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Lecture #16A: Turbo Decoding

Today we are going to discuss about
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decoding of turbo codes.



(Refer Slide Time 00:19)
dDBEi®ds ekesgsaaaaam
fa’7Teowus o S EaENE0ORE00 W swwom o

@ Review of BCJR algorithm in log domain.

So to do that we will first review our B C J R algorithm in the log domain. We have talked

about B C G R algorithm in the probability domain. We will very quickly
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review the metric that are updated in B C G R algorithm and how they are implemented in the

log domain. And then we will talk about turbo decoding.
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Concatenated codes

Outline of the lecture

@ Review of BCIR algorithm in log demain.
@ Turbo decoding for rate R = 1/3 code.

We will take an example of a rate one third code.
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So this is a block diagram of turbo decoder. As you can see, the main blocks are, recall a

turbo code consists of parallel concatenation
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of two recursive convolutional encoder. So here we have
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2 decoders, it is an iterative decoding process. We have 2 decoders corresponding to
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the 2 encoders. So this is one decoder, this is second decoder.

(Refer Slide Time 01:24)
d ~ o0

{88 8 Q ‘ﬁ

BEEONECC W sesnoms 12

interisaved version

| S e B

Interisaved version

r ok L
eln

—  sofinput I—-T Intarieavar = SoRinput
L Soft output aln = Sofi cuiput

— | decoder — decodar
¥ - —
LN wom anel wat -I Interieaver
” o information
2n T

Decoded data = -[ e e "'-

Now note I have written soft inputs soft output decoder. Now what do I mean by soft inputs
soft output decoder? So the input that this decoder receives are the real
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channel received values. These are not quantized to Os or 1s, as opposed to getting Os or 1s in

case of a hard quantized decoder here we are getting
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the received, noisy received sequence from the, directly from the channel. And that's what we
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are calling as soft input bits. Now the output is
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also soft. What do we mean by soft output? Now the decoder will output not only the

decision about whether the bit it thinks is 1 or 0 but it will also give



(Refer Slide Time 02:13)

us some information about with what probability it thinks the bit is 0 or 1. So not only we are

getting information about the decision of whether the bit is 0 or 1 but we are also getting

information about how likely the bit is going to be 0 or 1. That's why
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the input here is also soft and the output is also soft as opposed to hard decoder where the

output would have been just Os and 1s. So if you look at the decoder structure, now recall our

encoder diagram for the turbo code. What we had was we had one encoder, right? And this

was your information sequence. This information sequence was permuted using an

interleaver. I am denoting the interleaver by pi. And this interleaved signal was sent to

another encoder and the
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3 outputs were, first was the this information bits, second was the parity bit coming out from

the first encoder. And the third
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is the parity bit coming out of the second encoder. So these were the 3 outputs of a turbo
decoder. Now after these bits pass through the channel, what you are going to receive is the
noisy version of the information sequence, noisy bit of this parity bit and the noisy version of
the second parity bit. Now as I said we are using 2 decoders. One decoder to decode this
convolutional encoder, the second decoder to decode this convolutional encoder. So this was

my decoder 1 if I want to call it and this was my
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decoder 2.
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So what are the inputs of decoder 1? Now decoder 1, I should be sending in the received
information bits and the received parity bits. So that's what I am sending here. You see here I

have written x n is actually my
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received information bit and y 1 n is
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my received parity bit corresponding to the encoder 1. So these are the 2 input to the decoder
1. Now what are the inputs to the decoder 2? Decoder 2 is the interleaved version of
information that has been coming to encoder 1. Now here, I am receiving information bit
directly so the information, received information bit that I will feed to the decoder 2, because
this information bit is getting interleaved before being to sent to encoder 1.So what I am
going to do is so whatever, so this is my received information sequence. So what I do is to the

second decoder before I feed my information sequence, I am going to interleave this
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so that the order of information bits that is coming here and what is being fed
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to decoder 2 is same. So we do not send interleaved information sequence in turbo code.

From this received sequence by interleaving I can get back the information sequence that is

being fed to this decoder. So the information sequence input to this decoder is nothing the

interleaved version of the received information sequence. Now what is the second input to the

decoder, this received parity bit and that I am denoting by y 2 n, fine? So these are the 2

inputs which I am receiving
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from the channel, which I am feeding to decoder. So the input to decoder 1 are these 2 inputs,
and input to the decoder 2 is interleaved version of information sequence and this particular
parity bit. So these are the two inputs from the decoder to the channel. What is this input to

the decoder? There is a third input to this decoder which is this one and
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this one. And what is this input? This is a priori knowledge about the information sequence.
What is the a priori knowledge of the information sequence that is being fed here as third
input? So this third input that you see to decoder 1 is the a priori knowledge about the
information sequence. Now how do get the a priori knowledge? Now initially when we start
decoding we do not have any a priori knowledge about the information bit. So we could

assume that
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the information bit is equally likely to be zero or 1. So the likelihood of the information being

0 or 1, that's 1. It's equally likely whether the bit is 0 or 1. So that would be our
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initial a priori information. Now once we feed these 3 inputs to the decoder 1, now let's pay
attention to outputs of decoder 1. So decoder 1 is giving us two information. One what we
call extrinsic information, now this is information which decoder computes on the Trellis
structure of the convolutional code and this extrinsic information is passed to the decoder 1,
and this input is fed as a priori knowledge to the second decoder. So you can think of it like

this. There are 2 decoders
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who are working independently but one ecoder, once it decodes, once it decodes information
sequence it passes some information to the other decoder saying hey I think information bit is
likely to be zero with this probability and information bit is 1 with this probability. So the
other decoder will take that as an input and then recomputes its probability and then it will
again compute some new probabilities of bit being 0 and 1 and it will pass that information
back to the first decoder saying no I think it is likely to be 0 with this probability and likely to
be 1 with this probability. And this information exchange you know happens in a regular
fashion in this until they converge to particular decision. We may stop iteration after fixed

number of iterations or we could use some sort of a stopping criteria to do
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that. So the third input is the a priori input. The other two inputs are the inputs received from
the channel. Now what this decoder 1 does, it tries to find some estimate about the
information sequence, pass it on to the second decoder. Now this input is fed as a priori input.
Now what is the use of this interleaver? Note that the order of information bit here and the
order of information bit here, now the information bit that has been fed to the second encoder
which is this is interleaved version of the information bit that goes to encoder 1, so the
estimates that encoder gives about information bits that is being interleaved and sent to
decoder 1. This is to maintain the same order of information sequence as being received by
decoder 2. So, because information sequence here is interleaved version of information
sequence here, so we are going to use this interleaved version. Now similarly this decoder 2,
what does this decoder 2 does? It takes these 2 channel values and it takes a priori values
information which it has received from decoder 1. And then it will try to decode this code and
it will form some estimate, some expensing information and that information is fed back to
first decoder and note there is a deinterleaver in between because the order of information
sequence is deinterleaved version of information that is being fed to encoder 2. So this
deinterleaver is done so that the order of information estimates that we are feeding to encoder
1 is in same order as these other inputs are. So this is an iterator process which goes on and
after some fixed number of iterations you can do some stopping criteria, you can use some
stopping criteria. After that finally you take some decision. So I can take decision, let's say

from the second decoder so this is my a posteriori probability.
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So I can take decision, let's say from the second decoder so this is my a posteriori probability.

This information, remember the information sequence ordering at encoder 2 is interleaved



version of the information sequence of encoder 1. So if you want to know the order of
information sequence here, we need to de-interleave this data and here we will take a hard

decision and take the decision whether the bits are 0 or 1. So you can see it is an iterative
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decoding algorithm where instead of decoding this whole

(Refer Slide Time 12:58)
doB4iBglseleessieaaaanEd
70 Toowua cf-+eMEREENRNORNECC W smwm 2

L 9 be2n
ittt

[ ; o l!‘lﬂ'l“‘d mwﬁc £

Sl ouipui Solt gutpiit

B e —

o sl v

— o —Smeiiee L
) Dacoded data Darierieaver

code at one go, what we are trying to do is we are trying to decode first encoder 1 and then

encoder 1 is passing some information to encoder 2. Encoder 2 receives some information

from the channel



(Refer Slide Time 13:13)

and it receives some information from encoder 1. Using this it tries to find some opinion
about information bits which it passes it on to decoder 1 and decoder 1 uses that information.

So one iteration is when
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this decoder 1 has finished decoding and decoding 2 has also finished decoding. So that's my

one full iteration. Now what is the algorithm which is used inside of this? I said soft input and
soft output decoder. I said input is soft, output is soft but what sort of algorithm we can use?

Now we can use any algorithm which can take
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soft inputs and which can give soft otputs. And one of the most commonly used algorithm is
our B C J R algorithm. Now in lecture 5 we have talked about decoding of B C J R algorithm

for convolutional code so this is precisely
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what these two decoders that you see here they are going to use.
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They are going to use B C J R algorithm
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and we are going to slightly modify this algorithm to get this extrinsic information from the

decoder and that we will show in subsequent slide. So this is
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the basic block diagram of your turbo decodef. You have to remember this and again I repeat
each of these decoders are independently working uh in the sense there is channel input
which is being fed back and there is some a priori information which is coming from other
decoder which is being fed to these decoders and these decoder take these three inputs and
they compute these 2 values what is this a posteriori probability, another is extrinsic
information. Extrinsic information is passed on to the other decoder as a priori value and the

a posteriori probability is used when we want to take the final decision about the bits. So
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@ Define max*(-) function:
max*(x.y) = In(e* + &) = max(x,y) + In(1 + e~ *¥)

max®(x,y. z) = In(e” + & + &) = max*[max*(x. y). 2],

let us just review B C J R algorithm
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very quickly. Now we have already derived the expressions for the channel metric, the metric
that we need to compute in B C J R algorithm. So we are just going to directly write the

expression for B C J R algorithm. Now I just want to
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BCJR Algorithm

@ Define max*(-) function:
max*(x.y) = In(e* + &) = max(x,y) +In(1 + e~ ¥

max®(x,y. z) = In(e” + & + &) = max*[max*(x, y), 2],

introduce an operator which I call max star operator. Now what is a max star operator? max
star operator of x and y, it is basically defined as log of e to power x plus e to power y. Now
this log of e to power x plus e to power y, this can be written as log of let's say e to power x

into 1 plus e to y minus x. You can write it this way,
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@ Define max*(-) function: I [C (,’ Lo )

max*(x,y) = In(e* + &) = max(x,y) +In(1 + e >

max"(x,y. z) = In(e” + & + &) = max"[max"(x. y). z].

correct? Now this can be written as log of e to power x plus log of 1 minus, 1 plus e to power

y minus X.
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max*(x.y) = In(e* + &) = max(x,y) +In(1 + e )

max®(x,y. z) = In(e” + & + &°) = max"[max*(x, y). 2],

Or I can also write the same thing as log of e to power y, 1 plus e to power x minus y log of e

to power y plus log of 1 plus e to power x minus y.
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@ Define max*(-) function: n ((e."((l‘r e_i_s)) : Ik ";y“h fl(ﬂ:-’)

max®(x.y) = In(e* + &) = max(x,y) +In(1 +e ¥ )

max”(x, y. z) = In(e” + & + &) = max"[max"(x. y). z].

And what is this log of e to power X, that's just x. So this can be written as, so this can be just

written as x plus this and y plus this.
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@ Define max*(-) function: h"EC (,’ T'_S:J) )= = X +]“(H‘§- )

W (e? (T &* y A0 (14"
max*(x,y) = In(e* + &) = max(x,y) +In(1 + e )

max®(x,y. z) = In(e” + & + &°) = max"[max*(x, y). 2],

Or I can write this max star x y as maximum of x and y plus natural log of 1 plus e raised to
power minus absolute value of x minus y, right? So, so whenever I have to take log of terms

of this form,
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i r ion: W(e () + CH-‘) ALY Ty
@ Define max*(-) function: & }:‘.’ (E_' 55 % = g CJ[H%’JJ
max”(x.y) E]T"(E" - e’)l: max(x, y) +In(1 + e~ ")

max®(x,y, z) = In(e” + " + €*) = max"[max(x, y), 2],

I can actually implement it simply like maximum of these two operator x
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and y plus some
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|
max*(x, y) E]Tn(e” + e")l= max(x,y) +In(1 + e lx=¥1)

max"(x,y. z) = In(e” + & + &) = max"[max"(x. y). z].

correction term which can be implemented with a table lookup kind of thing. And this

operator can be extended
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for more than 2 operations, so
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mCe?(ir €*7)) =y 4l (14657)
max*(x, y) —.‘ﬁn(e" + e’)\— max(x.y) +In(1 + e )

max'{x.y. z) = In(e” + & + e*) = max"[max"(x, y). z].

if you want to find max star of x, y and z then I can write it as natural log of e x plus e y plus
z. And I can do max star of x, y and z and then I take the max star of, max star of x, y and z.

So I can iteratively apply this max star operator to compute quantities of this form,
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mle?Oir 7)) =y 4 (13¢5
max*(x, y) -—Fn(e" + e’)\— max(x,y) +In(1 + e =)

max"(x, y. z) =|in(e” + & + e’)l = max " [max"(x. y). z],

Ok which is log of summation terms; now where do we encounter log of summation terms. I

will come to that.
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@ Define max*(-) function:

max*(x.y) = In(e* + &) = max(x,y) +In(1 + e~ *)
max*(x,y, z) = In(e” + & + &) = max*[max"(x, y), 2],
@ Branch metrics:

UrL,(U})
2

vi(s',5) =In (s, s) = - ?"r;-v;

Now this branch metric, this we have derived in one of the lectures, is given by this
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@ Define max* () function:
max"(x,y) = |I‘|(e" + e’) = max{x.y) - |I‘l(1 e iy )
max*(x,y,z) = In(e* + & + &) = max"[max"(x, y), 2],

@ Branch metrics:

expression. This is a priori information, this is information bit, this depends on channel s n 1,
this is received sequence, transmitted codeword, so this you already are familiar with,

because we have derived this expression before. Now recall
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BCJR Algorithm

@ Define max*(-) function:
max*(x,y) = In(e” + &) = max(x.y) + In(1 + e~ 1*¥))
max®(x,y, z) = In(e* + & + &) = max'[max"(x, y), 2],
@ Branch metrics:

L {5

¥ (s'.5) =In y(s',s) = k() + =rwy
2 2

@ Forward metrics:

aj1(s) = In api(s) = maxic,, [ (5. 5) + af (5)]

there were three quantities we need to

(Refer Slide Time 19:20)

L]

evaluate when we need to apply B C J R algorithm. And what were those quantities? One was

these alphas which was the forward recursion. Second was the betas which was the backward

recursion. And then we had the channel metric, branch metric, right, gammas. Now
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@ Define max*(-) function:
max®(x,y) = In(e” + &) = max(x,y) + In(1 + e )
max*(x,y, z) = In(e* + &' + ) = max"[max"(x, y), z]

@ Branch metrics:

Y7 (s'.5) =In y(s',s) =
@ Forward metrics:

aj1(s) = In ag(s) = maxg. ., [v/ (5. s) + aj (5))

if you recall what was alphas, alpha, so if you just draw simple Trellis diagr-am, you just draw
simple Trellis diagram, two state Trellis and this is alpha at time let's say 1 minus 1, this is
alpha at time 1. Let's call it a state zero. Let's call it state 1. Then what is, let's say I want to
compute alpha at time 1 for state 0. What is it equal to? Recall this was equal to (()) so there
are 2 states. There are 2 branches which are terminating here. One is this one, other is this
one. So the alpha 0 will be alpha I minus 1 zero times branch metric corresponding to this
which will be gamma 0 0 plus alpha 1 minus 1, 1 times this branch metric which is gamma 1

0. So if you
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@ Define max* () function:

max*(x.y) = In(e” + &) = max(x,y) +In(1 + e~ *)
max”(x,y.z) = In(e* + & + ) = max"[max"(x, y), 2]

@ Branch metrics:

v (s'.5) =In (s, s) urka(w)

L.
: + —rv
R~
@ Forward metrics:

e =

aj1(s) = In agpa(s) = max)ic, [ (5. s) + af ()]
oty (o)
=g, @7
= ol L"\'YA[“P)

recall we had terms of the form summation alpha |1 minus 1 times some gamma. So those

were our terms. Now if you take log of that, so these were our alphas. We are defining a new



operator alpha star, that's a log of these alphas. So what's going to happen here? You have log
of summation terms, right. So if you can think of it as, so here you terms of the form like this,

alb1plusa2b 2. And we are taking log of this. We can
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@ Define max*(-) function:

max*(x,y) = In(e* + &) = max(x,y) +In(L + e 1*)
max”(x,y, z) = In(e* + ¥ + &) = max"[max"(x, y), z].

@ Branch metrics:

v(s'.s) =In y(s.s) = uply(uy)

L.
; e il g
@ Forward metrics:

o =11
ajy1(s) = In app(s) = max).c, [/ (5. s) + a; (5)]
S ol (o)
[h (Q‘L,*'GLBL) :.'0(‘.-‘ (u}'{‘_[-""")

F oty (V%)

also write this in terms of let's say e raised to power a 1 dash, e raised to power b 1 dash plus

e raised to power a 2 dash, e raised to power b 2 dash,
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@ Define max*(-) function:

max*(x.y) = In(e” + &) = max(x,y) + In(1 + e~ ")
max*(x,y, z) = In(e* + & + &) = max"[max"(x. y), 2],

@ Branch metrics:

i (s'.s) = In yls',s) =

Lc
3 F3 vy (i: i :
@ Forward metrics:

. oy S Sk
ajy(s) = In ap(s) = maxg ., [/(s. s) + af (s)]
oty (o)
I (‘1]}".”“*.{" ‘;2 30(,._,(0}‘{}"’“)

PO 4 1
In [e; e 4+ 0% * oy, HRAD)

right? So if we take log of this, then this will become, because this is like e of e x plus 1, so
when take log of these summation terms we get this max star operator. So we get these max
star operator and this product term when we take log they will become summation. So this

forward metric will become, when we implement it
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BCJR Algorithm

@ Define max*(:) function:

max™(x,y) = In(e” + &) = max(x,y) +In(1 + e”"7¥)
max*(x,y,z) = In(e* + & + &) = max"[max"(x, y). 2]
@ Branch metrics:

urLy(u) + E

1 (s'.5) =In y(s',s) = 3 > v E
@ Forward metrics:

o Xx
lln,"_l{s] =In ar1(s) = maxic,, [v/ (5. s) + aj (s)]
'_______:h__—__-__dkfo)

I (i:ﬁ.*“‘*"“g? = gy, @)
(€ €Y o (V%)

in, we take log of this, this will become a max star operator and these two terms inside which
is this gamma term and this alpha terms this will be plus. So the forward metric here in log
domain will be given by this metric. max star operator we are summing over all the branches
that are terminating at this state and this would be gamma plus alpha star. So this will be the

forward metric in the log domain.

(Refer Slide Time 23:10)

Now recall how did we initialize the alphas,
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BCJR Algorithm

@ Define max*(:) function:

max*(x,y) = In(e" + &) = max(x,y) + In(1 + e~lx=rl
max"(x,y, z) = In{e” + & + &) = max"[max"(x, y), 2|,
@ Branch metrics:

urLa(u)

' ! L
¥ (s'.5) =In y(s'.s)= - ?cr;-\n ﬁ
@ Forward metrics:

‘ln,'_l{s] =In ap(s) = max;,e,,r[':,'[s'. s) + aj(s')
= = =410,

o (abranba) =, " yoe)

“’\ (_e.q.f.h + Q- A Jf'::q L\)'Y‘[hqj

when we were working in probability domain. We said that the encoder starts at all zero state

SO

(Refer Slide Time 23:26)

at, at time zero it will be at all zero state. The probability of it being in all zero state at time

zero is 1, for all other it is 0. So when we take log of that then, the
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@ Define max*(:) function:

max*(x.y) = In(e” + &) = max(x,y) +In(1 + e~ )
max*(x,y, z) = In(e* + ¥ + &) = max"[max"(x, y). 2]
@ Branch metrics:

UrL,(U])
2

v (s',5) =In v(s',5) = s %r,-w
@ Forward metrics:

) 1(s) = In ayyi(s) = max)ic, [v/(5'. s) + a; (5)]
@ Forward metrics initialization:

ap(s) =In ag(s) :{ U_-L 2;3_

initialization will become for state,
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@ Define max* () function:
max"(x,y) = In(e" + &) = max(x,y) +In(1 + e~ *)
max*(x,y, z) = In(e* + & + &) = max"[max*(x. y), 2],
@ Branch metrics:

U;L,(UJ)
2

v (s',5) =In v(s',s5) = - %r;-w
@ Forward metrics:
aj1(s) = In api(s) = maxg. o, [v/ (5. s) + aj (5))

@ Forward metrics initialization:

ag(s) = In ag(s) = { = . _.

initial state zero, then this will become, log of 1 will become 0. And for all, probability of its

being all other states, this will then become
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@ Define max*(-) function:

max”(x.y) = In(e” + &) = max(x,y) + In(1 + e~ "))
max*(x,y, z) = In(e* + & + &) = max"[max"(x, y), 2],
@ Branch metrics:

UrL,(U})
2

L.
v (s',5) =In y(s',s) = + 5
@ Forward metrics:
a7a(s) =In arsa(s) = maxgic,, [47(5'. $) + a7 ()]

@ Forward metrics initialization: u/
ag(s) = In ag(s) = {@ _.

minus infinity. Ok so if we are writing our recursion in this fashion using

(Refer Slide Time 24:09)
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@ Define max*(-) function:
max®(x,y) = In(e” + ) = max(x,y) +In(1 + e~ "))
max*(x,y, z) = In(e* + ¥ + ) = max"[max"(x. y), 2]

@ Branch metrics:

uiLy( )

v (s'.5) =In (s, s) = =t ?cr;-w
@ Forward metrics:
) 1(s) = In ayia(s) = max)ic, [v/ (s, s) + u;{s']]z

@ Forward metrics initialization:

ag(5) = In ag(s) = {% _.

max star operation then the initialization should be done like this. When it is in state zero the

initialization zero star zero will be zero and it will be minus infinity for all other cases.
Now if you are wondering why I am switching from probability domain to log domain you
can see that we have shown this max star operator can be very easily implemented. Because

this is just maximum of
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BCJR Algorithm

@ Define max*(:) function:

max”(x,y) = In(e” + &) =Imax{x.y) +In(1 + e~ 1)

max*(x,y, z) = In(e* + & + &*) = max"[max"(x, y), z].
@ Branch metrics:
- uly(u (=
1 (s'.5) =In y(s',s) = "’T(J) - ?cr;-w

@ Forward metrics:

@;i;n ari1(s) = maxgic,, [+ (5. 5) + af ()] I

@ Forward metrics initialization: 0‘_/
a3(s) =In ag(s) = {1:—32-_{ ‘

X, y plus some correction term. So this can be easily implemented, that's why we are re-

writing our

(Refer Slide Time 24:52)

forward recursion, backward recursion, gamma in terms of log domain so that our expression,
where we had the summation. Now that's been replaced by max star operator. Wherever we

had multiplication that's been now replaced by addition. So following the same logic we can
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@ Backward metrics:

"Bi(s") = In Bi(s") = max;, [ (s’, s) + 87 (8)]:

SETg

write the backward metric in log domain in this

(Refer Slide Time 25:22)
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@ Backward metrics:

[T,‘(s’) =In ()(s") = max;, .7.‘.["-'1.(5"5) + B71(5)],

particular fashion so this max star operator and this is sum of this branch metric in the log
domain and the betas in the log domain. And again if, if I, if you can recall how were we

computing betas so let's say you had some this thing
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@ Backward metrics: %

[T,‘(s’) =In (i(s") = max, nl‘l[",{(s;s_) + B71(8)]:

so if you are interested in computing this thing, computing beta for beta E-lt 1 0, you will be
beta and this is, let's say this is time 1, time | plus 1, beta this is time 1, this is beta time 1 plus
1, beta 0 will be, so these are the two branches that are terminating here. So beta |1 plus 1 zero
times branch metric of this which is gamma 1 0 0 plus beta 1 plus 1, this is stat 0, this is state
1, state 1, state 1, beta |1 1 times gamma 1 0 1. This we have already studied when we did B C
J R algorithm.

(Refer Slide Time 26:39)
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A
0.
[T,‘(s’) =In Ai(s') = max;, ‘,r‘l[”_-f(s;S_) + M] E’l!'h): (;M‘(u)
AT,
+R.0)
Yﬁ.(o")

@ Backward metrics:

We are just rewriting the expression in terms of log so that our addition term here becomes

the max star operator and the product term here that you see here becomes addition term. And
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@ Backward metrics:

B;(s') = In Bi(s') = max, m‘l[",-,‘{s',s) + B1.1(5)]s

5
@ Backward metrics initialization:

Br(s)=In JK(S}:{ o_x z; g

similar to alpha bit initialization if we are terminating our convolutional encoder then beta k

at s equal to 0 will be 0 and for all other state, it will be minus
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BCJR Algorithm

@ Backward metrics:
Br(s') = In Bi(s') = maxie,,, [ (s’ s) + B7(s)],
@ Backward metrics initialization:

o =0

Br(s) =In Bk(s) = {@ 5 #0.

infinity. And
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BCJR Algorithm

@ Backward metrics:
Bi(s") =In Bis') = maxc,, [ (s’ s) + 57 (s)].

@ Backward metrics initialization:

%Y — 0, s=0
Bi(s) = In Bu(s) = { e e
@ APP L-value:
il = max('s,l,){:.[’, (Bl (s) + 47 (s, s) + aj(s"))

=maxt, ox[Bia(8) + 75, 5) + ai ()

of course if we are not terminating it, then its probability of being any state is basically same.
And if you recall our a p p log likelihood value this was again summation of product of three
terms, alpha at time 1, beta at time | plus | and gamma so that and there were 2 terms, one

term in the numerator corresponding to all those transitions

(Refer Slide Time 27:48)

belonging to information bit being plus 1 and in the denominator we had some terms related

to, transitions that belong to information bit being minus 1. So this
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@ Backward metrics:

Bi(s') =In Bi(s') = max., [v/(s'.5) + B].1(5)]

SET).)
@ Backward metrics initialization:
* 0, s=0
Ar(s) =In Bg(s) = { e 5A0
@ APP L-value:

L) = Tf_'ﬁ:"'_-ﬂ.‘fi-' (Bl (s) + 47 (s, 5) + af(s")]

“max, ex-[Bra(8) + 77 (5, 8) + af ()]

term that you see here is the

(Refer Slide Time 28:05)
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@ Backward metrics:

87 (s') = In Bi(s") = max, m‘l[",{(s',s) + B11(5)].

@ Backward metrics initialization:
0,

Br(s)=In ‘ig(s)—_{ e g

5
5

O

@ APP L-value:

Lw) = tmax{‘s,_s}(:z_. [Bra(s) + 47 (s, 5) + n,'(s')]J

max[.;_;]{-[r ["‘{I‘Al(s) t “-r‘(s"s] + ”!‘(sf)]'

term corresponding to the numerator term, again the summation term has been replaced by

this max star operator and this product term has been replaced by these
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@ Backward metrics:

Bi(s") =In Bi(s") = max;.,, [/ (5. 5) + 511 (5)]:

5
@ Backward metrics initialization:
0,

— 00,

=0
0

Bi(s) =In Bg(s) = { #0.

s
5
@ APP L-value:
=
) = (Mo e 70 () B (5 ) Bai(s)1

max[.y_;]{:[r [“{I‘ 1(s) + '-r‘(s"s] t ”r‘(sfl]'

addition terms, Ok. And similarly this corresponds to all those transitions where my
information bit is plus 1 and then denominator we had this, so we take log of them, so it will

become minus
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@ Backward metrics:
Bi(s') =In Bils") = maxic,, [ (s'.s) + 87 ()]
@ Backward metrics initialization:
Bi(s) =In B(s) = { O_L . ; o
@ APP L-value:

[
L) = [mox 56 B 59 Bai(s))

2 '!max[.s’.slt'i, [.if_l(s) + -,.,*(s’.s] b n;(S’}]._J

of this. And the denominator corresponds to all those transitions
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@ Backward metrics:
37 (s") = In Bi(s") = max, m‘l[",-{{s',s) + B1.1(5)].
@ Backward metrics initialization:

0.

—oa,

Br(s) =In Bg(s) = { g

5
5

b S|

@ APP L-value:

[V
L(w] A lmax{‘s'.s)d;]["’r.-I(S)B'};(S’. S)En;’(s’)]}
Jraxte o fefPin® + 27, 9) +aiF

which belong to information bit being minus 1 and again the addition term that we had in the
probability domain description of B C J R, that's now max star operator and the product terms

that we had in the B C J R algorithm
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@ Backward metrics:
Bi(s') =In Bi(s) = maxic,, [ (s'.s) + 87 (s)]
@ Backward metrics initialization:

Br(s)=In ‘fp((s]:{ O_YH g

5
5

b S ]

@ APP L-value:

—
Llw) = m[ﬁ 1(s) B (s, 9) “;(5’}]!

st o e B (55) i)

are now addition term. So this is
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0

rewriting the expressions for forward recursion, backward recursion and log likelihood ratio a

posteriori probability L value computation for the B C J R algorithm.
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Turbo decoding

=/ .,
e =

L) [ T

@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

So again we will go back to the decoder diagram that we have shown you before. I am

reproducing the decoder for rate one third turbo
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code. This is
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

my decoder 1 corresponding to encoder 1. This is my decoder 2. These 2 inputs that you see

are my inputs corresponding
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Turbo decoding

S
—
[ ]
] oncomr | me_ i i -
= == =}

=

[

@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

to the received

(Refer Slide Time 29:57)

information bit and the corresponding parity bit. This is my information, received information

which is interleaved before being sent to decoder 2 and this is the received,
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

this is the bit corresponding to the received parity, second parity bit. I also said there is a third
input which is a a priori value. Note this a priori value is coming from the other decoder and

since the order

(Refer Slide Time 30:29)
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Turbo decoding

@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

of information is de-interleaved version of the order information bit at second decoder so you

de-interleave it and send the information here
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Turbo decoding

@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

and the a priori value that you send
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

here is coming from this decoder. And I am interleaving this because the order of
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

information bit at decoder 2 is interleaved version of the order of information bit at decoder
1. This one more thing I am computing here and I talked about extrinsic value, right? So what

is my extrinsic value? This is what I am computing here. So let's pay some attention
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

to, this is the extrinsic value. So what is this extrinsic value? So note I am getting thisa p p L
value computed, that is this. From there I am subtracting the contribution of information bit.

This term is same as this bit. This is,
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

this L C term depends on received s n r. I will come to that. This term is this and this is

received value corresponding to

(Refer Slide Time 32:02)
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

the information bit. And this is the term corresponding to the a p p L value. So what I am

doing is I am
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

subtracting from the a p p L value the contribution of the received bit. I am also subtracting

from this contribution this a priori
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

information so what I get is my extrinsic information. So it's like, you can think of it like

some,



(Refer Slide Time 32:29)

some additional information about the information bits, that has been derived from the
structure of the convolutional encoder. And how I am computing this extrinsic information.
From the a p p L value I am subtracting the contribution of the received channel, I am

subtracting the
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

contribution of the a priori value, what is left is extrinsic information. And this information,
as I said is being passed, is interleaved because the order of the information bit in the second
decoder is interleaved version of the order of bits in decoder 1, so I interleave it and feed this

as a a priori information. So this is my a priori information. So
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Turbo decoding

[

@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

this is how I compute the extrinsic

(Refer Slide Time 33:23)

information for decoder 1. Now do I compute extrinsic information for decoder 2, the same

procedure? This is
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

This is my a p p L value correspond to information bit.
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

I subtract from there the contribution of information bit. This is my
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Atp =LAk
@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

L Cr L0 term. And then I am subtracting this information of a priori information. So what

is left is this information which is my extrinsic information. So for the second decoder in the
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

similar fashion I compute the extrinsic information. I subtract
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from the a p p value, the contribution of the information bit and the contribution of the a

priori knowledge. What is left with is my extrinsic information. Now I
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

need to de-interleave this information before feeding it back as a priori information. So this is

my a priori value for decoder
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

1 and I need to de-interleave because the order of information bit for decoder 1 is de-

interleaved version of the order of information for decoder 2. So this is how my iterative

(Refer Slide Time 34:58)

decoder algorithm is working. Again I will do a quick recap. So using the B C J R algorithm

so I have
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

some received values from the channel which is this and this, initially I do not have any a
priori knowledge about the information bits so I assume equally likely to be 1 or 0, this
decoder of 1 will apply B C J R algorithm and it will compute the a p p L values and it will
compute the extrinsic L. values. Now this extrinsic information is passed as a priori
information to decoder 2. In addition decoder 2 has this received parity bit which is this one
and the interleaved version of the information sequence as input. So it will again compute a p
p L value and it will subtract the contribution of the information bit and the a priori value and
then we will get back extrinsic information. So you can see this extrinsic information is

getting passed from

(Refer Slide Time 36:04)




one decoder to another, Ok. And ideally what we would like is this that extrinsic information
should grow in a manner that it pushed the decision in favor of either information bit being

plus 1 or minus 1. That's when we say the decoder is converging with iteration. So we have
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

@ |t employs two SISO decoders using the MAP algorithm.

already explained that there are 2 decoders and each of them are using MAP algorithm this B
C J R algorithm that we talked about.
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code

@ It employs two SISO decoders using the MAP algorithm.

@ At each time unit /, three output values are received from the
channel, one for the information bit i = v}m. denoted r,["’. and two

for the parity bits ufm and va. denoted r,“l and r,['zl.

There are 3 inputs received from the channel, one corresponds this r 1 0, corresponds to the
information bit r 1 1, corresponds to the parity bit corresponding to encoder 1 and r I 2 the

parity bit corresponding to encoder 2.
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@ The 3K-dimensional received vector is denoted by

(0) (1) (2) _(0) (1) (2) (0) (1) _(2)
r—(’u L B U T SRR T ML 1)'

@ Assume 0 is mapped to —1 and 1 to +1.
@ Then for an ANGN channel, we define the log-likelihood ratio

(L-value) L (u: \ r,m]) (before decoding) of a transmitted

information bit w; given the received value r,(

P(w =+1 | r,m])
P(m =-1| r,m])

P(rf”] = "'1) P(m = +1)

(1]
)35

L [r) = In

] P(r® | w=-1)P=-1)

So at each time instance, so this is my time index, time 0, time 1, time k- minus 1, so each
time instance I am getting this 3 bit information which is information bit, first parity bit and
the second parity bit. Remember this is a rate one third code. If you have a information block
of k you will get 3 k coded bits. 0 is mapped to in this case, minus 1, plus 1 is 1. Now let's
compute the log likelihood ratio. So probability of u L given r L is zero is given by what's the
probability that u L is plus 1 given this received sequence r L divided by probability of u L
being minus 1 given received sequence we can write as probability of r given u multiplied by
probability of u. And that's how we have written it. Now we can separate out into 2 terms. So

this is one term we have and this is another term we have. So log of a
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@ The 3K-dimensional received vector is denoted by

(0) (1) (2) _(0) (1) (2) (0) (1) (2
r_(rg fg'fg s 'R "”'rK___l"K 17K J
—_— =

@ Assume 0 is mapped to —1 and 1 to +1.
@ Then for an AWGN channel, we define the log-likelihood ratio

(L-value) L (ua \ r,m]) (before decoding) of a transmitted

. . : g ‘ 0
information bit w; given the received value r,( ) as

Plu=+1| r,{u]
L | r”) = In —( )

times b, log a plus log b,
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where E,/Ng is the channel SNR | u; and r,[m have both been normalized
by a factor of VE;. L. = 4(E;/Np) is the channel reliability factor and

SO we can write it as, this is one term and this is another term. Now we are talking about

additive white Gaussian noise channel so we can find out what is the likelihood ratio so we
plug that value in here. And after simplification what we get is a term of the form this. So

there are two terms, one is this
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(0) —,
n"(ﬁ |m=+1)  p(y=41)

L(w | rm) = + In
y P(r,[o“ | = 1) P(u=-1)
e (E/Mo) (1) 410 Plu=+1)
e~ E/M)(%41)" T P(u=-1)"
2 P (uy = +1)
(0) | )
(2 +1) }+m o=

where E;/Ng is the channel SNR , u; and r,w] have both been normalized
by a factor of VE;, L. = 4(E;/Np) is the channel reliability factor and

and other is this.
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b | —

Ler® + Ly (),

where E,/Ng is the channel SNR |, u; and r,w) have both been normalized
by a factor of E;, L. = 4(E;/Np) is the channel reliability factor and

Now what is this? This is 4 times e s by n naught times r1 0. r 1 0 is my infc;rmation, received
information sequence. So this you can, four e s by n naught I am writing as 1 sub c and calling
it a channel reliability factor. It depends on the signal to noise ratio of the channel. And this
you can see, log of probability of u L being plus 1 divided by u L being minus 1, this is a
priori knowledge of the information bit being plus 1 or minus 1. So there are 2 inputs, one
coming from that channel which is multiplied by this factor L. C and other is a priori

knowledge. And that's why you noticed here in the diagram where I had,
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

@ |t employs two SISO decoders using the MAP algorithm.
@ At each time unit /, three output values are received from the

channel, one for the information bit u;, = v,[m. denoted r;m‘ and two

for the parity bits v,m and v,m, denoted r,“’ and r,{"’].

= =

IThad I ctimesr10, 1 ctimes r1 1, this was this channel, 1 c times r1 0, 1 c times r 1 so these
values, received values were scaled by this channel reliability factor as you have just derived

here.
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where E;/Ng is the channel SNR | u; and r,[m have both been normalized
by a factor of VE;, L. = 4(E;/Np) is the channel reliability factor and
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@ In the case of a transmitted parity bit v}”, given the received value
()

r!', j =1,2, the L-value (before decoding) is given by

L 1 1) = L 4 L, (W) = L, j=1,2, (why )

Now in case of transmitted parity bit, we do not have any a priori knowledge so in those case
this will be just1 cr11 or 2 depending on whether we are considering parity bit 1 or parity bit

2.



(Refer Slide Time 40:27)
aDex®0sekepsaaaaa

fa  Tommud c b "wEEEEEOONECC B smmems

@ In the case of a transmitted parity bit v..m‘ given the received value
¥, j =1,2. the L-value (before decoding) is given by

L(v | i) = ter® + L, (W) = Lo, j=1,2, (why ?)
@ [,(u) also equals 0 for the first iteration of decoder 1, but that

thereafter the a priori L-values of the information bits are replaced
by extrinsic L-values from the other decoder.

As 1 said initially we don't have any a priori knowledge about whether the bit is plus 1 or
minus 1, so we would assume it’s equally likely to be plus 1 and minus 1. So the a priori log
likelihood value L value will be considered as zero for the first decoder. But thereafter these a

priori values will be replaced by the extrinsic values received from the other decoder, right?
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@ In the case of a transmitted parity bit vrm. given the received value

r,m.j = 1,2, the L-value (before decoding) is given by

L(v | 1) = ter® + 1, (W) = L, j=1,2, (why ?)

@ [,(u) also equals 0 for the first iteration of decoder 1, but that
thereafter the a priori L-values of the information bits are replaced
by extrinsic L-values from the other decoder.

@ The received soft channel L-values Lcr}m for u; and Lcr,m for v,{”

enter decoder 1, while the (properly interleaved) received soft
channel L-values 1'_cr,wJ for u; and the received soft channel L-values

L. r,m for v,m enter decoder 2.

And again the received values that we got from the channel LcrlOandrl 1 andr1 2,

remember to feed them in proper order
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when you are feeding to decoder 1 and decoder 2 and this we have
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4, j =1,2, the L-value (before decoding) is given by

L (V',UJ | rjm) = Lcr,(j] 2 L,(VPJ) = Leﬁma =12 (Wh)" ?)

@ L, (uw) also equals 0 for the first iteration of decoder 1, but that
thereafter the a priori L-values of the information bits are replaced
by extrinsic L-values from the other decoder.

@ The received soft channel L-values L.r* for v and Ler!" for vi")

enter decoder 1, while the (properly interleaved) receved soft

channel L-values L,r'.m] for u; and the received soft channel L-values

ch;(zj for v;m enter decoder 2.

explained also earlier. You can see when we feed
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

@ It employs two SISO decoders using the MAP algorithm.
@ At each time unit /, three output values are received from the
channel, one for the information bit i = v}m. denoted r;[m. and two

for the parity bits uf{” and va. denoted r,m and .i'fm.

_ ==

the extrinsic information from decoder 1 to decoder 2 we are interleaving it. Similarly the
information bit that we are feeding to decoder 2, that's the interleaved version of information
coming from decoder 1. Similarly from decoder 2, if we are feeding something back to

decoder 1, we are doing de-interleaver and when we are taking decision from
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@ Basic structure of an iterative turbo decoder for a rate 1/3 turbo
code.

@ It employs two SISO decoders using the MAP algorithm.
@ At each time unit /, three output values are received from the
channel, one for the information bit u = v}m. denoted r;"’. and two

for the parity bits vfm and va. denoted r,m and _,,f[2]l
—

_— ==

decoder 2 we are also again doing de-interleaving. So this interleaving, de-interleaving is

done so
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as the order of the information bit is preserved in the fashion they are entering encoder 1 and
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Turbo

@ The 3K-dimensional received vector is denoted by
0) (1) (2) (0) (1) (2 0) (1) (2
e= (AR, O 0 )

@ Assume 0 is mapped to —1 and 1 to +1.
@ Then for an AWGN channel, we define the log-likelihood ratio
(L-value) L (u; \ m’) (before decoding) of a transmitted

information bit w; given the received value r{ ) as

. A0
TR '"P( t” (ol)
—  p(a=-11d)
- Pl ol
G e

encoder 2.
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@ The output of decoder 1 contains two terms:

So as I said
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@ The output of decoder 1 contains two terms:

s L (y)=1In [P (u. = +1/ rL.l.E”)/P(m = —1| rl.LE”)].

o L9 () = L) () [L,rj" ; L'.”'(u,)].

there are 3 inputs to the decoder.
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Channel received value corresponds to information sequence and parity bit and a priori value

and there are 2 output, one is this
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Turbo decoding

@ The output of decoder 1 contains two terms:
o L () = In [P (w=+1/r1) /P (w=-11m, L‘,“)].
o LM () = L () = [L,rfu] + L&?J(u‘,)].

a p p L value that we have computed and the second is extrinsic value and how are we

computing extrinsic value, from the a p p L value, we are subtracting the contribution
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@ The output of decoder 1 contains two terms:
o D(y)=In|P (u, =+1/ rL.l.EU) /F' (m =—1]| rl.LEH)l.
o L9 () = LW () - + L ().
p— = —

of the received channel value and we are subtracting the contribution of
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@ The output of decoder 1 contains two terms:

e LY (u) —-ilif’ (u, =+1/ rL.I.EU) /F' (m = —1| n.LEU)l.

o 19 () = L (u) +]LE](u,) '
—— e -

a priori value which is nothing but extrinsic value of the other decoder,



(Refer Slide Time 43:01)
2 - g 10 ol ol |' |8 &) & & \-|=-‘
O /7TOm M MO oG il MEEDEDEEC 0 W swoms 2

@ The output of decoder 1 contains two terms:

o [Y(u)=In [P (u, =41/ n.LEU) /F' (u, = -1 n.LE”)].

@ LM (1)) is the a posteriori L-value (after decoding) of each
information bit produced by decoder 1 given the (partial) received

vector r; 2 rémrél]. rfm rlm_ e ‘rf(m 1rf<1) IJ and the a priori input

vector LE.” =z [Ls.ll(uu).LE.”{ui}. oo .Lf,”(u“ .1)] for decoder 1.

Ok. So this we have explained.
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@ The output of decoder 1 contains two terms:

o LV (y)=In [P (= :-1m.|.£”)/.°(u, 1|n.|.£“)].

o L8 () = LY () ~ [Ler® + L& (w)].

o L (y) is the a posteriori L-value (after decoding) of each
information bit produced by decoder 1 given the (partial) received

A0 (1

vector ry 4 Irémrél]. _r't‘_UJ 15 1} and the a priori input

vector LY £ [Lf.”(uo}.f.t.”(ud«-- L (ug 1)] for decoder 1.

o (I (u) is the extrinsic a posteriori L-value (after decoding)
associated with each information bit produced by decoder 1, which,
after interleaving, is passed to the input of decoder 2 as the a priori
value Lf,n{u,).

This is the a p p L value and this is the extrinsic L value.
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Turbo decoding

o Subtracting the terms, viz., Lor'") + L) (1) from L) (u)), removes
the effect of the current information bit u; from L) (u;), and thus
providing an independent estimate of the information bit u; to
decoder 2 in addition to the received soft channel L-values at time /.

So why are we subtracting these terms, these information bit term and the a priori term? So

we essentially are trying to remove

(Refer Slide Time 43:27)

a

the effect of the current bit in some sense from the a p p value so in some sense we are trying

to provide some independent estimate because
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Turbo decoding

@ Subtracting the terms, viz. Lir;m + 1@ !u;! from L") (1)), removes
the effect of the current information bit u; from L) (u;), and thus
providing an independent estimate of the information bit u; to
decoder 2 in addition to the received soft channel L-values at time /.

anyway this a priori information has come from the previ, extrinsic information from the

previous decoder. So there is no point feeding the same information back to the same

(Refer Slide Time 43:49)

decoder. And the received values are already received by the decoder. So we are trying to, in
some one way, trying to send some independent estimate about what we think the bits are to
the other decoder. And that's the whole idea behind uh iterative process that you want to give
some sort of independent estimate. You try to feed the same information back then it will

become a positive feedback system and unstable, the decoder
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@ Subtracting the terms, viz., er,m) 4 Lt,?] {u) from L'V (uy), removes
the effect of the current information bit u; from LY (u). and thus
providing an independent estimate of the information bit u; to
decoder 2 in addition to the received soft channel L-values at time /.

may not convert. So that we don't want.
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o Subtracting the terms, viz., Lorl”) + L) (1) from L) (u)), removes
the effect of the current information bit u; from LY (u), and thus
providing an independent estimate of the information bit u; to
decoder 2 in addition to the received soft channel L-values at time /.

@ Similarly, the output of decoder 2 contains two terms:

And in the same fashion the decoder 2 will also have 2 terms.
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@ Subtracting the terms, viz., L.r'" + LY (uy) from L) (1)), removes
the effect of the current information bit u; from L) (1), and thus
providing an independent estimate of the information bit u; to
decoder 2 in addition to the received soft channel L-values at time /.

@ Similarly, the output of decoder 2 contains two terms:

o L () =In [P (m = +1/ s, L‘,"")/P(ur =-1| r-_».L‘;'])J,

where r2 is the (partial) received vector and LY the a priori input
vector for decoder 2, and

o L& () = LD () - [Ler® + 18" (w)
posteriori L-values LY (u;) preduced by decoder 2, after
deinterleaving, are passed back to the input of decoder 1 as the a
priori values Lf,”[u;).

. and the extrinsic a

One is this a p p value and other is this extrinsic value.
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@ Thus, the input to each decoder contains three terms,

I have already
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@ Thus, the input to each decoder contains three terms,
@ The soft channel L-values Lcrfo’ (information bit).
@ The soft channel L-valuesL,r}U (or f_:r,[!’] (parity bit),
@ The extrinsic a posteriori L-values L ()= L) (u) (or
LY () = L (w)) passed from the other decoder.

received information bit, one term corresponding to the received parity bit and one term
corresponding to the a priori information which is being fed from the second decoder. You
can see basically a priori information for decoder 1 is nothing but extrinsic information
coming from decoder 2 after proper interleaving de-interleaving. Because you want to ensure

the order of the information bit is same.
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@ Thus, the input to each decoder contains three terms,

@ The soft channel L-values L‘r,m: (information bit).
a The soft channel L-v.:llueSl'.u‘fLJ (or L;r,[:’] (parity bit),
@ The extrinsic a posteriori L-values L\ ()= LY (u) (or
LY () = L[,:'[u;)] passed from the other decoder.
@ In the initial iteration of decoder 1, the extrinsic a posteriori L-values
15 ()= .‘.F,“(m) are just the original a priori L-values L, (u;),
which are all equal to 0 for equally likely information bits.

Ok this T have explained, in initial iteration extrinsic information is basically zero and

subsequently,
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@ Thus, the input to each decoder contains three terms,
@ The soft channel L-values erm (information bit).
@ The soft channel L-valueslcrf” (or L;r,m] (parity bit),
@ The extrinsic a posteriori L-values L\ (u)= L3 (u) (or
LY () = L5(w)) passed from the other decoder.

@ In the initial iteration of decoder 1, the extrinsic a posteriori [-values
LE.Z‘ ()= L") (1;) are just the original a priori L-values La (),
which are all equal to 0 for equally likely information bits.

@ Thus the extrinsic L-values passed from one decoder to the other
during the iterative decoding process are treated like new sets of a
priori probabilities by the MAP algorithm.

a priori information is zero and subsequently the a priori value will be nothing but the

extrinsic information.
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@ Decoding then proceeds iteratively, with each decoder passing its
respective extrinsic L-values back to the other decoder,

@ Decoding stops after sufficient number of iterations.

@ At the output of decoder 2, the decoded information bits are
determined from the a posteriori L-values L) (u;).

@ Positive L-values are decoded as "+1" and negative L-values as

f gl
Example:
@ Rate R = 1/3 turbo code using constituent encoder
G(D) = [1 wp

(See Figure in the next frame.)

So this process as I said goes on repeatedly in iterative fashion. So let's take an example
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and see how this works.
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Turbo

@ Decading then proceeds iteratively, with each decoder passing its
respective extrinsic L-values back to the other decoder.

@ Decoding stops after sufficient number of iterations.

@ At the output of decoder 2, the decoded information bits are
determined from the a posteriori L-values L) (u;).

@ Positive L-values are decoded as “+1" and negative L-values as
“—1.

Example:

@ Rate R = 1/3 turbo code using constituent encoder

G(D) = [1 ]

(See Figure in the next frame.)

So we are considering a rate one third turbo code where the constituent encoder is this 2 state

encoder. So our
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turbo code is this.
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Each one of them is using this 2 state recursive convolutional
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encoder. This is my, this is my interleaver. And this
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is the state diagram corresponding to these convolutional encoders,
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Ok.
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@ Consider an input sequence of length K = 4, including one
termination bit, along with a 2 x 2 block (row-column) interleaver,
resulting in a (12,3) turbo code with overall rate R = 1/4.

Consider a information bit length of 4 and let's say I am doing block interleaving. So I am

fitting the data block wise and reading it
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@ Consider an input sequence of length K = 4, including one
termination bit, along with a 2 x 2 block (row-column) interleaver,
resulting in a (12,3) turbo code with overall rate R = 1/4.

@ The trellis for the constituent code is shown in the previous frame,
where the branches are labeled using the mapping 0 — —1 and
e =R

column wise. So as I have said I am mapping 0 to minus 1 here and 1 to plus 1.
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@ Consider an input sequence of length K = 4, including one
termination bit, along with a 2 < 2 block (row-column) interleaver,
resulting in a (12.3) turbo code with overall rate R = 1/4.

@ The trellis for the constituent code is shown in the previous frame,
where the branches are labeled using the mapping 0 — —1 and
1—=+1.

@ The input block is given by the vector u = [ug. uy, us, u3), the
interleaved input block is u’ = [uf, vy, v, u3] = [ug, Uz, Uy, w3),

So this is my input block. The interleaved block is given by u hat
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@ Consider an input sequence of length K = 4, including one
termination bit, along with a 2 < 2 block (row-column) interleaver,
resulting in a (12.3) turbo code with overall rate R = 1/4.

@ The trellis for the constituent code is shown in the previous frame,
where the branches are labeled using the mapping 0 — —1 and
1= +1.

@ The input block is given by the vector u = [ug, uy, us, u3), the
interleaved input block is u’ = [uf, u}. uh, U] = [vg. u2, 11, u3),

@ The parity vector for the first constituent code is given by

pt) = [, oM, o1, o).

and corresponding parity for the first encoder is given by this and parity
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@ Consider an input sequence of length K = 4, including one
termination bit, along with a 2 =< 2 block (row-column) interleaver,
resulting in a (12,3) turbo code with overall rate R = 1/4.

@ The trellis for the constituent code is shown in the previous frame,
where the branches are labeled using the mapping 0 — —1 and
1= +1.

@ The input block is given by the vector u = [ug. uy, s, u3), the
interleaved input block is u’ = [uf, u}. uh, vi] = [vg. U2, Uy, u3),

@ The parity vector for the first constituent code is given by

h) SN
p) = [, oY, o1, o).
@ The parity vector for the second constituent code is
2) @) (@)
pl@) = [pf, )o@, p@, g ]J_

due to second encoder is given by this. So I use notation p 1 to denote parity coming from the
first encoder, p 2 to denote parity coming from the second encoder. u is my information
sequence. u hat is the interleaved version of information sequence which is being fed to

encoder 2.
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@ The 12 transmitted bits are represented in a rectangular array, as
shown in Figure in the next frame, where the input vector u
determines the parity vector p'*) in the first two rows and the
interleaved input vector u’ determines the parity vector pl2) in the
first two columns.

So I will just show you
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@ The 12 transmitted bits are represented in a rectangular array, as
shown in Figure in the next frame, where the input vector u
determines the parity vector p'*) in the first two rows and the
interleaved input vector u’ determines the parity vector pt2) in the
first two columns.

@ For purposes of illustration, we assume the particular bit values
shown in Figure.

basically I will just,
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@ The 12 transmitted bits are represented in a rectangular array, as
shown in Figure in the next frame, where the input vector u
determines the parity vector p'*) in the first two rows and the
interleaved input vector u’ determines the parity vector p'%) in the
first two columns.

@ For purposes of illustration, we assume the particular bit values
shown in Figure.

@ We also assume a channel SNR of E;/Np = 1/4 (—6.02dB), so that
the received channel L-values corresponding to the received vector

[ru(mré“rén‘ rgmr](_]'}rfn. r;})r;ll éﬂkr;mr;”r;:] are given by

BN .o _
LL-r,L”—4(E) = 1=01,23, j=012 (1)

and I am assuming a channel 1 by 4 so the likelihood channel reliability factor I will see will
be basically 1. So 1 c r i will be in my case would be same as the received value for this
particular signal to noise ratio. This is just a toy example to illustrate how this decoding

works.
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So these are my information bits u 0, u 1, u 2, u 3. So as I said, if it is a zero, I am mapping it
to minus 1. If it is plus, I am mapping to plus 1. So the information sequence here is u 0 is 0,

ulis1l,u2is0andu3is 1. These are the corresponding
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parities for
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this information sequence from the encoder 1 and these are the corresponding parities from
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the encoder 2. Now what I have here is the received values. So you can see here, this was
transmitted as plus, I received a plus. This transmitted a plus, I received a plus, this was

transmitted minus 1, this was received minus but here the sign has changed. Note here this
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was transmitted as minus 1 but what I received is plus point 8 so this bit is received in error.

Now let's see using this turbo decoding how we are able to correct this error.
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@ In the first iteration of decoder 1 (row decoding), the BCJR
algorithm is applied to the trellis of the 2-state (2,1.1) code to
compute the a posteriori L-values L(V)(u;) for each of the four input

bits and the corresponding extrinsic a posteriori L-values L(.,”(u,u).

So of course, the first half of decoding

(Refer Slide Time 49:36)

will be, I will decode, I will have decoder 1 work first and then decoder 2.



(Refer Slide Time 49:44)
| 280 elesrslaxaans
fo/’ToomuNo ¢ [ R RENEEOEEO0 W swwms o

@ In the first iteration of decoder 1 (row decoding), the BCIR
algorithm is applied to the trellis of the 2-state (2,1,1) code to
compute the a posteriori L-values L'Y(u;) for each of the four input

bits and the corresponding extrinsic a posteriori L-values LEIJ(U,).

So I will just
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@ In the first iteration of decoder 1 (row decoding), the BCIR
algorithm is applied to the trellis of the 2-state (2.1,1) code to
compute the a posteriori L-values L'Y(u;) for each of the four input

: h T gl 1
bits and the corresponding extrinsic a posteriori L-values i J(.-..',).

@ For iterative decoding, extrinsic a-posteriori L-values are computed
for all input bits, termination bits as well as information bits.

directly come to the values
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@ In the first iteration of decoder 1 (row decoding), the BCJR
algorithm is applied to the trellis of the 2-state (2.1, 1) code to
compute the a posteriori L-values L(Y)(u) for each of the four input
bits and the corresponding extrinsic a posteriori L-values LE”(u;).

@ For iterative decoding, extrinsic a-posteriori L-values are computed
for all input bits, termination bits as well as information bits.

@ Before the first iteration of decoding, the a-priori L-values of the
termination bits are assumed to be zero.

because I have already
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@ In the first iteration of decoder 1 (row decoding), the BCJR
algorithm is applied to the trellis of the 2-state (2.1, 1) code to
compute the a posteriori L-values L(Y)(u) for each of the four input
bits and the corresponding extrinsic a posteriori L-values LE”(u;).

@ For iterative decoding, extrinsic a-posteriori L-values are computed
for all input bits, termination bits as well as information bits.

@ Before the first iteration of decoding, the a-priori L-values of the
termination bits are assumed to be zero.

@ Similarly, in the first iteration of decoder 2, the BCIR algorithm uses
the extrinsic a posteriori L-values LL“(u;} received from decoder 1 as
the a prioni L-values, Lf,z](m) to compute the a posteriori L-values
L) () for each of the four input bits and the corresponding
extrinsic a posteriori L-values Lf}(ur] to pass back to decoder 1.

explained the whole procedure. I will just show you
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@ In the first iteration of decoder 1 (row decoding), the BCJR
algorithm is applied to the trellis of the 2-state (2,1, 1) code to
compute the a posteriori L-values L'Y)(u) for each of the four input
bits and the corresponding extrinsic a posterioni L-values L:e“(w)-

@ For iterative decoding, extrinsic a-posteriori L-values are computed
for all input bits, termination bits as well as information bits.

@ Before the first iteration of decoding, the a-priori L-values of the
termination bits are assumed to be zero.

@ Similarly, in the first iteration of decoder 2, the BCIR algorithm uses
the extrinsic a posteriori L-values LL”(u;) received from decoder 1 as
the a prioni L-values, Lf,g)(m) to compute the a posteriori L-values
L) uy) for each of the four input bits and the corresponding
extrinsic a posteriori L-values L(,z}[b'r} to pass back to decoder 1.

@ Decoding proceeds iteratively in this fashion.

the
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extrinsic information value and the a p p values at the end of each iteration. So this is the
extrinsic information after I have decoded using decoder 1. This is the extrinsic information
after decoder 2. And this is the a p p value after decoder 1. Note that I have transmitted 0 1 0
1. So there the sign is Ok, there



(Refer Slide Time 50:28)
U e o |G @ & @ ‘ﬁ

a-.'."." TR MM oLl +o ENENETONE T B sonwm 12

alo!

032 <018 E

+0.77| +0.47 +0.23

0.69 0.40| =007
.04 0.80| +2.03

L a . < Extrinsic Lovglycs pfter Soft-out " o 4
first row decoding tirst column decoding irst row and column d..\wlmg
=
0] | 001 .98 -0.81 19| +0.18
—y | —_— —_—
043 +0.77 0,07 <021 1.30| +2.16
Extrinsic L-values after Exirnsc L-values afier Soft-output L-values afier the
socond mow docoding socond column decoding second row and column decoding

the sign is not Ok. This is after first decoding, this is in error.
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This sign is ok. This sign is ok. Now next, so this whole thing was my first iteration. This is

my first iteration,
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fine?
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Now what about second iteration? So, so again I compute the extrinsic values, this is after I

do decoder 1,
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this is extrinsic information after I have done decoder 2
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and this is the a p p value, L value, a p p L value after decoder 2 and note here this was 0, this

is 1, this is 0, this is 1. So after 2 iterations I am able to correct the transmission error. So with

this
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Turbo decoding
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I am going to conclude our discussion on
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turbo decoding, thank you



