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Today we are going to talk about how to analyze the performance of turbo code in low S N R.
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So we are going to talk about convergence, how to track the convergence 
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of turbo iterative decoding algorithm and that's the topic of our discussion, convergence of

turbo codes. So with brief introduction, we will talk about 
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what are the various measures for convergence analysis 
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and in particular we will, are going to talk about these three methods, the first method 
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which is  based on Gaussian approximation  and which involves tracking the mean of the

extrinsic values, a method proposed by El Gamal. Next we will talk about a method which is

proposed by Divsalar and others using density evolution and then a method which is based on

mutual information, tracking mutual information proposed by ten Brink. 
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And then we will talk about what do we mean by a 
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transfer characteristic of a turbo 
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decoder and how we can use it to compute the convergence threshold 
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of a turbo code. 
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So this is a typical performance of a turbo code. If we take a larger block size, this is for a

block size, I think 65000 plus, so if you take a large block size, this is typical performance of

a turbo code. On x axis, I have signal to noise ratio and on the y axis, I have plotted 
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bit error rate. Now you will see there is a region, so this region which we are calling 
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waterfall region where there is a steep fall 
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in bit error rate performance and there 
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is a region, we call it error flow region 
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where 
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the b e r does not improve much. So today's 
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topic of discussion is this waterfall region. What determines 
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the performance of turbo code in this region where it falls sharply and how can we get some

guidelines on how to choose constituent encoders so that we get a steep fall like this. 
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So before we study the convergence 
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analysis, convergence of turbo code, let's pay close attention to the basic block diagram of

our turbo decoder. 
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The heart of the turbo decoder is the soft input soft output decoder and if you recall this soft

input soft output 
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decoder takes in as input the channel 

(Refer Slide Time 03:07)

received values corresponding to the information 
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and parity bits, 
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a priori value which 
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it  receives  from the other decoder,  which are the extrinsic  values passed on to the other

decoder and it 
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computes extrinsic values as well as A P P L values 
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where you take a hard decision to get back your decoded bits. So if you look at a turbo

decoder,  this  is the heart  of the turbo decoder.  There are two such soft  input soft  output

decoder and if you look for a particular signal to noise ratio, if we look at turbo decoder as a

function of iteration you will notice the only thing changing with iteration is this 
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extrinsic value and 
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a priori value. So with iteration, 
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your, initially you do not have any estimate on a priori value, you assume that the bits are

equally likely to be zero and 1 but subsequently with iteration when your extrinsic values are

generated, those are passed on as a priori value. Now the channel L values remain same for a

fixed signal to noise ratio; for a received bit, the channel L value remains same. Only thing

changing with iteration are these two quantities, 
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this a priori value and the 
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extrinsic value. So if we can track with iteration how our extrinsic information is growing

with this a priori information, that will give us some clue about the performance of turbo

code at waterfall region. 



(Refer Slide Time 04:56)

So as I  said,  initially  we do not have any a  priori  value but subsequently after one half

iteration 
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extrinsic information are generated and that's passed on as a priori value 
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to this soft input soft output 
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decoder. And again I emphasize, the only thing changing with iteration are 
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these extrinsic values and 
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a priori values. So if 
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you want to track how your turbo decoder is working with iteration, you need to track these

two quantities 
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and we are going to talk about what are the various measures 
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that we can use to track these two quantities. 
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So basic idea of convergence of turbo code, convergence analysis of turbo code is to track

how these extrinsic information are evolving with increased iteration. So if you feed in 
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better a priori value, how is your extrinsic information 
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evolving? So what we do is, for a fixed signal to noise ratio we have a set of received values.

So what we do is we try to relate a parameter which is related to the extrinsic information of

the turbo decoder and 
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we try to relate it to the parameter 
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which is related to the a priori information. As 
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I said in this soft input soft output decoder, only thing changing is this a priori information

and this extrinsic information. So we want to track how these extrinsic information and a

priori information are growing with iteration. So what we are going to do in this convergence

analysis is we are going 
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to track a parameter which is related to extrinsic 
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information and we will see how that parameter will change when the parameter at the input

side which is a priori value is also changed. 
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And for an asymptotically large block size the smallest channel S N R for which iterative

decoding algorithm converges is known as decoding threshold. So this iterative 
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decoding threshold will be away from your channel capacity, typically. 
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Now this convergence analysis tool is a very, very powerful tool to analyze these kinds of 
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iterative decoding algorithms. It gives us tool to analyze the performance of concatenated

schemes  that  use  iterative  decoding algorithm.  It  gives  us  tool  to  design  our  constituent

encoders. It gives us tool to design our puncturing pattern, uh so it is a very, very interesting

tool for analysis in the waterfall region. 
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So as I said there are three 
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popularly known techniques for 
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convergence analysis and as I said the idea 
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of these techniques is track one parameter which is related to the extrinsic information and

track the same parameter related to the a priori information. So this technique by El Gamal 
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makes use of Gaussian approximation and it tracks the signal to noise ratio, so it tracks the

signal to noise 
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ratio of the extrinsic information and observes how this S N R extrinsic information grows

when you change the S N R of the a priori information. In the density 
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evolution method by Divsalar and others they actually see the 
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density of this extrinsic information, how does it grow with iteration and this 
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approach of ten Brink which is known as extrinsic information transfer chart, it 
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uses mutual information as a parameter to 
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observe how, with iteration your extrinsic information is growing. And these are the three

references, the first one corresponding to this S N R technique, the second one corresponding

to this density evolution technique and third corresponds to this EXIT chart technique. 
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So the El Gamal approach is based on Gaussian 
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approximation of this output extrinsic information. So note, 
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there are 2 inputs to my soft input soft output decoder; one which I am referring by Z 
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which is just channel received L 
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values. The second 
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one is this a priori 
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values and there are 2 outputs, one is this extrinsic information and other one is A P P L

values, if I take a hard decision 
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on that, what I get is my decoded bits. 
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Now 
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we are using this Gaussian 
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approximation so assume, so we have Gaussian channel. So if x was your modulated signal

and n is my Gaussian noise, so what I receive is 
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Z. 
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Now 
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the likelihood ratio of Z we can write it like this, similarly this a priori information, the L

value of that I can write 
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it like this. 
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Now for large block sizes this a priori distribution is assumed to be Gaussian. So we model

this a priori L value in this particular way in this 
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El Gamal's approach. So in El Gamal's approach we modeled our a priori information as

Gaussian and we generated like this, A is mu A times input plus some Gaussian noise and

they have also observed what they call consistency condition. 
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So they assume the mean and variance are related in this particular fashion. So what happens

is  if  you  make  this  Gaussian  assumption  and  you  make  this  assumption  that  mean  and

variance are related, then you essentially need to track only 
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one parameter. So you, for example, with just the mean you can track your 
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Gaussian distribution because mean and variance are related. 
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Now similarly we can define input S N R of the a priori information. 
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This is mu A square by sigma square. Now sigma square by 2 
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is mu A. So our 
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input S N R is given by the mean of the a priori information divided by 2. 
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And since our output is approximated as Gaussian, so we can calculate the output probability

of error as a function of 

(Refer Slide Time 12:43)

output S N R and they are related to the, using this Q function. Now, 
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so what we can do is we can write this output S N R 
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in terms of input S N R and our operating signal to noise ratio. So what we can do is we can

view the output S N R of the extrinsic 
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information  as a  function of input  S N R of  a  priori  information  as  well  as the channel

operating signal to noise ratio. So 
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this  is  crucial,  so this  is  basically  what  I  call  the transfer  characteristics  of  the  decoder.

Because my decoder is a function of 
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a priori inputs as well as channel received values. Now channel received value is the function

of channel operating S N R and what I get, a priori information is the function of a priori

input S N R. So I can view S N R of the extrinsic information, I can 
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view it as a function of input S N R of a priori values as well as channel, operating channel

signal to noise ratio.  So this relation characterizes how my decoder will behave.  Because

remember with iteration your extrinsic information is changing as a function of 
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a priori value and what is your operating channel S N R. So this transfer function will give 
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me how my decoder, this soft input soft output 
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decoder, how it will perform as a function of a priori value and the channel operating S N R. 
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So then how do we draw the transfer characteristics? For a given signal to noise ratio, the

distribution of a priori L values is generated for a particular mean mu a and transmitted bit u.

How? 
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We know that we are modeling 
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our a priori 
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information like this. And of course we are assuming consistency condition so the mean and 

(Refer Slide Time 15:14)

variance of the mutual, the a priori information is related like this. 
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So next 

(Refer Slide Time 15:24)

step is we simulate a soft input soft output decoder. So we feed in these two input. One is this

channel received 
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S N R and other is this a priori information which 
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we modeled as Gaussian. We feed these two inputs to the decoder and what comes out as

output 
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are these extrinsic values. 
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And we compute the mean of the extrinsic values. 
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Now we know that our signal to noise ratio, because we are making 
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Gaussian assumption, our signal to noise ratio is related to the mean. Now as I said with

iteration, my a priori information is changing. So now we are going to 
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change the mean of the a priori information. And then we will again simulate 
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this  soft  input  soft  output  decoder  and we will  try  to  see what  happens  to  the  extrinsic

information mean. How much it is growing with change in input a priori information mean? 
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So this process is done. So we repeat this by varying our a priori information mean. 
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And finally what we do, we plot this input output relation for a particular channel S N R. So

this is my input a priori S N R, this is the extrinsic information S N R. We plot it  for a

particular value of signal to noise ratio and this is my transfer characteristic for that particular

decoder 



(Refer Slide Time 17:23)

which  is  a  function  of  channel  operating  S  N R and of  course it  is  the  function  of  the

constituent encoders that I have used. 
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So here basically I have plotted, with red curve I have plotted transfer characteristics of one

such code. It is a 8 state code. What I have here at the input side is 
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S N R of a priori information and what I have here on the output side is 
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S N R of the extrinsic information. And this is how my; so initially 
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I don't  have any a priori knowledge, the extrinsic information will,  this is the amount of

extrinsic information which is generated. So this transfer characteristics will tell me, if I have

a particular input a priori information then what is the corresponding 
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extrinsic information S N R. And for comparison sake I have drawn this line which is the S N

R in 
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equal to S N R out. Now if you have a symmetric turbo code, you obviously would like your

transfer characteristics to be above this line. 
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Now how do we compute, how do we use these 
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transfer characteristics to compute the decoding threshold? So how do we find out the S N R,

minimum S N R under which our iterative algorithm will converge? For that we need to do

this threshold computation. So how do we do this threshold computation? So for a 



(Refer Slide Time 19:08)

particular signal to noise ratio, we plot the transfer characteristics of this soft input soft output

decoder. We plot them on reverse set of axes. Now what do I mean by reverse set of axes? So

for the first, my S N R in is on x axis, and 
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S N R out is on the y axis. Now for the second decoder, my S N R in is on the y axis and S N

R out is on the x axis. Now why do I do this? Because the extrinsic information of first

decoder is input to the second decoder. So S N R out of the first decoder becomes S N R in of

the second decoder. And that's why I put the S N R in of the second decoder as y axis and the

S N R out of the second decoder is S N R in for the first  decoder because the extrinsic

information from the second decoder is coming as input to the, as a priori input to the first

decoder. And that is the reason I plot these transfer characteristics on reverse axes. 



(Refer Slide Time 20:35)

Now if these transfer characteristics do not cross, there is a tunnel in the sense they do not

touch each other, then what we do is the channel, operating channel S N R is reduced until

these transfer characteristics just about touch. 
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So what is the effect of channel S N R? So as you reduce the channel S N Rs these transfer

characteristics which have been plot on reverse axes, they come closer when you reduce the

channel S N R. So the smallest S N R for which there is still a tunnel, that's your decoding

threshold for that particular 
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code. 
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So if the transfer characteristics touch or cross each other, what we need to do is we need to

increase the S N R until there is a tunnel, still a tunnel. 
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So the smallest channel S N R for which these two transfer characteristics which have been

plotted on reverse axes, they do not touch and a tunnel exist is basically the convergence

threshold for that particular code. So that would give the S N R, minimum S N R under which

that particular code will converge and it will have a 
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waterfall kind of behavior if you take large enough block size. 
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This is one example. Now note here, this is plotted for channel operating 
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S N R of minus point 2 d B so this is, in red curve is my decoder 1 and 
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in blue curve I have decoder 2. Note that these 2 are crossing each other so there is no tunnel. 
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Now 
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same code, now I increase my S N R and I have made it point 2 d B. Now you can see there

is a tunnel between them. There is a tunnel, Ok. 
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Now let us see how 
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we  can  draw  a  decoding  trajectory  of  a  turbo  decoder  with  the  help  of  these  transfer

characteristics. So 
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what  we  do  is  for  a  particular  signal  to  noise  ratio  as  I  said,  we  plot  these  transfer

characteristics of two constituent encoders on reverse set of axes. So for decoder 1, S N R in

will be on 
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x axis, S N R out will be on y axis, where as for decoder 2, S N R in will be on y axis and S N

R out will be on x axis. 
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So initially, because you don't have any a priori knowledge about the information bits, so

initially the 
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a priori S N R is zero. And this 
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corresponds to, and so we are first going to look at the transfer characteristics of the first

decoder. So input we will get zero, so we will try to see what is the 
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output S N R corresponding to this decoder 1. So we determine 
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the resulting output S N R which we look vertically for using the transfer characteristics for

decoder 1. 
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Now as I said, since the extrinsic information from the first decoder is actually a priori value

for the second decoder, so what we are going to do is that particular extrinsic information will

now become S N R in for the decoder 2. So the 
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S N R out that we got from the transfer characteristics of decoder 1, that is our new a priori S

N R in for decoder 2. Now we are going to look at the transfer characteristics of decoder 2

and we are going to go horizontal and find a point corresponding to that particular a priori S

N R what is the output S N R. 
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And this process we are going to repeat to draw the decoding trajectory of turbo decoder. 
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If while drawing this decoding trajectory, our 
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decoding trajectory does not get stuck, our decoding trajectory will not get stuck if there is a

tunnel  and  if  there  is  these  transfer  characteristics  cross  each  other,  then  our  decoding

trajectory will get stuck. 
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So this is an example. So I have this with red that you see, that is the transfer characteristics

of the first decoder. This is decoder 1. This is transfer characteristics of decoder 1. 
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And what you see in blue is the transfer characteristics of decoder 2. They are the 
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same encoder;  this is the symmetric  turbo code I am considering.  So how do I start? So

initially I will look at the transfer characteristics of the first decoder. This is where I will look.

So initially I don't have any a priori knowledge. So I will start from this point and I am

looking at this curve. So this is my extrinsic S N R corresponding to zero input. Now note

that this extrinsic information that we are getting from decoder 1 is going to be the a priori

information for decoder 2. So then what we will do? So we will now look at this curve which

is transfer characteristics of decoder 2. For decoder 2, this side is input and this side is output,

this is input and this is output. So we will look here and we will look horizontally. So this is



the point. So this is the point corresponding to S N R out corresponding to decoder 2. Now

note this extrinsic information is getting fed as a priori information to 
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decoder 1. So we will look at 

(Refer Slide Time 27:47)

decoder 1 transfer characteristics and this is the point. So you can see I am going like this.

You see 
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this is how basically my decoding trajectory of my turbo decoder is happening. 
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Now what would have happened 
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if  these curves would have got crossed? So let's look at  scenario.  Let us say I had some

curves which are like this. So let's say this is my decoder 1 and this is my decoder 2. 
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Then what would have happened is, so I would have initially started with zero, I have got

this, then I got this. Let me draw slightly better transfer characteristics. So (()) second. So you

draw it, basically you draw it like this, Ok. Now 
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let's draw the decoding. So this is transfer characteristics of decoder 1 
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and this is transfer characteristics of decoder 2. So what 
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happens here? So you start off with S N R 0 point, you are getting this output S N R from the

decoder 1. Now this is input to decoder 2. So you will get to this point. Then from here you

will get to this point. Then you get to this point. And then here you are stuck because these 2

graphs cross each other. So what you will notice is if there is no tunnel then your decoding

algorithm 
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will get sruck and the extrinsic values will not improve whereas if there is a tunnel existing 
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like in this particular case, you saw that, with iterations your extrinsic information is growing.

And that's what we would like. So we would like to choose our encoders in such a way such

that they match up in a way that there is a tunnel if we plot 

(Refer Slide Time 30:04)

the decoding trajectories on reverse axes. 
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This was the method of El Gamal. 

Now  the  method  of  Divsalar,  they  actually  used  the  actual  densities  of  the  extrinsic

information and they track it for finding 
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out how it is growing for iteration. So they generated some input a priori distribution based

on observed extrinsic information and then they 
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simulate  this  soft  input  soft  output  decoder  using  this  generated  distribution  of  a  priori

information and they find out the distribution of extrinsic 
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information. And similarly they characterized 
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the S N R of the input distribution as well as the output distribution using mean and 
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variance which was empirically computed. So they did not assume that consistency criteria

which El Gamal and others did, they actually 
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used  the  observed  density.  They  generated  a  priori  information  based  on  the  observed

distribution of the extrinsic information.
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The third method which was proposed is based on mutual information. So mutual information

was used to describe the flow 
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of information through this soft input soft output decoder. So there 
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were 2 quantities which were described here. Basically one was this input mutual information

which is the mutual information between the information bits and the a priori value and the

second 
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term which was defined here was 
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the extrinsic mutual information which is the mutual information between the input bits and

the extrinsic values. So 
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what was done in 
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this technique was you can view the mutual information corresponding 
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to the input and extrinsic value as a function of mutual information of a priori values and

information bits and operating signal to noise ratio. So this was the transfer function which

was  considered  in  this  extrinsic  information  chart.  That  viewing  the  output  mutual

information between the extrinsic information and the information bit as a function of mutual

information between the a priori and the information bits and signal to noise ratio. 
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So how was EXIT chart  created? So they plotted these transfer characteristics which was

given by this. 
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They plotted these  transfer characteristics 
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for two constituent 
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decoders on reverse axes 
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similar to El Gamal's technique, the difference is 
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El Gamal used mean as 
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S N R, here they used mutual information. 
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So very similar idea, so 
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these transfer functions were plotted on reverse axes. Initially you don't have any a priori

knowledge, so the input a priori mutual information is zero. And then after one half iteration,

you get some extrinsic information. So you have some positive mutual information. And then

you pass that as input to second decoder. And the decoding will progress if there is a tunnel

otherwise it will get stuck. 
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So as I have said, whether the decoding algorithm will converge or not, is, can be viewed by 
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plotting  these  transfer  characteristics  on reverse  axes  and seeing  whether  a  tunnel  exists

between them or not. 
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Now what happens if we reduce the channel operating S N R? If we reduce channel operating

S N R, then these curves come closer until a point will come when they will barely touch or

they will touch and cross each other. So the point, the minimum S N R 
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where there still is a tunnel that's your threshold, decoding threshold. 

So  we have  specified  various  methods  for  tracking  the  mutual  information,  tracking  the

extrinsic information and a priori information and this can be used to see how our constituent

encoders will behave, how the turbo code, how the turbo decoder will behave under iterative

decoding  algorithm.  Now  what  are  the  limitations  of  this  analysis  approach?  Now  this

approach assumes that 
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we have very large block sizes. So these convergence analysis results hold for very large

block 
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sizes but in practical systems we use small size block sizes so the thresholds predicted by this

method may not be consistent when we use small block sizes and of course there are some

assumptions, for example in El Gamal's technique we use Gaussian assumptions, we made

assumption of consistency conditions. Those conditions may or may not hold, Ok. So with

this I will conclude this discussion on convergence analysis of turbo codes, thank you.


