutual information /(U; E).

al > pe(£|U = u)
WE) 25 3 [ pelelv = uyiog PEET =1 e
2“21.1- x PF(E)

@ Viewing g as a function of 14 and E;/N,, the extrinsic information
transfer characteristic of an encoder is defined as

E— T(Ia. Ev/No).

to the input and extrinsic value as a function of mutual information of a priori values and

information bits and operating signal to noise ratio. So this was the transfer function which
was considered in this extrinsic information chart. That viewing the output mutual
information between the extrinsic information and the information bit as a function of mutual

information between the a priori and the information bits and signal to noise ratio.
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Extrinsic Information Transfer Charts

@ An EXIT chart for a particular channel SNR E;/Ng can be formed
by plotting the transfer characteristics of the two constituent
encoders on reverse axes.

So how was EXIT chart created? So they plotted these transfer characteristics which was

given by this.
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Extrinsic Information Transfer Charts

@ The information content of the extrinsic a-posteriori probabilities is
measured by the mutual information /e=I(U;E) between the
information bits U and the extrinsic L-values E.

@ The probability distribution of the extrinsic L-values pg, is computed
experimentally from Monte Carlo simulations. pe is then used to
calculate the output mutual information /(U; E).

1 > pe(§|U = u)
(I = £|U = u)log ZESE =21
( ) 2 U 1.1-/‘ s pE( | U) o F'E(&) &

@ Viewing /g as a function of I4 and E/N,, the extrinsic information
transfer characteristic of an encader is defined as
e

]:El—. T(Ia. Ev/No).
* 2

They plotted these transfer characteristics
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Extrinsic Information Transfer Charts

@ The information content of the extrinsic a-posteriori probabilities is
measured by the mutual information le=I(U;E) between the
information bits U and the extrinsic L-values E.

@ The probability distribution of the extrinsic L-values pg, is computed
experimentally from Monte Carlo simulations. pe is then used to
calculate the output mutual information /(U E).

HU; E) £ ”Z f Pe(£|U = u)log “f) pelllth=u) ,,

@ Viewing I as a function of 14 and E,/N,, the extrinsic information
transfer characteristic of an encoder is defined as
pelizhs ilnEiolns
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Extrinsic Information Transfer Charts

@ An EXIT chart for a particular channel SNR E;/ Ny can be formed
by plotting the transfer characteristics of the two constituent
encoders on reverse axes.

for two constituent

(Refer Slide Time 33:23)

decoders on reverse axes
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Extrinsic Information Transfer Charts

@ An EXIT chart for a particular channel SNR E;/Ng can be formed
by plotting the transfer characteristics of the two constituent
encoders on reverse axes.

_-—'.—‘

similar to El Gamal's technique, the difference is
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Extrinsic Information Transfer Charts

@ An EXIT chart for a particular channel SNR E;/Ny can be formed
by plotting the transfer characteristics of the two constituent
encoders on reverse axes

@ The EXIT chart can then be used to trace the trajectory of iterative

decoding and to determine the convergence behavior of the
constituent decoders.

El Gamal used mean as
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S N R, here they used mutual information.
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@ An EXIT chart for a particular channel SNR E;/ Ny can be formed
by plotting the transfer characteristics of the two constituent
encoders on reverse axes.

@ The EXIT chart can then be used to trace the trajectory of iterative
decoding and to determine the convergence behavior of the
constituent decoders.

So very similar idea, so
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these transfer functions were plotted on reverse axes. Initially you don't have any a priori
knowledge, so the input a priori mutual information is zero. And then after one half iteration,
you get some extrinsic information. So you have some positive mutual information. And then
you pass that as input to second decoder. And the decoding will progress if there is a tunnel

otherwise it will get stuck.
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Extrinsic Information Transfer Charts

@ An EXIT chart for a particular channel SNR E, /Ny can be formed
by plotting the transfer characteristics of the two constituent
encoders on reverse axes

@ The EXIT chart can then be used to trace the trajectory of iterative
decoding and to determine the convergence behavior of the
constituent decoders.
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Extrinsic Information Transfer Charts

@ An EXIT chart for a particular channel SNR E;/Ng can be formed
by plotting the transfer characteristics of the two constituent
encoders on reverse axes

@ The EXIT chart can then be used to trace the trajectory of iterative
decoding and to determine the convergence behavior of the
constituent decoders.

@ The existence of a “tunnel” implies convergence of iterative
decoding.

So as I have said, whether the decoding algorithm will converge or not, is, can be viewed by
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—

plotting these transfer characteristics on reverse axes and seeing whether a tunnel exists

between them or not.
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Extrinsic Information Transfer Charts

@ An EXIT chart for a particular channel SNR E;/Ng can be formed
by plotting the transfer characteristics of the two constituent
encoders on reverse axes.

@ The EXIT chart can then be used to trace the trajectory of iterative
decoding and to determine the convergence behavior of the
constituent decoders.

@ The existence of a “tunnel” implies convergence of iterative
decoding.

@ As the channel SNR Ey/Ng is lowered, the two transfer
characteristics come closer together (the “tunnel” narrows) until the
two curves meet.

Now what happens if we reduce the channel operating S N R? If we reduce channel operating
S N R, then these curves come closer until a point will come when they will barely touch or

they will touch and cross each other. So the point, the minimum S N R
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where there still is a tunnel that's your threshold, decoding threshold.
So we have specified various methods for tracking the mutual information, tracking the
extrinsic information and a priori information and this can be used to see how our constituent
encoders will behave, how the turbo code, how the turbo decoder will behave under iterative
decoding algorithm. Now what are the limitations of this analysis approach? Now this

approach assumes that



(Refer Slide Time 35:42)
diBs®n:ewessiaaaand
7o Toomtd cif- e mERBEEREBO0 W swwoms

Limitations of the conve e ana methods

@ Convergence analysis is based on asymptotically large blocksizes.
Practical systems use a finite blocksizes.

we have very large block sizes. So these convergence analysis results hold for very large

block
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sizes but in practical systems we use small size block sizes so the thresholds predicted by this

method may not be consistent when we use small block sizes and of course there are some
assumptions, for example in El Gamal's technique we use Gaussian assumptions, we made
assumption of consistency conditions. Those conditions may or may not hold, Ok. So with

this I will conclude this discussion on convergence analysis of turbo codes, thank you.



