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In this lecture we are going to conclude our discussion on introduction and so, in this lecture I

will first describe what is a difference between block codes and convolutional codes. And

then we will talk about very simple decoding strategies and finally we will explain by what

we mean by forward error correction, automatic repeat request and hybrid a r q. So as I said, 
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we will first describe, so error correcting codes can be broadly classified into two classes,

block codes and convolutional codes. We will describe what is meant by block code and what

is  meant  by convolutional  code and we will  bring out  the difference  and the similarities

between the two. Then we will talk about 

(Refer Slide Time 01:04)

various decoding strategies and finally 
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we will talk about what we mean by forward error correction, hybrid a r q and automatic

repeat request. 
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So we will start with what is block codes. So as the name suggests, in block codes we 
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take a block of k-bits and map it to an n-bit codeword. So our informative sequence is parsed

into 
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blocks of k-bits And we take this block of k-bits and map it to block of n-bits. So 
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we denote our information sequence by u. So this is a k-bit sequence u 0, u 1 to u k minus 1

and our encoder is going to map this k-bits into a n-bit sequence which is denoted by v. Now 
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in block code, the encoder is memoryless What do we mean by that? So when we encode a

block of k-bits, 
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our output depends only on that current block of k-bits. It does not depend on what was the

previous blocks of data. It only depends; output only depends on the current k-bits. So that is

one property of block codes which makes it different from convolutional codes. Block codes

are memoryless. 
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As we mentioned in the previous lectures, we defined our code rate to be the ratio of number

of information bits to number of coded bits. So the ratio of information bits to coded bit is

basically, will be denoted by code rate. And 
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it is typically denoted by R. k is number of information bits. n is number of coded bits. So n

minus k is number of redundant bits that we are adding to our information bits 



(Refer Slide Time 03:19)

and these are also known as parity bits. If you are 
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considering, without loss of generality, we will basically consider in this set of lectures binary

codewords so our information sequence 
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consists of zeros and ones, similarly our code sequence also consists of zeros and ones. Since

we are considering the block of k-bits and binary codewords, the number of codewords is

basically 2 raised to power k. So a binary 
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n k block code consists of 2 k codewords each of length n. Now these 
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codewords need not be binary, however it's  the same theory mostly applies to non-binary

codewords as well so we will restrict our discussion to binary codewords. 
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So  let  us  consider  an  example  of  linear  block  code.  So  in  this  example,  a  number  of

information 
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bits is 3, the number of coded bits is 6. 
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So the code rate which is ratio of information bits to number of coded bits is 3 by 6 which is

half. 
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So what we have here is basically our message bits. Now k is 3, that means there are 2 raised

to power 3, which is 8 codewords and these are basically from 0 0 0 to 1 1 1, these are the 8

codewords.  Now  the  message,  these  are  the  8  message  bits  and  corresponding  to  these

message bits, these are the 8 codewords. Now 0 0 0 is mapped to all zero sequence, 1 0 0 is

mapped to 0 1 1 1 0 0, likewise other sequences have been mapped. So let us look at how we

have mapped, how have we found out the message parity bits for this particular codeword. So

let's look at each of the columns of these codewords. So let us look at this column first 
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which is 0 0 0 0 1 1 1 1. So how was this column, how did we map to get this column? If you

look at information bits, this column is nothing but same as 
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this information bit. You can see 0 0 0 0 1 1 1 1 1. Similarly look at this one. This 
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column is same as this column, 
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0 0 1 1 0 0 1 1 and this column is 
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same as this column 
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So in other words, this bit of the codeword is same as this bit of the information sequence.

This bit  of the codeword is same as this  bit  of the information sequence.  This bit  of the

codeword is same as this bit of the information sequence. Now let's look at this one. 
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So if we do u xor of these two, look at this x u 0 plus 0 is 0, 1 plus 0 is 1, 0 plus 1 is 1, 1 plus

1 is 0. We are talking about binary, addition over binary field so 0 plus 0 is 0, 0 plus 1 is 1, 1

plus 0 is 1, and 1 plus 1 is 0, it is modulo two addition. So 1 plus 1 is 0, this is 0 plus 0 is 0, 1

plus 0 is 1, 0 plus 1 is 1 and 1 plus 1 is 0. So if we, let's say, denote this by u 0, u 1, u 2 and

we denote 
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this by v 0, v 1, v 2, v 3, v 4 and v 5, what we have 
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found out so far is v 5 is same as u 2, v 4 is same as u 1, 
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v 3 is same as u 0 
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and what is v 2; v 2 was u 0 plus u 1. Now let's 
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look at v 1. If we look at these two, u 0 plus u 2, 
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 so 0 plus 0 is 0, 1 plus 0 is 1, 0 plus 0 is 0, 1 plus 0 is 1, 0 plus 1 is 1, 1 plus 1 is 0, 0 plus 1 is

1 and 1 plus 1 is 0; so v 1 is nothing but u 0 plus u 2, Ok. Now look at last this one v 0 what

is v 0, we can see that this is same as u 1 plus u 2. 
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This is u 1 plus u 2. So 0 plus 0 is 0, 0 plus 0 is 0, 1 plus 0 is 1, 1 plus 0 is 1, 0 plus 1 is 1, 0

plus 1 is 1, 1 plus 1 is 0 and 1 plus 1 is 0. So this is how we have mapped our information 
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bits into our coded bits 

Ok, so again to recap, in block codes we take, 
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we partition our information sequence into blocks of k-bits and we map these k-bits into

blocks of n-bits and this mapping is memoryless. In other words, how we map these k-bits

does not depend upon how we have mapped the previous blocks of k-bits. Ok
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so let’s now contrast it with what are convolutional codes and how are they different from

convolutional codes. So in block codes we parse our information sequence
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into blocks of data and we handle them block by block, where as in convolutional code, you

can process information sequence in a continuous fashion. The second difference 
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is the encoding in convolutional code is with memory. In other words the current output 
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not only depends on current input but it also depends on past inputs and outputs, Ok. So

unlike block codes, in convolutional codes, output depends on past inputs and outputs. So 
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if we have n k convolutional codes where k is number of information bits, 
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n is the number of coded bits we have another parameter, 
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we are calling it memory order which signifies basically how many past bits or how many,

what's past information that has been used 
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to generate the current output 
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So we define convolutional code not only by these parameters n and k but another parameter

which basically denotes the memory of the encoder. Another subtle difference, 
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in case of convolutional codes typically the values of k and n are much smaller compared to

values of k and n for block codes. 
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So let's take an example now for convolutional code. So here we have one input 
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and two outputs. 
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The input we are denoting by u of l, output we are denoting by v of l 1, v of l 2. Now note

here, each of the outputs here not only depends on the current input which is u 1 but it also

depends on these past values. It also depends on what u l minus 1 was, what u l minus 2 was;

so this an example of memory order 2. So the current input, current output not only depends

on current input but also depends on past two values of the input. So this is an example of a 2

1 2 convolutional code. n is 2, there are two outputs, k is 1, one input and memory order is 2

because the output depends on past two values of information sequence. So you can see here, 
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the first input which is v 1, v l 1, it is basically u l plus u l minus 2. So in other words, it

depends on the current input and what was the input past two values basically and similarly



this one depends on current input, past input, one past input and the, this u l minus 2. So this

is basically how, so you can see 
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the difference here The output not only depends on current input but it also depends on past

inputs. Similarly here, basically you can see the, in the convolutional code the output depends

on past inputs and outputs, Ok. So that is one of the major difference between convolutional

codes and block codes. 
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Now let's move to the topic of what sort of decoding strategy 
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should we employ when we want to decode a code. So 
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now, as I said, a decoder objective is it takes as input the demodulated signal r
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and it has to produce an estimate of the information sequence you had, right? So the decoder

produces an estimate 
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of the information sequence based on what it has received of demodulated output which is r.

Now 
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we can see this estimation of the information sequence problem is equivalent to estimating

the code sequence 
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because there is one to one mapping from a particular codeword to the information sequence

So we can say equivalently the problem that 
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decoder has to estimate is it has to estimate the code sequence, given a received sequence r

because there is one to one mapping from the message, message bits to the code bits; so what

is a decoding 
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strategy or what is a decoding rule? A decoding rule is nothing but given a received sequence

r we are trying to estimate what our code sequence, transmitted code sequence was. So we are

trying to estimate v hat or u hat from received sequence r. So we have to decide how, what

rule or what logic should we use when we get received sequence r, how do we assign that

received sequence r to any particular codeword. Now 
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one of the policies which we can use is basically 
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to minimize probability of error Now when does an error occur; when my decoded sequence

is not same as my transmitted signal; so my probability 
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of error is given by probability then, when my estimated sequence which I denote by v hat is

not  same as  v.  So  this  can  be  written  as  probability  of  error  given r  received  sequence

multiplied  by  probability  of  the  received  sequence  r  and sum over  all  possible  received

sequence. And error is nothing but, when v is not same as v hat, so I can write this equation in

this particular form. So if I want to minimize probability of error, I will have to minimize

this. So my decoding rule should be such that this is minimized. So there are two terms in

this. One is P of r and another is this term. Now whatever v hat I choose, that does not change

P of r. So the choice of decoding rule does not change my P of r. So in other words if I have

to minimize probability of error I should choose my v hat in such a way such that this is

minimized. For each received sequence r, this term should be minimized, Ok? Now 
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minimizing this term, minimizing this term is same as maximizing this term, 
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correct? Minimizing the probability v hat is not same as v given r is equivalent to maximizing

the probability that v hat is equal to v given r ok so 
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we have to maximize this. Now using Bayes rule we can write probability of v given r as

probability of r given v multiplied by probability of v divided by probability of r. And this has

to be maximized for every basically v, so we should choose our v such that this thing is

maximized. Now again choice of v does not change this. 
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So we can write our probability to maximize, 
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so to maximize this then becomes maximizing this quantity. 
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So we can say maximizing this is nothing but maximizing this quantity because this quantity

does not depend 
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on choice of v, Ok So if you want to minimize probability of error you want to maximize this.

We want to maximize this quantity. 
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And MAP decoder,  Maximum a  posteriori  probability  decoder  is  the  one  which  will  do

exactly that. It will choose a v hat such that this is, this probability is maximized. Now what 
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happens if all codewords are equally likely to happen? If all codewords are equally likely to

happen, then look at 
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this term Probability of v will be same. So in that case maximizing probability of v given r is

same as maximizing probability of r given v. So that's what we are saying. 
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If  all  codewords  are  equally  likely  then  maximizing probability  of  v  given r  is  same as

maximizing this likelihood ratio, likelihood function p of r given v; so 
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maximum likelihood decoder is the one which will choose v hat such that this quantity is

maximized. Now 
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if we consider that our channel is discrete memoryless channel, in other words we can write

the probability for discrete memoryless channel we can write probability of v c c plus r given

transmitted sequence v we can write it as product of each individual probabilities.  If that

happens, then we can further simplify our maximizing criteria. So we want to maximize this,

is same as maximizing this. Now since log of x is a monotonously increasing function of x,

we can say maximizing this probability is same, 
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is equivalent  to maximizing log of probability of r given v Now if  we do that,  then this

product becomes summation, Ok? So then we can basically write this as, basically then log of

probability of r given v will become basically summation and this will be basically, of course

this will be some log term here, log term here and this is basically 
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much easier to compute, Ok 

So let's take an example 
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We 
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are interested in finding what would be the maximum likelihood decoding rule for a binary

symmetric channel. Now recall what is a binary symmetric channel? There are two inputs;
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this is 0 and 1; two outputs 0 and 1 with probability 1 minus p. 
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 I received my bits correctly. And there is a crossover probability of p, Ok. So the question I

am asking is, if I have a codeword of length n 
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which is transmitted over a binary symmetric channel whose crossover probability is p, what

should be my maximum likelihood decoding rule? 
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So how do I solve it? As we just saw in the previous slide, maximizing probability of r, for

maximum  likelihood  decoder  we  have  to  maximize  probability  of  r  given  v  which  is

equivalent to maximizing log of probability of r given v. So let's try to compute what's log of

r given v, Ok? Now before I calculate 
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probability of r given v, let me introduce another term which is called Hamming distance

Now what is Hamming distance between two codewords? Hamming distance between two

codewords or two n tuples, let's call it Hamming distance between r and v, both are n bit

vector basically, so Hamming distance between r and v is defined as number of positions in

which r and v are differing. So for example, if let's say r is 1 1 1 0 1 1 and 
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v is 0 1 1 1 0 1 then 



(Refer Slide Time 24:59)

what is the Hamming distance? It's differing in the first location, 1, it is not differing here, not

differing here, it is differing here, that's two, that's differing in this location. That's three. It's

not differing in this location. So r and v differs in three locations, one is this location, other is

this location. Third is this location. So the Hamming distance between r and v is 
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3 in this  case Ok; now when we are sending a n-bit  codeword over a binary symmetric

channel, what happens? 
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Some of the bits  get  flipped with probability,  crossover probability  p.  Let's  denote those

number of flip bits by d. 
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So Hamming distance between two r and v will specify the locations where r and v are not

same. When r and v are not same, that means those are locations where error has occurred. So

number of positions that got flipped as a result of sending this codeword of binary symmetric

channel, that is denoted by this d of r and v. And the remaining number of bits which did not

get changed, that is basically n minus d r v. So these many bits 
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did not get changed and these many bits got flipped. 
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So what is the probability that d bits got flipped? That is given by p raised to power 

(Refer Slide Time 26:52)

d r v and what's the probability that n minus d bits were received correctly? That is given by 1

minus p raised to power this quantity. So we can 
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write probability of r given v as p raised to power d into 1 minus p raised to power n minus d.

If we take log on both sides, then this will basically become n minus d log of 1 minus p plus d

times log of p. Now we take terms containing d r v out, so what we will get is d r v log p by 1

minus p plus n times log of 1 minus p. So to maximize this probability we have to choose our

v hat such that this is maximized. Now look closely at both of these terms. Let us first look at

this term. Does 
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this term depend on selection of v? No. It depends on n which is codeword length. It depends

on crossover probability p. So whatever v we choose it does not change this probability. So in

other words, to maximize this then, we will have to maximize this first term. Now look at this

term closely. Typically the crossover probability will be smaller than 
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half If that happens, what happens 
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to this ratio, p by l minus p? This will be some ratio between 0 and 1. And what happens to

log of a number which is between 0 and 1? That is a negative quantity. So what we get then

is; to maximize this, we have to maximize minus of d r v, correct? So a maximum likelihood

decoder will choose a v such that minus of d r v is maximized. In other words, we should

choose a codeword v in such a way such that d r v is minimized. When d r v is minimized,

then only minus of d r v will be maximized. So that's what 
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we are seeing here. Log of p 1 minus p is less than zero so this will be a negative quantity.

When you want to maximize a negative quantity, this term should be as small as possible.

And this term does not depend on selection of v. 
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So  this  gives  us  a  decoding,  maximum  likelihood  decoding  rule  for  binary  symmetric

channel. And what is that? We should choose a v such that d r v is minimized. In other words

we should choose a codeword v such that Hamming distance between the codeword v and the

received sequences is minimized. And that makes sense. And that's our maximum likelihood

decoding rule. 
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So finally I am going to conclude this lecture with definition of few 
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error correcting strategies The first one which I am going to describe 
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is what is known as F E C, forward error correction So in systems where there is no feedback

from the receiver to the transmitter, 
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we are calling those systems as 
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one way systems,  where transmission happens only  in  one direction,  from transmitter  to

receiver In those systems the error correcting codes 
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that are used are known as F E C. So when you hear this term F E C code, it basically means

basically when we are sending, 
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so this  is  error  correcting code used for,  when we are using transmission one way, from

transmitter  to  receiver  Now in  some cases,  we have  a  mechanism of  feedback from the

receiver to back to the transmitter. 



(Refer Slide Time 31:57)

So in those cases where there exists a feedback from receiver to the transmitter we are calling

these systems as two way systems. So for these systems basically 
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the error correcting strategy which is used is what is known as automated repeat request. Now

how does this work? So you initially send some coded 
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packets where you just use parity bits for error detection So you send your information bits

and some few parity  bits  for error  detection.  At  the receiver,  using those parity  bits,  the

receiver will try to judge whether there is any error in the received packet. If it finds that

there are errors, it will send a negative acknowledgement and again you will retransmit the

same packet or some additional parity bits. So that's basically same packet, basically. So that

is your automatic repeat request scheme. Now in this automatic repeat request scheme, the

idea is you are sending an uncoded packet with some bits for error detection. So you are not

really sending any bits for error correction. So only, so this is typically useful if the links are

very good. You just are sending some uncoded packets with some bits for error detection and

occasionally when the packets are not received correctly then you ask for re-transmission. 
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A strategy that combines both forward error correction and a r q is known as hybrid a r q 
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In this, you send coded packets from transmitter to receiver. Now if these coded packets are

not  received  correctly  by  the  receiver,  the  receiver  will  basically  send  a  negative

acknowledgment and then you will send, resend the same packet or you will try to send some

additional parity bits and using those additional parity bits you will try to now decode the

original packet. So hybrid a r q is a combination of forward error correcting scheme and

automatic repeat request scheme. Typically 
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it's in a communication 
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system, you will see a combination of both forward error correcting schemes and hybrid a r q

schemes used. 
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So with this, I am going to conclude this lecture. Thank you


