An Introduction to Coding Theory
Professor Adrish Banerji
Department of Electrical Engineering
Indian Institute of Technology, Kanpur
Module 06
Lecture Number 25
Decoding of low density parity check codes-I

(Refer Slide Time 00:14)

An introduction to coding theory

Adrish Banerjee

Department of Electrical Engineering
Indian Institute of Technology Kanpur
Kanpur, Uttar Pradesh
India

Feb.27, 2017

Today we are going to discuss

(Refer Slide Time 00:16)

Lecture #14A: Decoding of low density parity check codes-|

decoding of LD P C codes.So to start

(Refer Slide Time 00:21)
glEi80: ¢lesxsaaaand
TD!T@mHl@ SR T T I=1=1 1 I=i= e

Qutline of the talk

@ Decoding on BSC: Bit Flipping Algorithm

with we will first take a simple example of transmission over a binary

(Refer Slide Time 00:27)

symmetrical channel and we are going to talk about bit flipping algorithm to decode L D P C
codes. And then in the next lecture we will talk about probabilistic decoding algorithm based

on

(Refer Slide Time 00:40)
i o o Al r&l') @ @ @ \.[:J

fa Tommna ¢l hpEeenoeE00m s

@ Decoding on BSC: Bit Flipping Algorithm

belief propagation.

(Refer Slide Time 00:42)
i - a v 1‘5[{8 & & % \.I'__.:
gas’TO= M

@ Decoding on BSC: Bit Flipping Algorithm

@ Example 1: One transmission error case.

So we will consider two cases today. First where there is only one error that has happened

and second

(Refer Slide Time 00:49)
d AaB0: eegsaaaand
--a

BEEOEECC W swsnome 12

@ Decoding on BSC: Bit Flipping Algorithm
@ Example 1: One transmission error case.
a Example 2: Two transmission errors case.

where there are 2 errors have happened and we will show how to correct these errors using L

D P C codes.

(Refer Slide Time 00:57)
3 Lo0
farTommma ol FEEERREOEE O W e 12

Low-density parity check codes

1111 000O0O0CO0O0CO0O0OOCODOO0OTO0OCTODO
¢ 0 0 01 11100000 GQG&O0O0CO0O0OCO0CO
0 000O0O0OO0COTI111100000000
0 00O0OOTOODOSODOODOOODODTI1 1110000
O 000 0 O0OO0CO0OO0O0OO0OODO0ODO0OO0OO0DO0OT1T1 11
I oY 6 6 oY e O e o oo
g 1 00 01 ¢ 0 01 ¢ 0O0O0COOTI1IO0U0OC0
6 01 0 00100O0O0O0O0CI1TCO0O0O0OTL1L OO
0 001 00O0O0OCO0CODTI11O0O0OO0OTI11O0OTCOCOT1OQO
000 ¢o00or 00 0l 000121 a0 o1l
1 000O01O0O0O0OO0OCOTI1 0O0CO0OOOTILI 00O
0100001 0O0O01O0O0O0O0OTI1O0CO0O0OOQO
0 0100O0O0OT1O0O0OO0OCO0OTI1O0TO0OTOOO0OT10
0 0010O0O0OCO0OTI1OUO0OO0OTO0OOTI1O0O0OT1TUO0UO0OQ0
0 0 001 00O0O0OCT10O0O0OO0OT1O0O0O0O0 1

@ Example of a low density code matrix; n=20, j=3, k=4

So recall this is an example of low density parity check code of block length 20, the column

weight

(Refer Slide Time 01:08)

5 2l aaa ‘ﬁ

O TomMMA o[- comMENEDENECC W swwoms 2

wn
(]
-
(o]
O
o
[W]
o
o —
v}
=,
- +—
(=8
-
i]
‘n
=
o
L=l
2
[®]
-

(== = =}
cooco~
(== = =
cooo -
=== =]
(== = =]
oo O
(=== R =
(== =]
L= == =
(== = =]
o000
L= == =
o~o00
o =000
o - 0o 00O
-oooo
L = = = R =

- oo oQ

o oo

(== =]

o oo

=N =1

Q- o

o oo

(= =]

(===

— o o

(= = =]

(=R ==

(=T I =]

Lan = =

(===

o0 ~

(=R =]

(o = =]

o oo

(=N=1_]

(= =]

- o o

(=

= o

oo

- o

(= =]

(==

(==

oo oo~
oo oo
- o000
(=J=T =T
L= = = =
== ==]
(=N =T =T
00100_
L = == I =]
A= == =]
L= ==
cCoo -0
=== = =]
o~0o 00
Ll = = = =]
== ==}
=== =
oo -0 O

o -0 o O

—_o o oo

3, k=4

@ Example of a low density code matrix; m j

is 3

(Refer Slide Time 01:11)

3]
»
=
ot
af
i

i
g
i
=)
O
o
o
m
5
o
o
o
o

fa ’To=mmua Q@ se

k codes

Low-density parity chec

(=== =]
cocoo~
(===l =R
cooo -
(=== =]
(== = =]
(=== =]
L= == =
(== = =]
L= ==L i == =
(== = R]
OO0 -0o0
L= I == == =
o~000
(=R = = =
o =000
o ooo
Lo == = R =

oo oo

—oooo

o oo

o oo

(=R

o -0

o oo

o oo

(=R =R]

- o O

o oo

(===

o - o

(= =

L= Q= =]

oo ~

L=R =]

Lo I = =]

o oo

(=R =R]

(=N =]

- o o

L=

(= =]

oo

- o

(= =]

oo

oo

-Oo O oo
oo o = O
01000_

=R ==]

k=4

c oo Mol
00100_.
.I.DD.DD..
o -0 o o
oo oo -
cCoo o
oo -~ o 0
oc~o0 O
- 0000
(= = =
oo o 0o
oo - O 0

o - o oo

@ Example of a low density code matrix:

-0 o000

and

(Refer Slide Time 01:12)
ﬂ e] v Gl & \.I'—_:
O TOmMMA o[- co MUENEEENEC0 W smmwms

Low-density parity check codes

o
(=]

(=N = === ==
HOoOOoOOoOOoo-rooo

COoO0OoOHOO OO HOOOO =
(= e | o s I e T e | o o o e
SCHOOOIOF, OO0 o0 O
=HOOOoOOoOO0O OO DO O O
SO OO OO0 O 0O
CO OO OOO OO0 00 O
HOOoOOoOoo QDo OO O
ol === =] === =] = = = I =]
(==l I | e B e e e | o B = o O]
COQOHFHODODOQOIOO OO
CORPOoOOOCCOHOFOOO
OO0 000 =000 =0 Oo0O0o
EJHODOD
OO0 000 0O =O=OOC OO
OO0 -HOoOO OO OOD OO
COoOROQOR SO0 DOOO
[=T = R =] [I T e e | e e e Y]

oo HOoOoDOoOHOODO -
(=N -~

(=]
o

T
0
0
0
0
0
1
0
0
0
0
1
0
0
0
Ex

@

ample of a low density code matrix:B k=

row weight is 4.

(Refer Slide Time 01:17)
a Lkl D i]_[IS RECH ".'\ \.IT.I
7o /Toomma ol e N EC W e oms 2

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a

tree structure.

We will first define a few terms and then we will come to the decoding of that.
So first thing we will define what is a parity check set. So what is a parity check set? It is the
set of bits that are participating in the parity check equation. So set of bits that participate in a

parity check equation, they constitute a parity check set. So for example if you

(Refer Slide Time 01:48)
d “ %0 Felesilaaaaqd
7aToos (TLEEL L

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

look at

(Refer Slide Time 01:49)
B e v -.1 OR+RON T} wﬁ
70 /TomERa ¢ A "spaERE0ONE0C W suems

Low-density parity check codes

1 1 1 1000000000000 0000
0000111100 000000O0O00 00
O 0 0O DO O OC1 111000 O0O0O0CO0TO0
g 0 00 OO0 0 0 0 0 0O 01 111 0000
0 000 00O0O0O0GOO0O0GO0O0GO0O0 1 1 1 1
1 0001 0001000100000 00
0100010001000000T1000
0 01 0 0 01 00 OOO0OO0OTI1O0UO0OCO0OTI1I OO0
0 0 0 0O 0 OO0 01 00 01 00 O0T1XO0
0 00000010001 000100 01
T 0000100000 T100000T1L00
0100001000 100001000 0
0 01 0 0O0O0CI1O0O0OO0CO0OTI11 O0OO0OO0OO0OO0OTI1ITOD0
0 0 01 00 0 01 00O0O0OTI1O0CG0CTI1IO0O0CO0
0 00010000 1000010000 1

@ Example ;:f a low density cod;e matri:lc;B E[_——i]

this particular parity check equation, now these are the bits that are participating in this parity

check equation. So these bits will form a parity check set. If we look for example at this
particular row, now this bit, this bit, this bit and this bit these are the 4 bits that are

participating in the parity check equation. So these bits will form a parity check set.

(Refer Slide Time 02:26)
i 20
g0 ’TO= M

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

(Refer Slide Time 02:28)
| imn X aaaaad
o Toomma o &l EEEEDOREO0 W smom 2

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a
tree structure

So what is a parity check set tree? It is a graphical represent of a parity check set in a tree like

structure. How?

(Refer Slide Time 02:39)
d im0 sezxsilaaaaad

O ’7TOmEM MO Qb comuENEDENEC0 W swmoms 1

@ The set of bits contained in a parity-check equation constitutes a
parity check set.
@ Parity check set tree is a representation of parity check set in a
tree structure.
@ An arbitrary bit d is represented by the node of the base of the tree.

We will explain. So any arbitrary bit is represented as node of the base of the tree.

(Refer Slide Time 02:50)
d %0 : iaaaaqd
70 /’TOo MRS o~ ANEEEOORE0C W swwms

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a
tree structure
a An arbitrary bit d is represented by the node of the base of the tree.
@ Each line rising from this node represents one of the parity-check
sets containing d.

There is a line arising from this node and each of these line represent one parity check

equation where

(Refer Slide Time 03:01)

this particular bit is participating. So each line

(Refer Slide Time 03:05)
dOBlaohseksssacanang
Fa/’7Teow A QL[+ o ERENEDCONEIC W swhoms 2

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a
tree structure.

a An arbitrary bit d is represented by the node of the base of the tree.
@ Each line rising from this node represents one of the parity-check
sets containing d.

arises from the node and it represents one of the parity check equations or one of the parity

check sets where this particular node is participating.

(Refer Slide Time 03:18)
a " D T - Q_l; = A;‘R "'..Q. "."\ \.l:__i

o ToommMa o &l EEEEDOEEC W swoms 12

@ The set of bits contained in a parity-check equation constitutes a
parity check set.
@ Parity check set tree is a representation of parity check set in a
tree structure
a An arbitrary bit d is represented by the node of the base of the tree.
@ Each line rising from this node represents one of the parity-check
sets containing d.
@ The other nodes bits in these parity-check sets are represented by the
nodes on the first tier of the tree.

Now other nodes in this parity check constraints are represented as nodes in the first tier of

the tree. Now what do I mean by this?

(Refer Slide Time 03:29)
i «~ %0 k <slaaaend

20 7Too M ua oL +o BEENEDONEIC W swmwms 2

@ The set of bits contained in a parity-check equation constitutes a
parity check set.
@ Parity check set tree is a representation of parity check set in a
tree structure.
@ An arbitrary bit d is represented by the node of the base of the tree.
@ Each line rising from this node represents one of the parity-check
sets containing d.
a The other nodes bits in these parity-check sets are represented by the
nodes on the first tier of the tree.
The lines rising from tier 1 to tier 2 of the tree represent the other
parity-check sets containing the bits on tier 1.

-

Let's just

(Refer Slide Time 03:30)
H L] D r r t)l_ ey "L .Il.\ LY ﬁ

PaTo=mua u&.r-'lIrIliDIlDDI Sans o | 13

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a
tree structure.

@ An arbitrary bit d is represented by the node of the base of the tree
Each line rising from this node represents one of the parity-check
sets containing d.

The other nodes bits in these panty-check sets are represented by the
nodes on the first tier of the tree

The lines rising from tier 1 to tier 2 of the tree represent the other
parity-check sets containing the bits on tier 1

The nodes on tier 2 represent the other bits in those parity-check
sets.

L

-

L3

L3

look at, so let's say I

(Refer Slide Time 03:33)
d -~ &0 & jlaaaasd
7o Toomua gl eom EEOEEC O W sesnoms 12

Parity-c

\‘- 20 12 3 20
tr171&‘ ‘,18 Hﬁg] i 4; q'T (1(51'%\([.31(?\1’|1 F‘E"fzo 1.}
: 14, 1M | j15 | | 14 | 4g l19
pom oeghel 110 01" 5000

have this node, first node

(Refer Slide Time 03:35)
T Y o ISR (G Q & & \.ﬁ
O TommMMA o[- comUENBEENEC0 W swsmoms 1

Parity-check set tree

calling it node 1. Now this node participates in 3 parity check equations. You can see 1, 2, 3

(Refer Slide Time 03:48)
a - D v v 3 Y '.\ FRRCY ".‘\ \-ﬁ
BEEDORECO0 W soesnoms 12

0 .0 J2 16 ~ 17 20 20 14
\rﬂm\, J13 1J1g'| LIS Y o] -

| 141 | | J15 | L 1q |
0)

go back to our, so we are looking at

G 8 8 q \.ﬁ

G ’Tomm M o[- co mEENBEEENECC W swwom

o

d M

(Refer Slide Time 03:53)

ul
i)
P
o]
o
e
[
T
=
(W)
=
m
(=
=
by ooy

S

Low-den

L= =]

o0~

==

L= =]

o~

=T

L=]

o~

- o

- o

L =}

L =]

g 0 0 0O 0 0 0 0 O

L= =

L= =]

0

o oo

coo

coo

o oo

oo o

coo

=== = B]

oo~ o

oo~ 00

o -0 00

coo o~

(=R == R

oo = O

— o oo

1 0 0 0

(=N ===

coo ~

o~ oo

0 0 0

- o000

(===l =

1

o0 -~ O

=T = =]

0 0 0

oo o

coo~o

oo =~00

o- O OO0

L ===~}

cooo

oo ~0

[l ===

oo™~

(=D =]

[l == =]

0

L= =]

o o~

(=R =

0 0 0 0 O
0

L =1 = =]

ooo

1 000 01 00O0O0C10O0O0O0 1

0 0 0 0

@ Example of a low density code matrix; n=20, =3, k=4

first bit. It participates in this parity check equation, this parity check equation and

G G @ @ \.ﬁ

[v] & & ’
fa Teomummacifeenm

E L

(Refer Slide Time 04:01)

BEEONEC0 W s noms 12

~

ity parity check code

S

=
W
B
3
Q
-

oo

oo

oo

oo

oo

o o

oo

(==}

oo

oo

oo

oo

(=T

L=]

oo

oo

oo

L=l =]

= o~

=T

=]

o~

Lo =

- o

Lo =}

L =]

L= =]

L=J =]

oo

oo

oo

oo

=R =]

oo

(=]

L=

o

=]

L=

=]

L=

=

=== = R]

coo ~Oo

oo~ 0o

o - O 00

cooc o~

(=== R

oo - O

o oo

1 60 00
1 0 0 0
0

0

oo oo

Qo ™~

o~ oo

0 0 0
0 0 0 0 O

0
0
0
0
1

coooOm

oo ~00

(o B == e I e Y e

OO -0

0
1

coo

oo o

1

(=]

(=B =

(= =]

0 0 0 0

1

L= =

L= =]

1

o o~

0 0 0

- o

-0 o

0 0 0 O
@ Example of a low density code matrix; n=20, j=3, k=4

0
0
0
1

this parity check equation. So there is one line corresponding

(Refer Slide Time 04:07)
ﬂ - 7] | e B.I G 0 & @ \.ﬁ
fa Tommua g o[hpEeenoeE00m s

15 0 B2 16 .~ 17
rwm ,1319&19] \L 1. \a-.--:

| 4'111 J 15 |
10 110 O14 L e |4
\J 10 O 13- 151’ T):r ﬁ 147\], é‘fT
|\ L '10; |10

0, 90 0
l{\a 7; 07 8 Q11 v

\ | \ /
ke —'i‘i —
.- 3

to each of these parity check equations. Ok, now in this parity check equation, you can see

(Refer Slide Time 04:17)
E bl D . = ﬂ i .':\ + 'R -|'\ ‘I'__"J
Fao Toomma affcee (T EELLEEEL

| parity-check set
] {1.2.3.4}

2 {5.6.7.8}
3 {9.10,11,12}
4 {13,14,15,16}
5 {17.18,19,20}
6 {1,59,13}

7 {2,6,10,17}

8 {3.7.14,18}

9 {4,11,15,19}
10 {8.12,16,20}
11 {1,6,12,18}
12 {2,7,11,16}
13 {3.8,13,19}
14 {4.9.14,17}
15 {5.10.15.20}

which are the other bits participating?

(Refer Slide Time 04:19)
a i90Q kavsiaaaead
fa ’TOmMMA o[- co mUENEEENEC0 W smmoms

Low-density parity check codes

—H®

HOoOOoOoOo~ o000 O
(== = = I = R e I =] = = i Y =]
OO0 00O =OoOOoO oo
=T = | =~ — =T = = = =

1
0
0
0
0
0
X
0
0
0
0
1
0
0
0

0O -=OOoO00 OO0 0 00 -
HOOoOOOoOoOoO0OoO OO OO
cCoCcOorHrooorRrOoOlooDo =O
OO0 O OO0 00000
HFOoOCoOoOCocoO oL OOo OO
000 OO0 - OO0 000 =00
o0 OoO-HFEFOOQOOOOoO OO
O = OD OO0 O OO0 =D O
[l =N == =] = =R] ==
COoOCoOrRrOroCco oo OO O
O = 00000 0O~ 00
OO -HOO=OO,OoDOoOO
(== = W= = R = = B =] [= T = |
-0 000000 0-OoOOoOO0 O

(=]
(=]
(=]
[=]

@ Example of a low density code matrix; n=20, j=3, k=4

So bit number 2, bit number 3, bit number 4, so how did we write that? So the other bits that

are participating in the parity check constraint, they are written like this.

(Refer Slide Time 04:32)
o %0 e 4
ParTommud o gl

eaaasd

** EEEREDOCOEECC W sesnomal 12

Parity-check set tree

5 17
fr'wnsc; ‘“319"9%9 ‘]- Q Ug

So 1, this is one parity check constraint, and 2, 3, 4 bits are participating. Similarly if you

look at here,

(Refer Slide Time 04:43)
i # a AL ’..\J = |G 8 8 q \.ﬁ

ga’Tomom N ¢ ity EEDOEE OO W swnoms 2

Low-density parity check codes

=K

—() g o0 06000 0 @ omeo
¢ 02 ¢ 1 1 110 00O0COQ0CO0CO0O0O0COCO0OOD
0 00O0O0O0OO0OOTI1T1110000O0O0O0O0O0
0 00 0O0O0CO0COTOOOOTDODTI111100400
OF @ 0RO OBl 0 G000 g0 8 1 1 X 1
—%1)0 0 0 10001000 100O0O0TO0O0 O
g 100 010001000 O0O0O0TI1O0O00QO0
g 6 £t ¢ 001 04a00GO0O0OTI1O0U0CO0CTL1 0O
0 0 01 0 000 O0O0CTI1IO0UOOQOCTI1IO0GO0CT OCTI10
g 0 8600 00 *a a6 1002 aa ¢ 1
__,;Cp (VT TRT TRt S TS+ S At R+ At A+ (B¢ J 1 S 1 A1
01000 0100OT1O0O0O0OOD0OT1O0O0O0TO0TU DO
0 01000 O0100O0O0O0OT1O0O0O0OO0CO0OTI1IO0
0 001 0O0O0CO0OT1TUO0O0OOD0OTO0OTI1O0O0OT1TO0TU0COQO0
a 0001 000O0O0CT1000O0CO0CT1O00a0O0 1

@ Example of a low density code matrix; n=20, =3, k=4

this is bit number 5, 9 and 13 are participating in this particular

(Refer Slide Time 04:49)
d 280 elegsiaaaens

fa s»Teo=o/mma o pf ey EESONECC W s 2

Parity-check set tree

5o B g2 16 17 . 20 .20
017160 O dq “Oo<Y 14
] VS IRIRIBIN
L | | 15 10| 18 j19
010 190 014 ol 1 5 1 5 |
] ”'T T) 13'|(T‘15 r T? Tfl’ 14T ‘|J aﬂ? '?10 T 0
10 10 |
“36 ¢7 8 '(41 % o 16 [4,-. o 3»‘%5?5 ‘l‘ q?)

parity check equation, so that is represented by this. So that's what I

(Refer Slide Time 04:55)
d P Y] ke s saaaeand

E-D TR M EO oL +o HEENEEONETT B sowmme 12

- 14 20 12 16
017160 018 00° no'" a0
f 171 19

'919] 15 ‘iT'f Y 418 (["':'1 [Q
gwo 14 lli 14{ J 4 1 I qul ! “.i-\ L lFlu‘l 9 |]
T e LAT e

| | 10 [10 | &l bz |
A{E ?; v a% 19“ %] 49 0530 08" 3
\ \

mean when I said

(Refer Slide Time 04:57)

E - ﬁ - I‘\J . R O \. uﬁ
o ’TeomMua g &l‘:,""'—““dllliIIIUIIDUI sans owmad | 12

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a
tree structure.

@ An arbitrary bit d is represented by the node of the base of the tree.

@ Each line rising from this node represents one of the parity-check
sets containing d.

@ The other nodes bits in these panty-check sets are represented by the
nodes on the first tier of the tree

@ The lines rising from tier 1 to tier 2 of the tree represent the other
parity-check sets containing the bits on tier 1

@ The nodes on tier 2 represent the other bits in those parity-check
sets.

other nodes are represented as nodes in the first tier. Now line arises from tier 1 to tier 2
represent the other parity check constraints containing bits from tier 1. So this is my tier 0,

this is tier 1.

(Refer Slide Time 05:18)
2 %8G ysllaaaead

P ToomE M ol co mRENBEEENEC0 W swmoms 1

Parity-check set tree

< . on h o 28 g2 16 ~ 17 20 .20
Q17160 O L ' Noj YO g0 ol. 06) 14:
| s 18199919] 8 TTT? 19 [a T ‘ff o]
ey | |
T \ W.' 3y :\.H
L
A0,
/

Now what is a, what are connections coming here? These are

(Refer Slide Time 05:22)

B o N s s 2 sleaae ‘ﬁ
g TomM M o[- comuUENBEEENECC W sosnmoms 1

Parity-check set tree

the parity check constraints involving these bits, involving 2, involving 3 is here, involving 4,

(Refer Slide Time 05:33)
| a0 ewesssiaqaaanfd
fa Teomea oo NEENERNONECC W swwms

Parity-check set tree

these are the parity check constraints,

(Refer Slide Time 05:35)
i %0 kessiaaaaad
a-ﬂ)T@):'\}Eikﬁué,'-'IIIIIIIUIIDEJ- San Noernal | 12

Parity-check set tree

Ok. So this is how I am drawing

(Refer Slide Time 05:41)
d a0 eegssacanng

o Toommma g frripgpENEBENEC 0 W swwms

@ The set of bits contained in a parity-check equation constitutes a
parity check set.

@ Parity check set tree is a representation of parity check set in a
tree structure.

@ An arbitrary bit d is represented by the node of the base of the tree.
Each line rising from this node represents one of the parity-check
sets containing d.

The other nodes bits in these parity-check sets are represented by the
nodes on the first tier of the tree

The lines rising from tier 1 to tier 2 of the tree represent the other
parity-check sets containing the bits on tier 1

The nodes on tier 2 represent the other bits in those parity-check

L

L

“

sets.

my parity check set tree. So again

(Refer Slide Time 05:46)
d - a u . b' _\ @ & @ \.|=J
7o Tommed c b "wANEEENONEO0 B s

Low-density parity check codes

[=R=R=N N=ll=j=l=l (=R =-R==1
COoOHOQoocOoO OO oo
- oo Ooo- o000 0o ook
_HOOOOO0OD OO =HOOO~=O
coCcorHooorrOoOloocoO = o

(== = = e L e B e | e e e i e]
OO OO 0000000 D

[l = == I | o Y R e e] e e TR e Y s]
HFoOCooOoOCocooRr OO~ OO
OO0 O0 =00 000 =00
CODOHFRFRODODOOODO OO

(=T = = = = = B =T = D = = =]
OO0 O0O0O0 =0 O0O0=000
HOOOOQOOoOHFOOOIC OO0
(== =T = o = B = = = | [= T = = =]
OO0 00O0 0O =0 =000 O0
(=== =Nl ==l e W o T =]
(== = = = B = = =] (= = = =}
_HOOOO|I= 00O~ O0OO0OO0O

(=]
(=]
[=]

@ Example of a low density code matrix; n=20, j=3, k=4

pay attention to this parity check matrix. Let's label each of them like let's say 1, 2, 3, 4, 5, 6,

7. Let’s just label these columns. So that way it will be easier for us to refer to them.

o qeeaB

(Refer Slide Time 06:12)

OO0 O-HOOOoOO0O~NOOoOOO ™ comMOoOOoO OO~

Foocoo-locoo oo ~0 0 co~OCOoOOo~0

oo ~0oOo~0 0 -0000 cCoHODO OO

@ Example of a low density code matrix; n=20, j=3, k=4

s Hoococomo~ocooolooo o ad corlo~mooco
i i
H Mooo “ocloccoo~oHoOoQ H oc-oclcooc o~
i - i
= Mooo~olooco~olococooco~| T c~olcoo~o
n x []
O EﬂﬂOlOOGIOGOOGlﬂU—{m O O=- OO0 =~ OO
(m] | a
= mOOOlOlOOUOOOlOO.J o c-olmoocoo
=
B co~oococeorA~ocoo|q _JI ~oolcooco~
=] I 1] =
) Hoomoolooomolomooo| +|@ ~oolcoo ~o
] = ML
m Pllicc ~coclo~ocoojocooc o~ m =lm W ~ocolc~ocoo
o i af i
.M co~ocol~coocooococ~o|l g o |m._ ~oolHooc oo
3
o - v
Mo~ ocooloooo~oco~moo| VY af cooloococo~
. X F g L
. "u_-.L. O~ 00000 ~000~0 00 ..m 3 "“H._ oo ~0C0
= 5 ! =
s Plic ~cooclo~ocoo|l~ocoo | [coclo~ooo
| @ o W L@ =
: fell'lc ~coo|lmooocoloooco~| o coolrmoocoo
< = bl < |® o
T “ e
L o HaEsE=RRSN SRR (— N R] = o cococlocoo o
v .
it -, & - L -
trlDDODDOlDOODlDO E a rer coolco~oo
A ‘in & i} =
a8 nr]nununuﬂnvlnun.nuﬂ_]nununu..m @ = (=N == (=T = = =]
(1] (1]
= o b=
4100000w000010000 L i coofldoc oo
* 2 B, - =
- -
8 O $ 1 - - ﬂ13+f¥739u
e ik

(Refer Slide Time 06:27)

Similarly T am labeling these rows. So you can see there will be 15 parity check sets, each

corresponding to each of the rows, Ok.

(Refer Slide Time 06:39)

So let us look at the parity check set. So let’s first

(Refer Slide Time 06:43)
dDEsiBdls elesssiaaaang
70T mua o[-+ MERNNEOOREOD W swwms

Parity

parity-check set
12,34}
56,78}
{9.10,11,12}
{13,14,15,16}
{17.18,19.20}
{1,59.13}
{2,6,10,17}
{3,7,14,18}
{4,11,15,19}
10 {8.12,16,20}
11 {1,6,12,18}
12 {2,7,11,16}
13 {3.8,13.19}
14 {4.9.14,17}
15 {5.10.15.20}

let us look at this first parity check set which corresponds to this

WO 00| =i | wn| | Lo ba] g

(Refer Slide Time 06:50)
3 L Y- aaqenyd

—(1) 1 1 oA 0 0 0 0 0 O 0 0 0 o0 0
s Iif & Qg I hEF @G e) Q0 o0 0@ Q0
210 0 0 0 0 00O0CT1T1110000O0CO0O0O0
410 0 0 0000 O0CO0ODO0CO0OOTI11T11104000
|0 0 0D O OO OOOOOOOOODODOT11 11
=%{1)0 0 0 1 0 0 0 1 0 0 0O 1L OO OGO OO
2|/ 1 0 0 01 0041 o 000001000
(0 01 0 0 01 00 0O0CO0OCO0ODCTI1 0OO0OT1 00O
9(0 0 0O1 0000 O0O0CTI1 OCO0OO0OT1TUO0OUO0OTO0OTI1IO
=|/0 0 0O OO0 0100010001000 1
449‘@ G F O O e e 0 o .o o g
/0 1 0 0 0 01 0001 0O0O0CO0C1 00O O
gl¢d @ T 4 ¢ &4 & 1T O 6 6 8 000 g1l 0
/0 0 0 1 0 0 0 01 000 O0O1O0O0OCT1O0O0TO0
«(0 00 01000 O0100O0O01O000 01

@ Example of a low density code matrix; n=20, j=3, k=4

first row. So note here bit number 1, 2, 3 and 4, these are participating in the parity check

equation. So that's why

(Refer Slide Time 07:05)
E L 7] . 1' G 0 8 oq \I:
fa»Tommma u&rmIIIIIEDIIDE.I sars noemad | 12

| parity-check set
—h 1 {1.2.3.4}
2 {5.6,7.8}
3 {9,10,11,12}
4 {13,14,15,16}
5 {17.18,19,20}
6 {1,5,9.13}
7 {2,6.10,17}
8 {3.7.14,18}
9 {4.11,15,19}
10 {8.12,16,20}
11 {1,6,12,18}
12 {2,7,11,16}
13 {3.8,13,19}
14 {4.9.14,17}
15 {5.10,15,20}

this first parity check set consists of 1, 2, 3 and 4. Similarly parity check set 2, if we look at

second parity check equation.

(Refer Slide Time 07:18)
a LA00s eleesssaaaenm
Pao Toomua cifee EEEEONEC W smems 12

Low-density parity check codes
: —r % & L - I FT)
—3(1) 1¥1-1-0 0 0 0 0 0 O O O QO 0 Q0 0 0O 0 O
SR o U 0 BeE cheW O 0 e o o 000 g
3/0 00 0000011110000 O00O0°0
4|10 0 0 0 0 O0O0CO0QGCO0ODO0OODODTII 1110000
o |& 0. 0 @ @G 8 0 & 6 0 6.0 060 001 2 ¥ 1
=%%1J0 0 0 1 0 0 0 1 0 O O 1 0 O O O O O O
7/0 10001 0001000000100 0
/0 01 0 0 01 0O0O0OO0OO0ODOCO0CTI1IO0OO0OO0CTLO0O
9(0 0 01 0 0000 O0CTI1O0O0O0T1O0O0OTO0OTI1IODO
R0 60 a4 e a6 a0 0 yad ol
449‘@ 0 0001 0O0O0CO0O0OCI1 OO0COUOOTI11O00O0
a0 1 0 0 0 0 ' CQ OO0 100001 0O0O0O0
30 01 0 00 0100O0O0T1O0O0O0O0O0T1O0
/0 0 0 1 0 0 001 0 00 O0O1O0O0ODT1TO0TO0TO
(0 0 0 01 000 O01O0O0O0O0T1OUO0O0O0 01

@ Example of a low density code matrix; n=20, j=3, k=4

This bit number 5, bit number 6, bit number 7, bit number 8 are participating, so then

(Refer Slide Time 07:27)
HlE4®0: ekegiaraanis

Fa Teompa gl so EENNEEEONECC W swwms 2

| parity-check set
—5 7 {1234}
—t2 {5,6,7.8}

3 {9,10,11,12}

4 {13,14,15,16 }

5 {17.18,19,20}

6 {1,59,13}

[{2,6,10,17}

8 {3.7.14,18}

9 {4,11,15,19}

10 {8.12,16,20}

11 {1,6,12,18}

12 {2,7,11,16}

13 {3.8,13,19}

14 {4.9.14,17}

15 {5.10.15.20}

parity check set will have 5, 6, 7 and 8. Similarly parity check third has 9, 10, 11, 12. So we
can take any example. Let's just take this one, eighth one. Bit number 3, 7, 14, and 18; 3, 7,

14 and 18 these are participating in the parity check equation. So bit number

(Refer Slide Time 07:58)
=] 50 e slsile a @ ‘-ITJ

7o Toommed c b "wEEEEEOONECC B swmems

parity-check set
{1234}
15.6.2.8}
{9.10.11.12}
{13,14,15,16}
{17.18,19.20}
{1,5.9.13}
{2,6,10,17}
{3,7.14,18}
{4.11,15,19}
{8.12,16,20}
{1,6,12,18}
{2,7,11,16}
{3.8.13,19}
{4.9,14,17}
{5.10,15,20} -

3, 7, 14 and 18. So this is how for each of the parity check equations we create this parity

Emmﬂc\mhump-'-k

b
|

o
ra

-
(7]

—
S

P
v

check set. So there are 15 such parity check sets for this particular example.

(Refer Slide Time 08:17)
H -~ a e [}L__;_:_lw'A o & @ \ﬁ
#a ToomMmMa u&'mIIIIEUIIDD. Sams Normal | 12

Parity-check set tree

And how do we draw the parity check set tree? As I said we pick one bit. I;et us say I picked
number 1. Now bit number 1 appears in which parity set, how may parity check equations?
Now look here bit number 1 appears in this, bit number 1 appears here, bit number 1 appears
here, that's it. It appears in these 3 parity check sets. So we are going to draw 3 lines

corresponding to each of these parity check sets.

(Refer Slide Time 09:00)
d PN rezsilaaasad
FJ!T@:'LIX“U&,"'IIIIIUIIDD. Sond Noernal | 12

Parity-check set tree

So that's what we have done. This is one line, this is another line, this is another line. Now
next what we have done is we have written all the nodes that participate in the parity check

set. So if you look at this one

(Refer Slide Time 09:15)
3 A®0 g siaaaand
20 /TR M NA AT vwEEENEEONE 0 B swmwom 2

| parity-check set
—p 1 {1234} <—
—p2 | {5678}
—$ 3 {9.10.11.12}
4 {13,14,15,16}
8 {17,18,19,20}
6 {1,59.13} S+——
7 {2,6,10,17}
— 8 | {371418]
9 {4,11,15,19}
10 {8,12,16,20}
11 {1,6,12,18} €+—
12 {2,7.11,16}
13 {3.8.13,19}
14 {4.9,14,17}
15 {5.10,15.20}

in addition to 1, the other bits are 2, 3 and 4. So that we are

(Refer Slide Time 09:21)
a ieQ e e »=laaaeqd
O’ 7TommM MO ol co AENNBEEENECC MW smnmoms 1

Parity-check set tree

L) 0 28,32 16 o 17 20 .20 14

8171 4) O .g\u'a \['-\‘)” ,f 0
l,ﬁ“”THy ,1d! ,3‘,.119 |
00 66

o7 90 Y 7

writing like this, 2, 3, and 4. Similarly

(Refer Slide Time 09:24)
o 4«50 e gleslaaaand

T oo F:

farToo/mme of BEEEOREDCD W swenom | 12

parity-check set
{1234} €—
(5628}
{9.10.11.12}
{13,14,15,16}
{17.18,19,20}
{1.5913}) S—
{2.6,10,17}
{37.14,18}
{4.11,15,19}
{8.12,16,20}
{1,6,12,18} a+—
{2,7,11,16}
{3.8,13,19}
{4.9.14,17}
15 {5.10,15.20}

here, bit 5, 9 and 13 are participating in relation to bit number 1. So these

|
ToT

#
1
2.
3
2
b
6
7
—# 8

9

10
11
12
13
14

(Refer Slide Time 09:34)
d B0 ek t} aQaaF

FJ)T@):'E:JE:}E-‘\ o &l AR IO ECI O] W sesnoms 12

Parity-check set tree

20 14

are 5, 9 and 13. And here 1, 6, 12 and 18 are participating. So then we hav_e 6, 12 and 18. So
this is our tier 1. Now how do we draw tier 2? Now ((()) this, look at 2. Now 2 appears in
which, 2 appears in parity check set 1, 2 appears in parity check set 7, 2 appears in parity
check set 12, right? Now this 2 appears in parity check set 1, it is already captured here. This

is already captured here that 2 appears

(Refer Slide Time 10:25)
ﬂ [l D T A :.‘\ Gy & o4 \E
7a’Toomma ol MEEEoEEO 0 W e o

Parity-check set tree

in parity check set 1. So what are the other 2 parity check sets? This is 1, is this, the other is
this. So 2 appears with 6, 10 and 17. How do we show that?

(Refer Slide Time 10:38)
g A0 eegwiaqaannfg
fo,Toomma o B[

So we are showing by this particular edge. How do we show this parity check set? 2 appears

with 7, 11 and 16. How do we show that?

(Refer Slide Time 10:54)
| imo kexsaaaasE
o /7Toowud o ' geEBEC0BE 00 B swwm 2

Parity-check set tree

We show that using this.

(Refer Slide Time 10:58)
=) - 7] i oA Q Q@ \-IT‘J

Similarly we do the same thing for other bits. So for example bit number 3; now look at bit

number 3. Bit number 3 appears in

(Refer Slide Time 11:11)
= L0l eleesssiaaaand
20 7Too MM o c 0o BEBEEDONEIC M swmwoms 2

parity-check set
{1234} Sr—
{5628}

{9.10.11.12}
{13,14,15,16}
{17,18,19,20}
{1,59.13} S+——
{2,6,10,17} e@—
{3.7.14,18}
{4.11,15,19}
{8,12,16,20}
{1,6,12,18} €+—
{2.7,11,16} <r—
{3.8,13,19}
{4,9,14,17}
{5.10.15.20} -

parity check set 1, it appears in parity check set 8, it appears in parity check set 13. Now this

Ll

o
e =
b e e e S S) R L B R

parity check set 1, that is already captured, because

(Refer Slide Time 11:28)
02490 ¢kcysAIQRAE
7o /’Toomua cll-»oMEREEECNE00 W swoms o

Parity-check set tree

that is this one, it is already captured. So

(Refer Slide Time 11:34)
B L o Pliles &« 9 58 6 q & ‘ﬁ
7O / TOmmES CA[++ MERREREREOD W e

Parity-check set tree

what are the other two parity check

(Refer Slide Time 11:36)
ﬁ L a ¥ | e I}'

o ToOoMMA ©

parity-check set |

{1234} Fee

{5628}

|
e

{9.10.11.12}

{13,14,15,16}

{17,18,19,20}

{1,59,13} <
{26,10,17}

{37.14.18} <y

{4.11,15,19}

{8,12,16,20}

{1.6,12,18] <

{2.7.11,16} =

(38,1319} =

1[.
o
s | g |] s
alalnl 2l el v o~ oy | | w| k) =]

{4.9,18,17}

15

{5.10.15.20}

sets? The one involving 3, 7, 14 and 18, so this is

(Refer Slide Time 11:44)
d 2800 ¢k glsl

aaaaad

EEEEEO[EEOC W s o

3, 7, 14 and 18, that's just 1.

(Refer Slide Time 11:52)

a AB0s el jaaaeqF
O TOmM MO QL[co RENNBEEMECC W s nmoms |

Parity-check set tree

(Refer Slide Time 11:53)
o . v - [;l G, @ & \ ‘I-__—]

o TomommMa ol BEDOEEO0 W smwom 2

parity-check set |

-0 {1234} Se—
—r {5.6.7.8}
—+ {9.10.11.12}
{13,14,15,].ﬁ]
{17,18,19,20}

{15913} €+—
{26.1017} «—

{37.14.18} @——
{4,11,15,19}
{8.12.16,20}
{16.12,18] a+—
{2.711.16] <—
(381319} =—
{4,9,14,17}
{5.10.15.20} d

And the other one is 3, 8, 13 and 19. So this is this one, 3, 8, 13 and 19, Ok. So we are

w
P Y =1 sy sy e
el El Bl els] o o]~ o w| &) | kaf |5

basically connecting by edges all these parity check sets. So that's how we are representing

(Refer Slide Time 12:14)

parity check set tree. Now we can do with other bits as well. We can for example

(Refer Slide Time 12:19)
d0Bland ¢kessaaaeng
Fa’7Teo M B Q|- +o AENNEDOME D0 W swwoms 2

Parity-check set tree

instead of making 1, if I can make this as 2, I will construct a tree around this node 2, same

procedure.

(Refer Slide Time 12:28)
dOEasnselkesgsiaaaang

g ToomM MO o ve mENNEEEMECC W smmoms

Decoding on BSC: Bit-Flipping Algorithm

Example 1: Single transmission error case

Transmitted bits= {0,0,0,00,0,1,1,1,1,1,1,1,0,1,0,1,1,0.0}
Received bits={1,0,0,0,00,1,1,1,1,1,1,1,0,1,0,1,1,0,0}

@ The first bit is received in error.

Now let us look at how

(Refer Slide Time 12:31)

we can correct error. So we are considering

(Refer Slide Time 12:35)
o n [#] r Sy & W \.IT-

Fa’7TeoMES QL[+o ANENEDOEEOC W swhoms 2

Decoding on BSC: Bit-Flipping Algorithm

Example 1: Single transmission error case

Transmitted bits= {0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,0,1,1,0,0}
Received bits={1,0,0,0,0,0,1,1,1,1,1,1,1,0,1,0,1,1,0,0}

@ The first bit is received in error.

a binary symmetrical channel. Again recall what is a binary symmetrical channel? So there
are 2 inputs, 0 and 1, 0 and 1 with probability 1 minus p you receive the bits correctly and

there is a crossover probability of bits getting flipped.

(Refer Slide Time 12:54)
H -] ¢ Gl G & g ‘.ITJ
70 /7TOo M uA Cll-+o MENNRDOEBO0 W smom 2

Decoding on BSC: Bit-Flipping Algorithm

Example 1: Single transmission error case

Transmitted bits= {0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,0,1,1,0,0}
Received bits={1,0,0,0,00,1,1,1,1,1,1,1,0,1,0.1,1,0,0}

@ The first bit is received in error

So let us consider that we have transmitted this information, we have transmitted this coded
sequence and what we received is this. So there is an error in the first bit location. Now how

do we correct this error? So to decode this what we are

(Refer Slide Time 13:18)
d 100 laaaaqd

Example 1: Single transmission error case

Transmitted bits= {0,0,0,0,0,0,1,1,1,1,1,1,1,01.0.1,1.0,0}
Received bits—@.0.0.0.0.0.1.1.1.1.1.1.1.0.1.0.1.1.0.0}

@ The first bit is received in error.

going to do is we are going to construct a parity check set tree around each of these bits and

use that for our decoding purpose.

(Refer Slide Time 13:30)
H -~ a ¥]\J . S \ﬁ

Q]
Fo7Toomud o 2 aENE0ORE 00 B smom 2

Decoding on BSC: Bit-Flipping Algorithm

Example 1: Single transmission error case
Transmitted bits= {0,0,0,0.0,0.1,1,1.1,1,1,1,0.1,0,1,1.0,0}
Received bits={1,0,0,0,00,1,1,1,1,1,1,1,0,1,0,1,1,0,0}

@ The first bit is received in error

@ Decoder will try to correct the error.

So let's see how we do that.

(Refer Slide Time 13:32)
| “50 ; e aaaad
fa s Tommma ¢ B[RuENEEENEC0 W swwom

Decoding on BSC: Bit-Flipping Algorithm

@ Step 1: Represent the code using parity check set tree.

y 2842 16 o7 W 20
17180 018,205 7 % 19 12 9 19" %q Y
] 19 |19 1 |B 177 | 19 |8 "H
.m | 14{ 18 11 | lis | L '._. 15{ 19 4|
‘I1 1q.-.|5 [? T] Q0 |‘_.‘7 .I.' Tio T Y ._
14] | g

| | |

94 | 10 | | |
& L L “0‘ {14 | L ol | all?
Q8 70 07 800, % 0IHG" L 44 Lo AL 8Ll

L
\'
|
Q7

So the first step is we construct the, we represent the code using parity check set tree and we
have explained in the previous slide how this parity check set tree is constructed. So this is

the parity check set tree for the bit number 1.

(Refer Slide Time 13:52)
a ' o P | b [}l_._\ Q& & \I‘Ej

7o/ Tommud - T REEEEEORE00 B s 2

| parity-check set
2 {1,234}
2| (5678]
3 {9.10,11,12}
4 {13,14,15,16}
8 {17.18,19,20}
6 {1,5.9.13}
7 {2,6,10,17}
8 {3,7.14,18}
9 {4.11,15,19}
10 {8.12,16,20}
11 {1,6,12,18}
12 {2,7,11,16}
13 {3.8,13,19}
14 {4.9.14,17}
15 {5.10,15.20}

And remember this parity check set, corresponding to this we have drawn this parity check

set tree.

(Refer Slide Time 14:00)
doeivgs eesgiaaaacE
o0 TooMES c [~VERNENEEORNEO0 B swmwms 2

Decoding on BSC: Bit-Flipping

@ Step 2: First lteration: Check the parity-check sets containing bit
1 to see if they are satisfied.

Now what we are going to see, first check is whether all the parity check sets containing bit
number 1, if they are satisfied. If they are satisfied it is likely that bit number 1 is received

correctly. If majority

(Refer Slide Time 14:19)

of them are not satisfied, it is likely that bit number 1 is in error. So

(Refer Slide Time 14:25)
3 ieQ _ jlaaaasg

o TooM M - comUEENBEEEONECC W smnmoms 3

ecoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check sets containing bit
1 to see if they are satisfied.

let's see.

(Refer Slide Time 14:27)
=l w50 : x|=ila a aa ‘E

BEEONECOC W sesnome 12

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check sets containing bit
1 to see if they are satisfied.
@ All the three parity check set #1, 6, 11 are violated.

Now which are the parity check sets in which bit number 1 is

(Refer Slide Time 14:31)
a ieQ kassiaaaaqd
7o Toomed o rtignEeEnaRE00 W swwm o

| parity-check set
1 {1,234}

2 [{5678} _
3 {9,10,11,12}
4 {13,14,15,16}
5 {17.18,19,20}
6 {1,5.9.13}

L} {2,6,10,17}

8 {3.7.14,18}

9 {4,11,15,19}
10 {8.12,16,20}
hl {1,6,12,18}
T2 {2,7,11,16}
13 {3.8,13,19}
14 {4.9.14,17}
15 {5.10,15,20}

participating? That is this, this one and this one. Now note in our example, there was a single
error in bit number 1 location. So all other bits were received correctly only bit number 1 was
in error. Then what is going to happen? This parity check set would not going to be satisfied

because this bit is in error.

(Refer Slide Time 15:01)
ghsx®0:ekessiaaana
o Toomua o gl

| parity-check set

1 2,34} T
2 {56,7.8}.

3 {9.10,11,12}

4 {13,14,15,16}

5 {17.18,19,20}

6 {1,5,9,13} |S+—
i {2,6,10,17}

8 {3,7.14,18}

9 {4,11,15,19}

10 {8.12,16,20}

11 {1,6,12,18} e+
12 {2,7,11,16}

13 {3.8,13,19}

14 {4.9,14,17}

15 {5.10,15,20} .

This will be satisfied, this will be satisfied, this will not be satisfied because this particular bit

was

(Refer Slide Time 15:07)
& S kessaaaany

70 /’TOoMMA cll-ee MENNEDDNMECC] M smmom o

| parity-check set

3 {;l2.3.4} i E—
2 {56,7.8}

3 {9.10,11,12} |

4 {13,14,15,16} "

5 | {17.1819,20} -«

6 {15913} s—+—
i {2,6,10,17}

8 {3,7.14,18}

9 {4,11,15,19}

10 {8.12,16,20}

1] {1,6,12,18} wt—+—

12 {2,7,11,16}

13 {3.8,13,19}

14 {4.9,14,17}

15 {5.10,15.20}

error. These are all satisfied. This will not be satisfied.

(Refer Slide Time 15:12)
i e a ¢ le + |G & & | ‘ITJ

BEEONECC W s nome 12

| parity-check set

] L],l2.3.4} g
2 {5.6,7.8}

3 {9.10,11,12} v

4 {13,14,15,16} "

5 | {17.1819,20} «{"

6 {115,913} s—+—
i {2,6,10,17}

8 {3.7.14,18} T

9 {4,11,15,19} T

10 {8.12,16,20}

11 @6,12,18]*-——
12 {2,7,11,16}

13 {3.8,13,19}

14 {4.9,14,17}

15 {5.10,15.20} -

Again these are all satisfied. So you can see all the three parity check sets involving bit 1 are

not satisfied in this particular example. So

(Refer Slide Time 15:25)
dlBi®gs e¢essiaaaand
70 /TeomNS o 2flamaERE0ORE0D B st 2

Decoding on BSC: Bit-Flipping Algo

@ Step 2: First Iteration: Check the parity-check sets containing bit
1 to see if they are satisfied.

@ All the three parity check set #1, 6, 11 are violated.

all the parity check sets containing 1, 6 and 11 are violated. What does that mean? It means

that there is a very large likelihood of this particular bit

(Refer Slide Time 15:39)

being received in error.

(Refer Slide Time 15:44)
=) L "] e | |G 8 & @ \.ﬁ
7o/ ToOomMNEG L S RENE0ONE00 B s o

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check sets containing bit
1 to see if they are satisfied.
@ All the three parity check set #1, 6, 11 are violated.

@ Since all three of the parity check-set containing bit # 1 are
violated, there is a strong possibility that bit #1 is in error.

Hence what do we do? Then we

(Refer Slide Time 15:47)
d 50 segsiaaaans
o TommMa o [FaaENEEONE 00 W swmwoms 2

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check sets containing bit
1 to see if they are satisfied.
@ All the three parity check set #1, 6, 11 are violated.

@ Since all three of the parity check-set containing bit # 1 are
violated, there is a strong possibility that bit #1 is in error.

@ Flip the first received bit # 1 from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied).

are going to flip this bit 1. Whatever this bit was, we are going to flip it and again check the

parity check constraints. So earlier this bit was received as

(Refer Slide Time 16:04)
a iwQ ; laaaaqd
O 7TOmMMA - comUENBEEENEC0 W smnmoms 12

Decoding on BSC: Bit-Flipping Algorithm

Example 1: Single transmission error case
Transmitted bits= {0,0,0,0,0,0,1,1,1,1,1,1,1,0,1,0,1,1,0,0}
Received bits={1,0,0,0,00,1,1,1,1,1,1,1,0,1,0,1,1,0,0}

@ The first bit is received in error.

@ Decoder will try to correct the error.

1. We are going to flip it to zero and again try to check the parity check equations. Now note

(Refer Slide Time 16:11)
E " a i r\J & a ‘lf‘

fo Tommma ¢ =hpEennoeE00m smmwm

| parity-check set

1 -L],l2.3.4} o] [

2 | {5678}~ !
3 {9.10,11,12} v

4 {13.14,15,16} 1"

5 | {17.1819,20} -

6 {115,913} s—+—

T {2,6,10,17}

8 {3,7.14,18} T

9 {4,11,15,19} T

10 {8.12,16,20}

11 {[;[6,12,18]+-——

12 {2,7,11,16}.~

13 {3.8,13,19} v

14 {4.9,14,17} —

15 {5.10.15.20} ~1 .

that when we flip this bit, this bit is now no longer in error, these bits are no longer in error so
then these parity check constraints will also be satisfied. Hence we are able to correct single

error. So when

(Refer Slide Time 16:31)
doeiegsekewsiaaaanE

fa Teompa ol so IEENERNONECC W swwms 2

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check sets containing bit
1 to see if they are satisfied.

@ All the three parity check set #1, 6, 11 are violated.

@ Since all three of the parity check-set containing bit # 1 are
violated, there is a strong possibility that bit #1 is in error.

@ Flip the first received bit # 1 from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied).

we recompute the syndrome we will see that all the parity check constraints because there

was only single error

(Refer Slide Time 16:39)

which were able to detect

(Refer Slide Time 16:40)
i o a ’ I RO} \.r_:.:

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check sets containing bit
1 to see if they are satisfied.

@ All the three parity check set #1, 6, 11 are violated.

@ Since all three of the parity check-set containing bit # 1 are
viclated, there is a strong possibility that bit #1 is in error.

@ Flip the first received bit # 1 from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied).

@ All the parity equations containing bit 1 are satisfied, hence the first
bit is decoded as 0.

and we were able to correct it. So hence the first bit will be decoded as 0 and same procedure
we will follow for other bits as well. And since there was no error in other bits all the parity

check sets involving those bits will already be satisfied so we will be able to successfully

(Refer Slide Time 17:02)
3 X80 = W QA aaaT

fa rToomma ol

Decoding on BSC: Bit-Flipping Algorithm

Example 2: Two transmission errors case

Transmitted bits= {0,0,0,000,1,1,1,1,1,1,1,0,1,0,1,1,0,0}
Received bits={1,1,0,0,00,1,1,1,1,1,1,1,0,1,0,1,1,0,0}

@ First two bits are received in error.

decode it, Ok.
Now let’s look at the case when there are 2 errors. So the same transmitted codeword we

have considered. In this case now we have considered there are 2 errors, in bit location 1

(Refer Slide Time 17:17)
a i®Q ; aaaaad
O ’7TOomM MO Q- coMEENBEENEC0 W smmoms

Decoding on BSC: Bit-Flipping Algorithm

Example 2: Two transmission errors case

Transmitted bits= {0.0,0,00.0.1,1,1,1,1,1,1,0,1,0,1.1
Received bits—@0‘0.0.0.1.1.1.1‘1.1.1‘0.1.0.1.1.0.0}

@ First two bits are received in error.

and bit location 2. Now let's see how our L. D P C decoder will be able to decode this.

(Refer Slide Time 17:25)
o &0 e glsilaaeead
TV EENEEEOOEECC W s

Decoding on BSC: Bit-Flipping Algorithm

Example 2: Two transmission errors case

Transmitted bits= {0,0,0,000,1,1,1,1,1,1,1,0,1,0,1,1,0,0}
Received bits={1,1,0,0,00,1,1,1,1,1,1,1,0,1,0,1,1,0,0}
@ First two bits are received in error.

@ Decoder will try to correct bit #1 and 2.

So

(Refer Slide Time 17:28)
glei®ns eeesgsilaaaang
7a/Toomma c L[*VREENEEEORE00 B swom o

Deco

again we follow the same procedure. We draw the parity

(Refer Slide Time 17:32)

check set tree with each node at its base. So we start

(Refer Slide Time 17:37)

a A®0O kessaaaansd
fa 7Tomm M ol o mAENBEEENEC0 W swwmoms 2

Decoding on BSC: Bit-Flipping Algorithm

@ Step 1: Construct parity check-set tree.

0Bz _ 18 2. A

17
017180 018, 00 9 0 V% 50" 5o B¢ Rl
| r 19||'9aL 18'51.7-””&) L;a]|a1(ir11¢‘)19 Il
4;10111) 14 k”5~| I? 79 !4#? 3"'%)7 .],ﬁ;-w Tlr 78
| IJ 1110 110 | “ i hr |
T <:”f°.u";’ 4\15?'{ 980850 He 3
\ / \[\/ \/ \.-’ W %
\ ‘{»{_Jw L VDY D VA V4
2 34 § 9'\ 13 6_..--"""'2 18
i
with node number 1, we construct the
(Refer Slide Time 17:40)
d =~ =0 I laaaaag

@ Step 1: Construct parity check-set tree,

Bgz _ 18,
Ao [|
1

f1
7 ljj;”' $8° 60 1‘}--.* 15#(?19 i

'mﬁn L[‘IS TI 9 Ta
00
| |

e
%l‘IU 11J]J 41 q\eﬂs 4| f 7] Y10 Q
| | [10l 110 | ‘ |J | hr |
Qe ?ﬂw Qr aﬁre\"‘i?ll J'.Ils PR 0 ...‘43\#\1‘)5?5(9 “f\l) Q' 3
R —d N
2 3 4 5 9 MW 6 712 W

parity check set tree.

(Refer Slide Time 17:44)
o = v] & & {;[—} @, & @, ‘ﬁ

ot P

o Tommma o &l EEOEECC W sesnoms 12

parity-check set
{1,234}
{5,6,7.8}
{9,10,11,12}
{13,14,15,16}
{17.18,19,20}
{1.5.9.13]
{2.6,10,17)

{3.7.14,18}
5 [14.11,15.19]
10 {8.12,16,20}
11 | {1.6.12,18]
12 | {2.7.11,16}
13| (381319}
14 | {49.18.17)
16 {5.10,15.20} -

And these are the parity check sets, 15 parity check sets corresponding to the parity check

w| o] ~| o] | & | ha| =3k

matrix given to us.

(Refer Slide Time 17:55)
d ~®0 ¢ & x/s1Q a
PO 7’7TOmmMA g f|leks

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check set containing bit
#1 to see if they are satisfied.

Now in the first step what we do is we check the parity set containing bit number 1 and we

see if all the parity check constraints are satisfied. So what all are we going to do? We are

(Refer Slide Time 18:13)
i A©0 o« ilaaa e

faToomma o e

parity-check set
{1.2.3.4}
{5.6.7.8}
{9.10.11.12}
{13,14,15,16}
{17,18,19,20}
{1,5.9.13}
{2,6,10,17}
{3.7.14,18}
{4.11,15,19}
10 | {8,12,16,20}
11 | {1.6,12,18}
12 | {27,116}
13| (381319}
14 | (491417}
15 | {5.10,15.20}

going to look at all these parity check sets which have 1 in them. So this is our parity check

w| o] ~| o] | & W] ra| =[Gk

set 1, 6 and 11. Now will this be satisfied? Yes it will be satisfied. Why? Because this was

also in error and this was also in error. So this parity check

(Refer Slide Time 18:34)
o 50 S e a e q ‘E

20 7TooM M o o MEENEDCOREIC W smwoms 2

parity-check set
&sa 44—
{5.6.7.8}
{9.10,11,12}
{13,14,15,16}
{17,18,19,20}
{1,59,13} <
{2,6,10,17}
{3.7.14,18}
{4.11,15,19}
10 | {8.12,16,20}
11 {1,6,12,18} =
12 | {27.11,16}
13 | (381319}
14| {491a17)
15 {5.10.15.20}

equation will be satisfied because 2 bits are in error, Ok. What about this? This parity check

|o|m-.lc'-mhmm-—=t:

i

set will not be satisfied. Why? Because 5, 9 and 13 were received correctly but 1 was not

received correctly so this parity check

(Refer Slide Time 19:06)
dlei®gs: ¢eesssiaaaany
Fa/’7Teo MBS Q@R o ARENEDONE D M swnoms 12

Parity-check set

parity-check set
R34 44—
{5.6,7.8}
{9.10,11,12}
13,14,15,16}
17,18,19,20}
{15913} =K
{26,10,17}
{3,7,14,18}
{4.11,15,10}
10 | {8.12,16.20}
11 {1.6,12,18} =
12 {2,7,11,16}
13 {3,8,13,19}
14 | {49117
15 {5.10.15.20}

set will not be satisfied. Similarly here 6, 12 and 18 will be, are received correctly but 1 is

0| co| ~| | tn| | o | |38

i
x

not. So then this parity check set will not be satisfied. So what we have seen here in the case

of double error is

(Refer Slide Time 19:13)

two of the parity check set involving 1 is not satisfied where as 1 is satisfied. Now what does

(Refer Slide Time 19:21)
d Aa®0a e > Q] aanE

o ToommMa g o muEENBEONECC W swwms 1

| parity-check set
1 54 ="
2 {5.6.7.8)
3 {9.10,11,12}
4 | {13,14,1516}
5 | {17.18,19,20}
6 {15213} =+ %
7 {2.6.10,17}
] {3.7.14,18}
"9 | (4111510} |
10 | {8.12.16,20}
11 (161218} =+ %
12 | {27.11,16}
13 | {3.8.13,19}
14 {4.9.14.17}
15 [{5.10.15.20} .

that tell us? It tells us since majority of them are not satisfied it is likely that bit 1 was in error

so we are going to flip it and try to

(Refer Slide Time 19:32)
a . o e L\‘I |G 8 & & \ﬁ
20 7Too MM o[- o MEENEDONEIC W smwoms 2

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check set containing bit
#1 to see if they are satisfied.
Pt ——

do the same thing again. So

(Refer Slide Time 19:35)
= . a i DI--:\R"\';"'Q""\ \.l'__}
o TommMM o [F~vaRENEEEWE 0 W swmoms 2

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check set containing bit
#1 to see if they are satisfied.

@ Two of the three parity check set #6 and 11 are violated. Parity
check set #1 is satisfied.

since 2 of the parity check sets are violated, it is likely that bit 1

(Refer Slide Time 19:43)
i w®0 : silaaaaqT
g »TommmMa g rrppEeEEENE 00 W swwom 1

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check set containing bit
#1 to see if they are satisfied.

@ Two of the three parity check set #6 and 11 are violated. Parity
check set #1 is satisfied.

@ Since majority of the parity-check set containing bit #1 are violated,
there is a strong possibility that first bit is in error.

is in error because majority of the parity check sets containing 1 are not satisfied.

(Refer Slide Time 19:53)
dOBiasnekesgsilaaaang
70 /ToomMEd C A “VEEENEEORE00 B swwm =

Decoding on BSC: Bit-Flippir

@ Step 2: First Iteration: Check the parity-check set containing bit
#1 to see if they are satisfied.

@ Two of the three parity check set #6 and 11 are violated. Parity
check set #1 is satisfied.

@ Since majority of the parity-check set containing bit #1 are violated,
there is a strong possibility that first bit is in error.

@ Flip the first received bit from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied.

So what do we do if majority of them are saying they are not satisfied, we are going to

(Refer Slide Time 19:59)

flip that bit. So we are going to

(Refer Slide Time 20:02)
d ~T0

QKRG ‘.I =

fa ’Teomua gl s EEEREEONECC W swwms

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check set containing bit

#1 to see if they are satisf

ied.

@ Two of the three parity check set #6 and 11 are violated. Parity

check set #1 is satisfied.

@ Since majority of the parity-check set containing bit #1 are violated,
there is a strong possibility that first bit is in error.

@ Flip the first received bit from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied.

flip the first bit from 1 to 0 and again recompute our parity check constraints. So let's do that.

So this bit has been flipped. Now if this bit has been flipped what's going to happen? If this

bit is flipped, now this bit has been corrected but 2 was in error so this parity check set which

was already getting satisfied

(Refer Slide Time 20:29)
E e o T |&Q @ a ‘ﬁ

o ToommMMA g Bfee

EEEEEEOOEEC O W seshoms 12

| parity-check set

1 @54 ++ X
2 {5.6.7.8}

3 | {9.1011.12}

4 | {13,14.15,16}

5 | {17.18,19,20}

6 {15913} <=+
7 {2,6,10,17}

8 {3.7.14,18}

9 | {411,1519} |
10 | {8.12,16,20}

11 | {16.12,18} =+
12 | {2,7.11,16}

13 | (381319}
14 | (491417}

15 | {5.10,15.20}

is now not getting satisfied. What about this? It is getting satisfied.

(Refer Slide Time 20:34)
ﬂ - o e - Sl CG 8 & | \-I:J

70 /' ToOo MBS cl-+eMEENEENEORNECC W smmwms 2

parity-check set
{1234} -
{5.6.7.8}
{9.10,11.12}
{1314,15,16}
{17.18,19,20}
[15913] < v~
{2,6,10,17}
{3.7.14,18}
{4.11.15.19}
10 | {8.12,16,20}
11| {1612.18] =
12 | {27.11,16}
13 (381319]
14 | {49417}
15 | {5.10.15.20}

'olm"“"u"hwru.-:k

|

What about this? It is getting satisfied.

(Refer Slide Time 20:38)
ﬂ e Q i = { 3;‘.\ [+ ':'.-'Q. -[.L ‘ﬁ
faToommaed

parity-check set
{1234} =
{5.6.7.8}
{9.10,11,12}
{1314,15,16}
{17.18.19,20}
[15913] <+ v~
{2,6,10,17}
{3,7,14,18}
9 | {4,11,1519}
10 | {8.12,16,20} :
11 | {161218] a4 v~
12 | {27.11,16}
13| (381319}
14 | {491417)
15 | {5.10.15.20}

So two of them are getting satisfied, one of them is not getting satisfied. So then first iteration

ool ~1| o tn| o] o] po|

is not enough to

(Refer Slide Time 20:46)
o L Y] regsilaaaand

fa TomMMA Q- co MEENEEENEC 0 W sonoms |12

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check set containing bit
#1 to see if they are satisfied.

@ Two of the three parity check set #6 and 11 are violated. Parity
check set #1 1s satisfied.

decode this bit

(Refer Slide Time 20:48)
a img . lsilea e aad

o »TommMa gl aENEEEWE O W 5w mom 2

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check set containing bit
#1 to see if they are satisfied.

@ Two of the three parity check set #6 and 11 are violated. Parity
check set #1 is satisfied.

@ Since majority of the parity-check set containing bit #1 are violated,
there is a strong possibility that first bit is in error.

(Refer Slide Time 20:49)

d

vt a ¢ \ J- G 8 & q \E

7o/ Toowma e[eenm BEEOEECC W swsmoms 12

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check set containing bit
#1 to see if they are satisfied.

@ Two of the three parity check set #6 and 11 are violated. Parity
check set #1 is satisfied.

@ Since majority of the parity-check set containing bit #1 are violated,
there is a strong possibility that first bit is in error.

@ Flip the first received bit from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied.

(Refer Slide Time 20:51)

o

LB elessaaaand

Qo ”7TOm=mMA

[=i aEEEROREO0 B s o

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check set containing bit
#1 to see if they are satisfied.

@ Two of the three parity check set #6 and 11 are violated. Parity
check set #1 is satisfied.

@ Since majority of the parity-check set containing bit #1 are violated,
there is a strong possibility that first bit is in error.

@ Flip the first received bit from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied.

@ Parity check-set #6 and 11 are satisfied, but #1 failed.

because parity check set first fail, there were 2 single errors,

(Refer Slide Time 20:57)
d ~©c0O reglsaaaan

fa ’Tomm MO o - “AnENEEENEC 0 W swwms 1

Decoding on BSC: Bit-Flipping Algorithm

@ Step 2: First Iteration: Check the parity-check set containing bit
#1 to see if they are satisfied.

@ Two of the three parity check set #6 and 11 are violated. Parity
check set #1 is satisfied.

@ Since majority of the parity-check set containing bit #1 are violated,
there is a strong possibility that first bit is in error.

@ Flip the first received bit from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied.

@ Parity check-set #6 and 11 are satisfied, but #1 failed.

@ Hence the first iteration is not sufficient to correct the errors.

two errors so first iteration is not sufficient to correct the errors. So then we will go to the

next tier.

(Refer Slide Time 21:04)

E #u a i~ v |'X| G
FarToomma o Bl

& o \I:J

EEEEOOREC O W smom o

Decoding on BSC: Bit-Flipping Algorithm

@ Step 3: Second lteration: Check the parity-check set containing bits
in the first tier of the parity check-set tree to see if they are satisfied.

Next iteration we will check parity check set containing bits in the first tier of the parity
check constraint of the tree. And we will see if they are satisfied. So what we are going to do

is we are going to go

(Refer Slide Time 21:22)
d %0 = | Qaaaaqd
fa 7TommMMA R co MEENEEENEC 0 W swmoms 2

Decoding on BSC: Bit-Flipping Algorithm

@ Step 1: Construct parity check-set tree.
-~ £ 29 12 15 20
@17 160 018, (O ' o hq 14
[e s|w & 9959 9

REAT ,5 1 "i i 19 I
10 | A1
=Y ’)141:1("5 AN 14‘)f ik Tho 17 7

I
e ?Ld,aJ,«BBJ’U'L‘“ | ha Al 8l p7 Q_L

il
A

3J71\|')S ¥ \g f. i

\ -' \ \ / \ / .l" TRV R R W,

el \/ \/ f f o\ \ ." /

\:. s;’,_;n, LY VY Y

a~_4 5 gl 3§ 12 11

in the first tier. So we are now going to look at these bits. And we are going to

(Refer Slide Time 21:27)
o &0 ! jaaeead
fa ’TommM M - coMmUENEDENECC W swmoms 2

Decoding on BSC: Bit-Flipping Algorithm

@ Step 1: Construct parity check-set tree.

20 42

1780 T psj To | [A
I L | L 1_‘,)
110 11:1) -_rmq.\(”s | "l‘? T|
| | o
Q6 7.{" Qo7 8 lt\"“:;}l \{J;UL g
\\\ [\ [V

see if the parity check sets involving these bits, 2, 3, 4, 5 if the parity check sets involving
these bits, are they getting satisfied? If they are getting satisfied, fine. If they are again not
getting satisfied then we will have to again flip the bits to make them satisfied. So this is how

we are going to proceed. So let's look at second iteration.

(Refer Slide Time 21:52)
a0sx®als el sF2aaaaf

7o ToomMEd o) « o ARENEEOREOC W swnoms 1

Decoding on BSC: Bit-Flipping Algorithm

@ Step 3: Second lteration: Check the parity-check set containing bits
in the first tier of the parity check-set tree to see if they are satisfied.

Now what we are

(Refer Slide Time 21:55)
ﬂ - 7] r\l |G, Q & & \.ﬁ
Fa ’7TomM M - comUENEEENEC 0 W s 2

Decoding on BSC: Bit-Flipping Algorithm

@ Step 3: Second Iteration: Check the parity-check set containing bits
in the first tier of the parity check-set tree to see if they are satisfied.

@ Parity check set containing bits 3(#8 and 13), 4(#9 and 14), 5(# 2
and 15), 9(# 3 and 14), 13(# 4 and 13), 12(# 3 and 10), 18(# 5
and 8) are satisfied. One of the parity check set containing bit 6(#
2) is also satisfied.

going to notice is that since bit 3 was not in error, bit 3, 4, 5, 9, 13, 12 and 18 these are, these

will get satisfied.

(Refer Slide Time 22:10)
d ieQ e wle @ aaeqd

7o /Toowua el +o NEENENEIRNEO 0 W senoms 2

| parity-check set
1 @sey =+ X
2 {5.6.7.8}
3 | {9.1011.12} |
4 {13,14,15,16}
= £
6
7
8

~{17,18,19.20}

15913 + v~

{2,6,10,17}

{3.7.14,18}
9 {4.11,15,19}
10 | {8.12.16.20}
11 {1.6.12.18} =
12 [{27116}
i3 {38.13,19}]
14 {4.9,14,17}
15 [{5.10.15,20}

So if you go back to the parity check set diagram,

s

(Refer Slide Time 22:15)

e Y v P e |G Q @ @ \.ﬁ
T30 /7TOD M MO o e

@ Step 1: Construct parity check-set tree,

i e
[17160 ‘.r1319'|']'19

this was not in error and this involves 18, 14, 7, none of these was in error. Similarly this

involves 8, 13, 19, these were not in error. So all the parity check sets

(Refer Slide Time 22:28)
ﬁ - v 3 Y |G Q & & \.ﬁ
fa ’TomMMA gl o mEENEEENEC0 W sonoms |12

Decoding on BSC: Bit-Flipping Algorithm

@ Step 1: Construct parity check-set tree.

T'I?Iﬁ.) [13 -&],19 P raj

‘1011J)14 ?l 11

1:1\(115 [\l? IW] 9 s"‘) 7 'T"‘ﬁo '
2l
LA

r
o
-
——0
Ay
~
[--]
e—

containing 3 will be satisfied. What about 4? 4, 11, 15, 19 they were not received in error.

Similarly 4, 9, 14, 17 were not received in error. So these parity check sets were satisfied.

(Refer Slide Time 22:41)
a S o v - (G 8 & @ \E
20 7Too MM o +o MEENBONONEIC W smwom 2

Decoding on BSC: Bit-Flipping Algorithm

@ Step 1: Construct parity check-set tree.

17
00, 9 2?

\

. 0 Baz . 2,20 14
"] oot 1o 1708 a e I3 17
| | 14, |19 11 15 1d d 119

y Y 0 04 | 31| A 11 18 L

Lll it 11]’ 4'141q'\ﬁ15 | |7 L[] ‘4\1|" ﬂl!‘? Y7 '”hg T1 ?'!ll

: | |J [10 ho | | | | b7 |

Q6 7} o7 84)l‘ sLJ 6% 4“? .»;'43??5%-“.-9 B‘L o 3
/ AT

_ L

% F X \ |

e g \ \ | \ .' / !
f X T ;]
. g

5, 6, 7, 8 these will be satisfied. 5, 10, 15, 20 again these will be satisfied. Similarly 9, 10, 11,
12 no error in any of the bits. So this parity check equation will be satisfied. Similarly 17, 14,

4 so this will be satisfied.

(Refer Slide Time 22:59)

7| ienQ e w5 aaaaqd
7o Toomud o[- o REENEEEONEC T M swmom o

Decoding on BSC: Bit-Flipping Algorithm

@ Step 1: Construct parity check-set tree.

(22 - Fa)
[1? m[L["aml*psi i “J fz#r‘ '|Jm1§“]'a1'$
%l;‘IUHIJ Li)hlq 45 1
Q\l\i\ ?J%u

13, this has 16, 15, 14 and 13, none of the bits are in error. So this will be satisfied. Then 3, 8
19, 13 again this will be satisfied. What about

(Refer Slide Time 23:14)
E “ D

% 2
T'I?iﬁc)ms 00 0o Bd2 18 o

0 - 0."q. ¢
o[1o | [r 197478 & r
L] I 14 1 |
%lnu 11111 r_}l}mq 151?% IT‘? :rﬁﬁ ,4‘5 ?ljal!) \:\?1#?101#(?’19 7L
Qs 7:1;. b ¢ (l . rll %’L‘J
\WAY \ \/

this? 6, 5, 7 and 8 none of those bits are in error so this will be satisfied. This will be
satisfied.

(Refer Slide Time 23:23)
d Aas0selksssiaaaany

o 7TomM MO b co MUENEEENECC W sonmoms 2

Decoding on BSC: Bit-Flipping Algorithm

@ Step 1: Construct parity check-set tree,

But what about this? 6, 2, 10 and 17; now this bit is in error.

(Refer Slide Time 23:30)

| PR Y- IERAE jeaqaad
20 7Toowua ol o mEENEONOREIC W swmwm 2

Decoding on BSC: Bit-Flipping Algorithm
@ Step 1: Construct parity check-set tree.

[1?1&) 018, 119“‘”5 f‘*
%101” 1)14 >¢15% i
[

08 71«<781)p9¢“1 LMD
\ I \ /\ \| r

This bit is in error. So this particular parity check equation will not

(Refer Slide Time 23:37)
a io0 ke slaaaeqd
o TommMMA Q|- comEENEEEREC0 W swmom 1

Decoding on BSC: Bit-Flipping Algorithm

@ Step 1: Construct parity check-set tree. \?/\

get satisfied. What about this, 12, 9, 10, 11, this will be satisfied. 12, 8, 16, 20 this will be
satisfied. Similarly 18, 17, 19, 20 this will be satisfied. 18, 3, 7, 14 this is also satisfied. What

about 27? This will be not satisfied.

(Refer Slide Time 24:02)
a L [#] tie ¢ o =lQ Qaq ‘.ﬁ
PO 7Too MM oL +o MEENERNONEIC B smwm 2

Decoding on BSC: Bit-Flipping Algorithm

And similarly this will be not satisfied.

(Refer Slide Time 24:06)
gl Bi2gs: ¢ekesssiaaaanT
r@ ZTOm @ MO oL co ARENEDONETD W swsnoms 12

Decoding on BSC: Bit-Flipping Algorithm

So what we can see is the parity check sets involving 2 is not

(Refer Slide Time 24:14)

getting satisfied. Because here

(Refer Slide Time 24:16)
doBisnseessaaaand
fao Teowmua cfiso MEEREEDOENECC W s

Decoding on BSC: Bit-Flipping Algorithm

there was 2, here there was 2, here there was 2, it is not getting satisfied. Two of them are not
getting satisfied. And the third one is which involves 1, 1, 2, 3, 4 this is getting satisfied. This
is also not getting satisfied because 1 was corrected, 3 and 4 are correct so this is also not

getting satisfied. So what we notice is parity check sets containing 2 are not

(Refer Slide Time 24:44)

getting satisfied.

(Refer Slide Time 24:46)
E L] D i . . B_I L .‘-‘\ ‘...\ ..I\ I.l.\ \-ﬁ
fao Temmea g EaEEERONE00 B s o

Decoding on BSC: Bit-Flipping Algorithm

@ Step 3: Second Iteration: Check the parity-check set containing bits
in the first tier of the parity check-set tree to see if they are satisfied.

@ Parity check set containing bits 3(#8 and 13), 4(#9 and 14), 5(# 2
and 15), 9(# 3 and 14), 13(# 4 and 13), 12(# 3 and 10), 18(# 5
and 8) are satisfied. One of the parity check set containing bit 6(#
2) is also satisfied.

@ Both the parity check set (# 7 and 12) containing bit 2 and one of
the parity check set containing (# 7) containing bit 6 are violated.

In that case what do we do, we are going to flip the bits. So parity check sets containing bit 2
are not getting satisfied. Again one of the constraints containing bit 6 has bit number 2 and it

was not getting satisfied.

(Refer Slide Time 25:05)
3 imo s el aeenEd

70/ To=mmud 2 A nENR0ORE00 B s

Decoding on BSC: Bit-Flipping Algorithm

@ Step 3: Second lteration: Check the parity-check set containing bits
in the first tier of the parity check-set tree to see if they are satisfied.

@ Parity check set containing bits 3(#8 and 13), 4(#9 and 14), 5(# 2
and 15), 9(# 3 and 14), 13(# 4 and 13), 12(# 3 and 10), 18(# 5
and 8) are satisfied. One of the parity check set containing bit 6(#
2) is also satisfied

@ Both the parity check set (# 7 and 12) containing bit 2 and one of
the parity check set containing (# 7) containing bit 6 are viclated.

@ Bit 2 is commen in all of these three parity check set as well as the
parity check #1 which was violated after first iteration.

So bit 2 was common in all the

(Refer Slide Time 25:10)
dhEsie0 ¢ksssaaaany

P Toom A g co MUENDEENECC W swmoms 12

Decoding on BSC: Bit-Flipping Algorithm

@ Step 3: Second Iteration: Check the parity-check set containing bits
in the first tier of the parity check-set tree to see if they are satisfied.

@ Parity check set containing bits 3(#8 and 13), 4(#9 and 14), 5(# 2
and 15), 9(# 3 and 14), 13(# 4 and 13), 12(# 3 and 10), 18(# 5
and 8) are satisfied. One of the parity check set containing bit 6(#
2) is also satisfied.

@ Both the parity check set (# 7 and 12) containing bit 2 and one of
the parity check set containing (# 7) containing bit 6 are violated.

os common in all of these three parity check set as well as the
parity check #1 which was violated after first iteration.

parity check sets which

(Refer Slide Time 25:12)

were not getting satisfied. So

(Refer Slide Time 25:15)
E " [P p - [G G q o \F
fa »TooMNA gl co mEENEEONEC0 W swmom 1

Decoding on BSC: Bit-Flipping Algorithm

@

Step 3: Second lteration: Check the parity-check set containing bits

in the first tier of the parity check-set tree to see if they are satisfied.

@ Parity check set containing bits 3(#8 and 13), 4(#9 and 14), 5(# 2
and 15), 9(# 3 and 14), 13(# 4 and 13), 12(# 3 and 10), 18(# 5
and 8) are satisfied. One of the parity check set containing bit 6(#
2) is also satisfied

@ Both the parity check set (# 7 and 12) containing bit 2 and one of
the parity check set containing (# 7) containing bit 6 are violated

@ Bit 2 is common in all of these three parity check set as well as the

parity check #1 which was violated after first iteration

@ Hence, there is a strong possibility that second bit is in error

what we do is we think that second bit is in error and we are going

(Refer Slide Time 25:20)
i 0 e e gsilacaaanm
7o/ Toommo g MREENEEDCREE00 B s o

Decoding on BSC: Bit-Flipping Algorithm

@ Flip the second received bit #2 from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied.

to flip the second bit. So we flip the, second bit was 1, we flip it to 0 and we are going to
recompute all the syndrome. Now we notice that parity check constraints are satisfied.

Because the 2 bit was in error; after we have flipped

(Refer Slide Time 25:38)

it, we will see that all the bits involving 2, all the parity check sets

(Refer Slide Time 25:45)
ghessdeeesssiaaaag
70 /’Toommma o[- +o MAERBROOREO0 B swwms 2

oding on BSC: Bit-Flipping Algorithm

@ Flip the second received bit #2 from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satishi

involving bit 2 are now getting satisfied

(Refer Slide Time 25:47)
dlBi®0 ew;,wg&&&aﬁ

@ Flip the second received bit #2 from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied.

@ All the parity check sets at first tier are satisfied.

and hence we are able to correct all errors. So if there are 2 errors, you can see that

(Refer Slide Time 25:55)

one iteration was not enough, we had to go

(Refer Slide Time 25:58)
a3 [o i]-\|"'. R Q Q o \.I'__j
fao Teomues gl e oRE00 B s o

Decoding on BSC: Bit-Flipping Algorithm

@ Flip the second received bit #2 from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied

@ All the parity check sets at first tier are satisfied.

@ Now we check the parity-check sets at zero tier(containing first bit)
and they are also satisfied.

for 2 iterations. Ok. Now we go back and check at 0 tier and we see that at O tier also all the

parity check sets are satisfied. So hence we have successfully

(Refer Slide Time 26:12)
H - a " s 'Dl' |G Q& & ‘.ﬁ
fa Tommmalod EEEEE O ORE OO W s

ecoding on BSC: Bit-Flipping Algorithm

@ Flip the second received bit #2 from 1 to 0 and recompute the
syndrome(check whether the parity constraints are satisfied.

@ All the parity check sets at first tier are satisfied.

@ Now we check the parity-check sets at zero tier(containing first bit)
and they are also satisfied.

@ Hence the first and second bits are decoded as 0's.

decoded the first and second bit to be zeroes. And all other bits were received

(Refer Slide Time 26:18)
dDELa®0s ekespsaaaang
Ta/'r@mmm@ G- I I | I"I=1=] I -Isis) QJETEERe

Decoding on BSC: Bit Flipping Algorithm

@ The decoder computes all the parity checks and then changes any
bit that is contained in more than some fixed number of unsatisfied
parity-check equations.

in correctly so there is no error. So then what the decoder does? It basically computes all the
parity check sets and then changes any bits that are contained in more than a fixed number of
unsatisfied parity check equations and then we recompute the syndrome, recompute the parity

check constraints and hopefully by flipping the bits which are

(Refer Slide Time 26:44)

common in most of the parity check constraints that are getting violated, we will be able to

(Refer Slide Time 26:51)
d Aa5Q e c@sacaaasd

O 7TooMMA gl co mEENEEERNEC0 W swwoms

Decoding on BSC: Bit Flipping Algorithm

@ The decoder computes all the parity checks and then changes any
bit that is contained in more than some fixed number of unsatisfied
parity-check equations.

finally correct

(Refer Slide Time 26:52)
b7 % a > l |a a e a ‘I__—;
AR DO EE O W s 2

Decoding on BSC: Bit Flipping Algorithm

@ The decoder computes all the parity checks and then changes any
bit that is contained in more than some fixed number of unsatisfied
parity-check equations.

@ Using these new values, the parity checks are recomputed, and the
process is repeated until the parity checks are all satisfied.

those errors. And each time after we flip the bits, we recompute the syndrome; check whether
the syndromes are satisfied. When all the syndromes are getting satisfied we have

successfully

(Refer Slide Time 27:05)
dleiog: ¢lespsaaaany
Tar'r@mmmﬂ oD ORE 0 W s 12

Decoding on BSC: Bit Flipping Algorithm

@ The decoder computes all the parity checks and then changes any
bit that is contained in more than some fixed number of unsatisfied
parity-check equations.

@ Using these new values, the parity checks are recomputed, and the
process is repeated until the parity checks are all satisfied.

@ If the parity check sets are small, this decoding procedure is
reasonable, since most of the parity-check sets will contain either
one transmission error or No transmission errors.

decoded the L D P C code. And since this size of parity check set is small, this decoding is

reasonable, it is not very hard and we can also do this

(Refer Slide Time 27:18)

process parallely. We can have a, for each parity check tree, for each of these bits and we can

(Refer Slide Time 27:24)
d AaBdls elkessiagaand
§a ’TomMMA gf-co MUENBDONEC0 W smmms

Decoding on BSC: Bit Flipping Algorithm

@ The decoder computes all the parity checks and then changes any
bit that is contained in more than some fixed number of unsatisfied
parity-check equations.

@ Using these new values, the parity checks are recomputed, and the
process is repeated until the parity checks are all satisfied.

@ If the parity check sets are small, this decoding procedure is
reasonable, since most of the parity-check sets will contain either
one transmission error or No transmission errors.

try to do this decoding in a parallel fashion.

(Refer Slide Time 27:27)
i - a i r.‘l-» e, 4 9

i I—-
N d

Decoding on BSC: Bit Flipping Algorithm

@ The decoder computes all the parity checks and then changes any
bit that is contained in more than some fixed number of unsatisfied
parity-check equations.

@ Using these new values, the parity checks are recomputed, and the
process is repeated until the parity checks are all satisfied.

@ |f the parity check sets are small, this decoding procedure is
reasonable, since most of the parity-check sets will contain either
one transmission error or No transmission errors.

@ Thus when most of the parity-check equation checking on a digit are
unsatisfied, there is a strong indication that that digit is in error.

And again this relies on the logic that a bit that is appearing in most of the unsatisfied parity

check equation that is most likely culprit.

(Refer Slide Time 27:42)

That's the one which is appearing most likely to be in error. And we are flipping that bit to

correct it,

(Refer Slide Time 27:49)
dlBas0 ¢tkeguaaaan
Tﬂfr@ﬂﬂlﬂcﬁ' 'BEENEDONE 00 W e w12

Bit Flipping Algorithm

@ The decoder computes all the parity checks and then changes any
bit that is contained in more than some fixed number of unsatisfied
parity-check equations.

@ Using these new values, the parity checks are recomputed, and the
process is repeated until the parity checks are all satisfied.

@ |f the parity check sets are small, this decoding procedure is
reasonable, since most of the parity-check sets will contain either
one transmission error or no transmission errors.

@ Thus when most of the parity-check equation checking on a digit are
unsatisfied, there is a strong indication that that digit is in error.

Ok. So with this I am going to conclude our discussion on decoding

(Refer Slide Time 27:56)

of L D P C codes over a binary symmetric channel. We will continue the discussion on
decoding of L D P C codes in the next lecture by discussing the probabilistic decoding
algorithm, thank you.

