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Lecture #11C: Problem solving session-V

So today we are going to continue with some more

(Refer Slide Time 00:18)

problems related to convolutional code. So let us solve some codes then we will move to our

other topic. So first
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Convolutional ¢

@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

question is on feed forward encoder inverse. So what is encoder inverse, we will talk in a
minute. So many a times, we are interested in estimating the information sequence directly
from the received sequence without decoding it. So for example if you are encoding a
sequence using systematic encoder, then you can directly from the received bits, you can get
back your information bits. However if you are using a non-systematic encoder then you
cannot directly get the information bits. So we are talking about encoder inverse which will

allow us to
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recover back the information bits directly without decoding.
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Convolutional codes

@ Problem # 1: Feedforward encoder inverse: How do we find an
. - - —
estimate of the information sequence from the received sequence
without decoding?

So in this problem we will look into what is an encoder inverse and under what condition the

encoder inverse exists. So
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Convolutional codes

@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G (D) = D' for some positive /.

as we know that our coded bits can be written as our information bits times this generator
matrix, encoding matrix and the problem that we are looking at is finding out the encoder
inverse and we will talk about whether a feed forward inverse for this encoding matrix exists
or not and under what condition it exists. So if there exists a feed forward inverse, then if we,

from the received sequence
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@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D). we need an inverse matrix
G (D) such that G(D)G (D) = D' for some positive /.

@ Then w(D)G (D) = u(D)G(D)G (D) = u(D)ID! = u(D)D’

if we just multiply by the encoder inverse we can get back our original information bits
without decoding after some delay. So this D 1 is some delay, D 1. So what we are saying is
we are interested in finding this encoder inverse. Does this encoder inverse exists? Feed
forward encoder inverse, does that exist such that G D, G inverse is some delay element and

what's the use of this? So if you have your information sequence v D,
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@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G_'(D) = D' for some positive /.

@ Then]v(DiG (D) = u(D)G(D)G (D) = u(D)ID' = u(D)D'

=

if it passes through this encoder inverse circuit, we can directly get back our information

sequence.
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Convolutional codes

@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence

without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G_'(D) = D' for some positive /.

° Then]v(DiG (D) = u(D)G(D)G }(D) = u(D)ID! —]u[D)b‘

And in many cases, for example if the channel conditions are good you may directly want to
first guess or check whether the information bits are directly, estimate information bits so you

may want to pass it through this encoder inverse circuit.
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@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G !(D) = D' for some positive /.

@ Then v(D)G (D) = u(D)G(D)G (D) = u(D)ID' = u(D)D'

@ For a rate R=1/n code, a feedforward inverse exists if and only if

GCD{g"(D).g'(D).-- .g" (D)} = D'

So I am now stating without proof the conditions under which these encoder inverse exist, a
feed forward encoder inverse exist. So for a rate 1 by n code, a feed forward inverse will exist
if the greatest common divisor between these n generator sequences of this rate 1 by n code,
if the greatest common divisor among these generators is some delay element, this | is

something which is greater than equal to 0. So
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Convolutional codes

@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G (D) = D' for some positive /.
@ Then v(D)G }(D) = u(D)G(D)G (D) = u(D)ID' = u(D)D'

@ For a rate R=1/n code, a feedforward inverse exists if and only if

GCo{g’(D).g'(D).-- g ')} =0 Az?

they don't have any term common in them, just some D times, basically some delay element.
So we don't want these generator sequences to have any term common between them. If they

have any term common between them, then a feed forward inverse would not exist.
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@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G !(D) = D' for some positive /.

@ Then v(D)G~}(D) = u(D)G(D)G (D) = u(D)ID’ = u(D)D’

@ For a rate R=1/n code, |a feedforward inverse|exists if and only if

6CD{g’(D).g'(D). - g (@)} =0 A2 0

Then there would be a feedback inverse. Similarly
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@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G }(D) = D' for some positive /.

@ Then v(D)G (D) = u(D)G(D)G (D) = u(D)ID' = u(D)D’

@ For a rate R=1/n code, a feedforward inverse exists if and only if
GCD{g"(D).g'(D).- - .g" (D)} = D'
@ For a rate k/n code, a feedforward inverse exists if and only if
GCD{A;(D) = D'}

where {A;(D)} is the set of all determinants of k x k submatrices.

for a rate k by n code a feed forward inverse will exist if and only if the greatest common
divisor, if we look at set of all determinants of k cross k sub matrices of this generator matrix,

then the g c d of this set of determinants should be again from D to power |
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@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G~ (D) such that G(D)G~!(D) = D' for some positive /.

@ Then v(D)G '(D) = u(D)G(D)G (D) = u(D)ID' = u(D)D'

@ For a rate R=1/n code, a feedforward inverse exists if and only if
6CD{g"(D).g'(D).- - ,g" (D)} = D'
@ For a rate k/n code, a feedforward inverse exists if and only if
cen{ai(p) =o'}

where {A;(D)} is the set of all determinants of k x k submatrices

where 1 is a positive number. So we don't want
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Convolutional codes

@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

9 Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G (D) = D' for some positive /.
@ Then v(D)G '(D) = u(D)G(D)G (D) = u(D)ID’ = u(D)D’
@ For a rate R=1/n code, a feedforward inverse exists if and only if
GCD{g"(D).g'(D).- - .g" (D)} = D'

@ For a rate k/n code, a feedforward inverse exists if and only if

cen{ayo) =o'} Lzo

where | A;(D)} is the set of all determinants of k x k submatrices.

the determinants of this k cross 1, all possible k cross k sub matrices to have any common

term among them. If this condition is satisfied a feed forward inverse exists.
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@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G }(D) such that G(D)G (D) = D' for some positive /.

@ Then v(D)G (D) = u(D)G(D)G (D) = u(D)ID’ = u(D)D’

@ For a rate R=1/n code, a feedforward inverse exists if and only if

GCD{g"(D).g'(D).- -~ .g" (D)} = D'

@ For a rate k/n code, a|feedforward inversejexists if and only if

cen{aip) =o'} Lzo

where {A;(D)} is the set of all determinants of k x k submatrices

. So let us
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Convolutional codes

e letGD)=1+D*+D® 1+D+ D+ D

take an example where feed forward inverse exists. So we are considering a feed forward rate

1 by 2. This is a rate 1 by 2 encoder.
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Convolutional codes

=
R=3

eletGD)=[1+D*+D® 1+D+D?+ D}

So g 0 D is this one
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Convolutional codes

i
4.(0) R=2
J

eletGD)=[1+D*+D* 1+D+D*+ DY

and g 1 D is this
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Convolutional codes

L]
M

.(0) (o)
%J %4’
eletGD)=[1+D*+D* 1+D+D*+ DY

and what is the common
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Convolutional codes

o LetGD)=[1+D?+ D 1+D+D?+ D

e GCD {1+ D% + D31+ D + D? + D*} = 1. Hence feedforward
inverse exists.

divisor between them? We can check basically they don't have any common terms. So the

greatest common divisor is 1. So if we go back
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@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

Salution: Since v(D) = u(D)G(D), we need an inverse matrix
G !(D) such that G(D)G}(D) = D' for some positive /.

@ Then v(D)G '(D) = u(D)G(D)G (D) = u(D)ID' = u(D)D’

@ For a rate R=1/n code, a feedforward inverse exists if and only if

6CD{g"(D).g'(D). - .g" (D)} = D'

@ For a rate k/n code, a|feedforward inverselexists if and only if
cen{ai(o) =o'} Lzo

where {A;(D)} is the set of all determinants of k x k submatrices

and look at our condition for
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Convolutional codes

@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G }(D) = D' for some positive /.

@ Then v(D)G (D) = u(D)G(D)G (D) = u(D)ID’ = u(D)D’

@ For a rate R=1/n code, a feedforward inverse exists if and only if

GCD{g"(D).g'(D).--- .g" '(D)} = D
@ For a rate k/n code, a|feedforward inverselexists if and only if
cen{ay(p) =o'} Lzo
i S |

where {A;(D)} is the set of all determinants of k x k submatrices.

encoder inverse to exist, this condition is satisfied. So for this particular
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Convolutional codes

R=1L
.02 (o) z
%Jr %.bb

oLe"tG[_D)-|1>D“’1E.'!J 1+ D+ D? + DY)

code with G D given by this will have a feed forward
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e LletG(D)=1+D?+D* 1+D+ D%+ DY
e GCD {1+ D? + D31+ D + D? + D?} = 1. Hence feedforward
inverse exists

@ In this case,

G I(DJ'_( D+ D?

encoder inverse and in this particular case the feed forward inverse is given by this, Ok. So
you can check G D, G D inverse will be 1. So you can just do a simple check 1 plus D square
plus D cube into 1 plus D plus D square plus 1 plus D plus D square plus D cube into D plus
D square. This is, so this is 1 plus D square plus D cube plus D times D cube plus D four plus
D square times D four plus D five then multiply this with this, we get plus D times D square

plus D cube plus D four plus D square plus D cube plus D four plus D five, Ok and let's see.
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e letGD)=[1+D*+D* 1+D+D*+ DY
@ GCD {1+ D? + D* 1+ D+ D* + D*} = 1. Hence feedforward __
inverse exists (_”;-*D’_)(Hpap )+

@ In this case, Cieo +0"4D ) (0357
1 1+ D+ D? !
G (D)= ( D+D? )= I+Dl+D3+DS+:D w7
+p v p¥ap” +
Drpr+p’+ DY
P o’ +p% ¢ DF

So D five, D five cancels out; D four,
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Convolutional codes

e LetG(D)=1+D?*+D* 1+D+D?+ DY
e GCD {1+ D? + D*.1+ D + D? + D*} = 1. Hence feedforward _:
inverse exists (1,_9*,9‘)0”'0 +‘_
@ In this case, - Cive -ﬂ:"*tD}) (.D”’
G'(D]—(H'DP-D.) =y 1 s
D+D? )= 4D D 4D +D 4D
"I'DL4—D~+-BF-|—
Drpr+p3eD Y
pirot+p* v pF

D four cancels
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e LletG(D)=1+D0°+D* 1+D+D*+ DY
e GCD {1+ D? + D3.1+ D + D? + D*} = 1. Hence feedforward L
inverse exists (J.,_D"'*D‘)(HDVD +

@ In this case, Cieo CELDE ] (v )

1 1{-D%—Dz 3 3 <+
8 (03_( D+D? )= 4D %D +D b P

"’DL4—D~*- -+
D+ o+ D34 0
s’ 4+ DF

out then this D four, D four cancels
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e LetG(D)=[1+D0*+D* 1+D+D?+ DY
e GCD {1+ D? + D1+ D + D? + D*} = 1. Hence feedforward .
inverse exists (I*D"‘_D‘)(HDO‘D +‘_
@ In this case, o Cieo orD ) (02
L ( 1 E}? E}'P ): DD+ D 4> 42
=+ DL4—B"+-HF-|—
D+ o+ pP+ 27
DL-e—n] -t_Ef* T Bf

out; D three, D three cancels out; D two, D two cancels out;
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e letG(D)=1+D0%+D* 1+D+ D%+ DY
e GCD {1+ D? + D1+ D + D? + D*} = 1. Hence feedforward e
Inverse exists bty orp /4
; (_1 o 4—1:.)(1.‘*3"') )
@ In this case, Civo+D 4D (o+s
1 1+ D+ D? -
G (D]_( D+ D? ): DD+ D #> 12
#DL+B**-BF-I—
D+ o+ P 0
p*l-e—.nx-tzf"rﬂf

D, D cancels out;
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e letG(D)=1+D0?*+D* 1+D+ D%+ DY
e GCD {1+ D? + D3.1+ D + D? + D*} = 1. Hence feedforward o
inverse exists. (1,_1,‘-,,9‘)(”0-0 +‘_
@ In this case, o C1¥D 554D) (oo
&= ( : E}? EJ‘D ): D D D
* DL+B’*+-BF'+
B’f,yﬁaﬂn‘* *‘
p*z-e—.nx-tﬁq'rpf

D three, D three cancels out; D two, D two cancels out;
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Convolutional code

e LletGD)=1+D*+D* 1+D+ D%+ DY

@ GCD {1+ D? + D1+ D + D? + D*} = 1. Hence feedforward b
inverse exists (1+o™s =) (eoen 7+

@ In this case, ) Clas *DLJ'D}) CD )

c'o)=( 15957 ). |g‘+§+§fw’w"
+ e pfip +
P’f,ﬁf%-ﬂafﬁ‘*i—
p’z-e—.nx-tﬂ‘rpf

so what we are left with is basically 1,
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e Let G(D) =1+ D%+ D* 1+D+D*+ DY
@ GCD {1+ D? + D*.1+ D + D? + D*} = 1. Hence feedforward iy
inverse exists o orp 2+
. (_1 o H:)(;H }) )
@ In this case, Cieo+D 4D (042
1+ D+ D?
G 1(0]_( D+ D? ): IR A e
+¢+B"+Hy+
Pt P 0

p’z-t—.ax-tﬁﬁrﬁf
=1

-

Ok so and you can see this is a feed forward inverse. So if you have your v D and you have
passed through, this, this thing what you will get is get back your information sequence, Ok,

get back information sequence.
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Convolutional codes

e letGD)=[1+D*+D* 1+D+D*+ DY
@ GCD {1+ D? + D31+ D + D? + D*} = 1. Hence feedforward

inverse exists Clwa-*p")(”g.-ph)+?
@ In this case, e gy, S0P #o4D") (049
. 2
o= (5e )- i
GG« ui + e phar +
I o Py gt ot

P’z-(—.aszﬂ‘rﬂi
=1
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@ Let

Now let us look for example for rate r equal to 2 by 3.
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Convolutional codes

@ Let

So in this case we first have to find the determinant of all 2 cross 2 sub matrices. So what are

those 2 cross 2 sub matrices? One of them is this, 1 plus D D D1 next one is 1 plus D D, 1

plus D 1, and the third one is D 1, 1 plus D, 1.
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= [H‘: ’D]- [1:: Iuﬂj;
3 B 40
@ Let [.J I J

1+D0 D 1+D
o~ (150 2 142)

So these are the three 2 cross 2 sub matrices
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Convolutional codes

@ Let o -
1 1+
so - (157 7 1°)

@ 2 x 2 determinants are given by {1 + D + D? 1+ D? 1}

and we can find out the determinant
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Convolutional codes

P i
3 B e
@ Let [:.J I J

1+D D 1+D
o~ (50 2 142)

in this case. In this case let's call it A, B and C.
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T
gz (WL

A [b J-ﬂﬂj
@ Let I I
[ =

In case of A, the determinant is 1 plus D plus D square in
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R=Z [H; f]- P:b ruwjﬁ
) A
@ Let [:Jb J}m.]

D D 1+D =
1 1

-
A | 4D 4D

case of B the determinant is 1 plus D plus D plus D square so that's 1 plus d square. And
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R= = Hpb ’D]- [l:‘ Ilﬂj;
-

A 8
B 4o
@ Let [:J |.]
1+D D 1+D =
G(D}_( D 1 1 =
,6.-.|‘“3“‘D = 2
j4#p & DFD = 1¥D

B s

Cis D plus 1 plus D, so that's 1.
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R=Z [H; *D:]-P: Ileé
3 B
@ Let [JB Jrn.]
G{D)—(IBD? 1:0) =

2=
A;|¢D4D 2

.
. }4p+ DD = 1¥D

B
s priHD=1

So these are the determinants of these 2 cross 2 sub matrices. And that's what
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@ Let

G{D}_( D 1 1

@ 2 x 2 determinants are given by {1+ D + D? 1+ D? 1)}

1+D D IFD)

I have listed here, 1 plus D plus D square, 1 plus D square and 1. Now we need to check what

is the greatest common divisor among them. And in this case
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Convolutional codes

@ Let
1+D D 1+D)

G(D)_( D 1 1

@ 2 x 2 determinants are given by {1+ D + D? 1+ D?.1}
e GCD {1+ D+ D21+ D31} =1

the greatest common divisor is again 1. So they don't have determinants of these 2 cross 2 sub

matrices do not have any term common among them. So in this case also
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Convolutional codes

@ Let
I1+0 D 14D
G(D)_( D 1 1 )

@ 2 x 2 determinants are given by {1+ D + D?.1 + D?.1}
° GED {1+ D+ D* 1+ D% 1} =1

@ Hence, feedforward inverse exists and is given by

0 0
G‘(D)—(l l+D)
1 D

a feed forward inverse exists and this is given by this, Ok. And again we can check that G D
G D inverse, this basically will be some delay elements where 1 is greater than equal to zero,

it will be something like this.
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Convolutional codes

@ Let
1+0D D 1-{-0)

G{Dl_( D 1 1
@ 2 x 2 determinants are given by {1+ D + D? 1+ D% 1}
e GCD {1+ D+ D?,1+ D21} =1

@ Hence, feedforward inverse exists and is given by

; L
GG @ =D

0 0 ize
G'D)=|1 1+D
1 D

————

We can verify this quickly. Let's see this will be 1 plus D times 0 and then this will be D 1
plus D, this is 2 cross 3 and this will be
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Convolutional codes

e 1+0 D 14D
B +
G(D) =
©=("5" 7 "") ..
@ 2 x 2 determinants are given by {1+ D + D%, 1+ D%.1}
e GD{1+D+D* 1+ D1} =1

@ Hence, feedforward inverse exists and is given by A L
GwG ®-D
0 0 120
GYD)=|1 14D
1 D
B

3 cross 2 matrix
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Convolutional codes

@ Let
1+D D 1+—D)
13

G{D)_( D 1 1

@ 2 x 2 determinants are given by {1+ D + D? 1+ D% 1}
e GCD {1+ D+ D21+ D31} =1

@ Hence, feedforward inverse exists and is given by - L
GwG @D
0 0 i1z
G'D)=| 1 1+D
1 D 1an

————

so what we will get is a 2 cross 2 matrix and so this will be some i times 2 cross 2 matrix. So
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Convolutional codes

@ Let
1+4D0 D 1+D
6o - )
o=l A
@ 2 x 2 determinants are given by {1+ D + D? 1+ D%.1}
e GCD {1+ D+ D21+ D31} =1

@ Hence, feedforward inverse exists and is given by

p L
GG ©) 0

0 0 1z
G'D)=| 1 1+D
1 D e

————

let's just work out. So this will be 1 plus D times 0, that is zero and then you have D times 1
and this is 1 plus D. So that's 1. First term will be 1. And this will be, multiply this by this, so
that's 1 plus D into O that is zero, D into 1 plus D so that would be D plus D square and then 1

plus D into D so that's again be D plus D square so this will be zero.
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Convolutional codes

@ Let
- 1_"'?_D.—1—i'—ﬂ
so)= (542

@ 2 x 2 determinants are given by {1+ D + D? 1+ D?.1}
e GCD {1+ D+ D21+ D31} =1

@ Hence, feedforward inverse exists and is given by

, L
GG © Ip
A 0 0- i1z
¥ ) c'(n)—(l 1+D)
I

———

Next multiply this row by this column, so what we get D times 0, one times 1, so that's 1 plus
1is 0 and if you multiply this by this, the second row by second column, what you get is zero

times D, one times 1 plus D and one time d, so that is 1 plus d plus d so that is 1. So again
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Convolutional codes

. I1+0 D
_i',_,_l_i'_ﬂ)
G(D) =
®) ( 2 R S PP
@ 2 x 2 determinants are given by {1+ D + D?,1 + D?.1}
° GED {1+ D+ D* 14 D1} =1

@ Hence, feedforward inverse exists and is given by

=Y 1
aw G © Ip

et
N = 0- Q- _’.30
! “‘““'Cﬂ G'(D)—(l l+D)
0 1 T | D o
s T

what we are getting for this case is G D, G D inverse is identity matrix. So 1 is zero
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@ Let

1_+Q_D.—1—i'—ﬂ)
G(D) =

o= (5 ).
@ 2 x 2 determinants are given by {1+ D + D? 1+ D% 1}
e GCD {1+ D+ D21+ D31} =1

@ Hence, feedforward inverse exists and is given by

F e
cw G © ID

v
L - 0- | L1z
1 O G'D)=|1 ph+D ok
0 1 1 (D [) 40 GOGWT
——— J

especially here. Ok
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Convolutional codes

@ Let
]-_"Q_'D.—J-—LD)
G(D) =
©) ( ..D___l._.._l'/ 2.3
@ 2 x 2 determinants are given by {1+ D + D? 1+ D?.1}
e GCD {1+ D+ D?,1+ D31} =1

@ Hence, feedforward inverse exists and is given by

F L
aw G © 0

v
L - 0- Q- Lz
} O G'D)=|1 h+D Wi
0 1 1 (D [) 4, GOGWT

So this is a inverse for this generator matrix and we can see that this, all the terms are feed
forward terms, 1, 1 by d and 1 1 so this is a feed forward inverse for convolutional code with
this generator matrix. Ok. So now we, to recap basically, so the condition under which the

feed forward
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Convolutional codes

@ Problem # 1: Feedforward encoder inverse: How do we find an
estimate of the information sequence from the received sequence
without decoding?

@ Solution: Since v(D) = u(D)G(D), we need an inverse matrix
G (D) such that G(D)G (D) = D' for some positive /.

@ Then v(D)G (D) = u(D)G(D)G (D) = u(D)ID' = u(D)D’

@ For a rate R=1/n code, a feedforward inverse exists if and only if

GCD{g"(D).g'(D).--- .g" (D)} = D'

@ For a rate k/n code, a|feedforward inverselexists if and only if

cen{ay) =o'} Lzo

where {A;(D)} is the set of all determinants of k x k submatrices.

inverse for a convolutional code whose generator matrix is given by G D is given this

condition for rate 1 by n code and for the k cross n code it is given by this condition.
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.

Now catastrophic encoders do not have a feed forward inverse. So for a catastrophic encoder

we will just show you that their inverse has feedback terms. So let’s look at one example.
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convolutional encoder with
G(D)=[1+D 1+ D“-’].

So let us consider a convolutional code whose generator matrix is given by this. So this is a

rate 1 by 2 convolutional code.
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A

Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convolutional encoder with
G(D)=[1+D 1+D%. B

And it has 4 states because the maximum degree of D is 2. So the generator sequence is G 0

D is given by 1 plus D and G 1 D is given by 1 plus D square.
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@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convolutional encoder with
G(D)=[1+D 1+D%: R+1
G @ G

Now first
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@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convolutional encoder with
G(D)=[1+D 1+ Di’].
e GCD{1+D,14+D%}=14D

thing that we check is what is the greatest common divisor among G 0 and G 1. As it turned
out in this case, the greatest common divisor is 1 plus D. So that's not same as D to power 1

for some | greater than 0.
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.
@ Example. Consider a convolutional encoder with
G(D)=[1+D 1+ D’].
L
OGCD{1+D.1+DZ}=1+D.7Q-D Lze

So that means for this generator matrix we do not have any

(Refer Slide Time 15:03)

feed forward encoder inverse. So there
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@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convolutional encoder with
G(D)=[1+D 1+ D“-’].
e GCD {14+ 0,1+ D%} =1+D

@ There doesn't exist any feedforward inverse.

doesn't exist any feed forward inverse for this particular convolution code with generator

matrix given by this.
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convolutional encoder with
G(D)=[1+D 1+ D?.

¢ GCD {1+ 0,1+ D*}=1+D.

@ There doesn't exist any feedforward inverse.

o Letu(D) =1(1+D)=1+4+D+D*+---, then

v(D) = u(D)G(D) =1/(1+ D)1 + D 1+ D% =[1 1+ D

So let us take an example of u
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Convolutional codes

@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convolutional encoder with
G(D)=[1+D 1+ D?.

e GCD{1+D.1+D%}=1+D

@ There doesn't exist any feedforward inverse.

o Let u(D) 5/(1 £D)m1 4D+ 0P+, then

v(D) =u(D)G(D) =1/(1+ D)1+ D 1+ D’ =[1 1+ D]

of D given by 1 by 1 plus D. This is typo, this is 1 1 by D. Now 1 1 by D can be written as 1
plus D plus D square plus D cube so this is an all 1 sequence. So our input is all 1 sequence
which can be written as, in this D notation it can be written like this. This is my u of D. Now
if I
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@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convolutional encoder with
G(D)=[1+D 1+ D?%.

@ GCD {1+ D,1+D?}=1+D.

@ There doesn't exist any feedforward inverse. e

o Let u(D) }J(uo} 1+ D B 4 ---, then iro

v(D) = u(D)G(D) =1/(1 + D)1 + D 1+ D?=[1 1+ D]

give this input to my convolutional code whose G D is given by this, what's my output? My
output is u D times G D so this will be given by this. So note I just, my input has infinite
weight but the output only has weight 3. And this is precisely an example of catastrophic

encoder.
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@ Catastrophic encoders do not have a feedforward inverse.

@ Example. Consider a convolutional encader with
G(D)=[1+D 1+ D?.

e GCD {1+D0,1+ D%} =1+D.

@ There doesn't exist any feedforward inverse.

oletuD)=1(1+D)=1+D+D*+---, then

v(D) =u(D)G(D)=1/(1+D)1+D 1+ D} =[1 1+D0

@ This is a catastrophic encoder since infinite input weight sequence
will result in finite weight output sequence.

So you can see my input has infinite weight but my output has finite weight. So catastrophic

encoder would not have

(Refer Slide Time 16:29)

a feed forward inverse as this
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Convolutional codes

@

Catastrophic encoders do not have a feedforward inverse.

L]

Example. Consider a convolutional encoder with
G(D)=[1+D 1+ D?.

GCD {1+D,1+D*}=1+D.

T-;;re doesn’t exist any feedforward inverse.
Letu(D)=1{(1+D)=1+D+D*+---, then

© & ©

v(D) =u(D)G(D) = 1/(1+ D)1+ D 1+ D% =[1 1+ D]

@ This is a catastrophic encoder since infinite input weight sequence
will result in finite weight output sequence.
b s

condition is violated.
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Convolutional codes

@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g%(D) g'(D)] satisfy

g'(D) + D’g'(D) = D°

They are known as quick-lock in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.

Next we look at a class of rate one half non systematic encoders. So we are looking at the rate
one half non systematic feedback, feed forward encoders whose generator matrix is given by

this and these generator G 0 D and G 1 D satisfy this property.



(Refer Slide Time 17:10)
dhmxen s s ol
70 /’ToOoMuEA -+ BERNEECNEC00 W e o

@ Problem # 2: If a class of rate 1/2 nonsystematic fi
convolutional encoders with G(D) = [g"(D) g!(D)] satisfy
s

g'(D) + D°g'(D) = D°

They are known as quick-lock in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.

So what is this property? It is G 0 D plus some delay, beta is greater than equal to zero so
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@ Problem # 2: If a class of Mwa_hc_&gdmm
) = [g(D) g'(D)] satisfy

convolutional encoders with G(D
et S

|#'(0) +0'g'(D) - 0 ¢ze
They are known as quick-lock in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.

some delay of G 1 D is given by D alpha where alpha is also something greater than 0,
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@ Problem # 2: If a class of Mma_tic_&gmm
) )

convolutional encoders with G(D) = [g"(D) g!(D)] satisfy

R o ia
0 g o ze
[Ta:mmg(n) D ¢z

They are known as quick-lock in (QLI) encoders. Show that QLI

encoders are noncatastrophic encoders.

Ok. Now let's take a simplified case and let's say alpha is 0, beta is 0. So what does it say?
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Convolutional codes

@ Problem # 2: If a class of Mw;_ngmm_
) )

= [g"(D) g'(D)] satisfy

convolutional encoders with G(D

e rdne
0 I | o Zzo
|#'(0) +D'g'(D) - 0 g=e
They are known as quick-lock in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders. o=, fro

It says G 0 D plus G 1 D is 1. So then I can essentially, looking at thesé generators I can
essentially find out that this encoder has a very simple encoder inverse, so which is just 1 and
1. If alpha is this. So these are known as quick look-in encoders. Why they are called quick
look-in encoders because quickly looking at these encoders you can actually easily find the
encoder inverse and essentially encoder inverse just consists of 2 tabs. So in some sense for a

systematic encoder, the inverse
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is of form 1 and O for a rate 1 by 2 code. And here they are of the form 1 and d beta. So
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Convolutional codes

@ Problem # 2: If a class ofﬂel?_uc;l_sy&nw

convolutional encoders with G(D) = [g"(D) g!(D))] satisfy

A1 e Zo
g'(D) + D’g'(D) = D e
They are known as quick-look in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders. oea, pro
1 1
o D'

they are in some sense closest to systematic code if you like to call them. So this
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@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g%(D) g'(D)] satisfy

gU(D) " DESI(D) — p°

They are known as quick-look in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.
@ Solution: QLI encoders have a simple feedforward inverse

cho-( )

hence are noncatastrophic

-

quick look-in encoders have a very simple encoder inverse, a feed forward encoder inverse

and that is given by this. You can verify that G D G D inverse is your d times alpha,
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@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encaders with G(D) = [g?(D) g'(D)] satisfy

g'(D) + D’g'(D) = D°

They are known as quick-look in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.
@ Solution: QLI encoders have a simple feedforward inverse

-1 o
G @W-D
G (D) (01“ i

hence are noncatastrophic

Ok. Now note that the encoder inverse of quick look-in encoder has just 2 tabs, 1 and this d
beta. And it has a feed forward inverse so it cannot be a catastrophic encoder. We just showed

in the previous slide that
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Convolutional codes

@

Catastrophic encoders do not have a feedforward inverse.

L]

Example. Consider a convolutional encoder with
G(D)=[1+D 1+ D%
GCD{1+D.1+D’}=1+D.

There doesn’t exist any feedforward inverse.
Letu(D)=1{(1+D)=1+D+D*+---, then

“

® ©

v(D) =u(D)G(D) =1/(1+ D)1+ D 1+ D% =[1 1+ D

@ This is a catastrophic encoder since infinite input weight sequence
will result in finite weight output sequence.
ey

a catastrophic encoder does not have a feed forward inverse. And since
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@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g?(D) g'(D)] satisfy

g'(D) + D’g'(D) = D°

They are known as quick-look in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.
@ Solution: QLI encoders have a simple feedforward inverse

- o
G G ](n.) +D

6'0)- (2

hence are noncatastrophic

this has a feed forward inverse this cannot be a catastrophic encoder. So because they have a

feed forward inverse they are not catastrophic. And
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@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g%(D) g'(D)] satisfy

g"(D) + D’g'(D) = D°

They are known as quick-look in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.
@ Solution: QLI encoders have a simple feedforward inverse

')~ ( p )

hence are noncatastrophic
@ Further, the information sequence u(D) can be recovered directly
from v(D) = [v*(D) v'(D)] using an encoder inverse with only two
taps.
v(D)G (D) =v*(D) + D'v!(D) = D*u(D)

as I said you can very easily recover back your information sequence by making your coded
sequence pass through this encoder inverse. So if your output sequence is given by v D which
is this, then once v D passes through this encoder inverse, what we get is v 0 D plus D beta v
1 D. Now we know that quick looking code have this property that g 0 D plus beta g 1 D is D

alpha and v 0 D is g, this is equal to v 0 D times u D, similarly this
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@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g?(D) g'(D)] satisfy

g'(D) + D’g'(D) = D"

They are known as quick-look in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.
@ Solution: QLI encoders have a simple feedforward inverse

1
')~ ( p )
hence are noncatastrophic
@ Further, the information sequence u(D) can be recovered directly
from v(D) = [v*(D) v'(D)] using an encoder inverse with only two
taps —_ ———— ?‘(‘b) wi
: 2
v(D)G (D) = v*(D) + D'v'(D) = D"u(D)
e

one is G 1 D times u D.
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Convolutional codes

@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g%(D) g'(D)] satisfy

g'(D) + 0'g'(D) = D

They are known as quick-look in (QLI) encoders. Show that QLI
encoders are noncatastrophic encoders.
@ Solution: QLI encoders have a simple feedforward inverse

: 1
')~ ( o )
hence are noncatastrophic
@ Further, the information sequence u(D) can be recovered directly
from w(D) = [v“(D) vlfn)] using an encoder inverse with only two
taps. = —————— "b)u(‘) /*!mgw
v(D)G (D) = u“{?j} + D%!(D) = D*u(D)
i

So from this condition and from here, this will come out to be D alpha times u D. So among

the class of non systematic encoders quick look-in encoders have a very simple

(Refer Slide Time 21:16)
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@ Problem # 2: If a class of rate 1/2 nonsystematic feedforward
convolutional encoders with G(D) = [g%(D) g'(D)] satisfy

g’(D) + D’g'(D) = D"
They are known as quick-look in (QLI) encoders. Show that QLI

encoders are noncatastrophic encoders.
@ Solution: QLI encoders have a simple feedforward inverse

') ( o )
hence are noncatastrophic
@ Further, the information sequence u(D) can be recovered directly
from v(D) = [v’(D) v'(D)] using an encoder inverse with only two
taps, = = ——————=  glo)ul - $iyu(e)
v(D)G (D) =v"(D) + D'v'(D) = D" u(D)

easily find out what the information bits are from the coded bit without decoding.
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@ Problem # 3: An important distance measure for convolutional
codes is the column distance function. Let

o = (O D) OD). D)
denote the /th truncation of the codeword v and let

(0) (1) (a—1) (0} (1) (n—1) (0) (1) (a—1)
fuli=(up v -y aly Uy ey prue g Up Uy )t )

denote the /th truncation of the information sequence u. The
column distance function of order |, d, is defined as

dj min {d{[v]..[v ) : [u]o # [u )0}

[0 fu” )y

= F‘l’l'.iln{W[\'|f [u]o # O}

where v is the codeword corresponding to the information sequence
u. Prove that for noncatastrophic encoders

Jim dy = dee

The next problem that we are going to talk about is about a distance measure for
convolutional code. So we will first define what we mean by column distance function. As
we know a convolutional encoder can continuously encode an information sequence. So we

can have
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an infinite length input sequence and correspondingly an output sequence. Now
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lutional

@ Problem # 3: An important distance measure for convolutional
codes is the column distance function. Let

0) (1 n-1) (0) (1 n-1 0) (1 n—1
[vl":(v'g]voli___v{ ].vilivl(])___vll ]A---Av,(]v} 1)---\#} l)
denote the /th truncation of the codeword v and let

0) (1 a-1) (0) (1 -1 0) (1 -1
fuls = (oo - 0"V )Y

denote the /th truncation of the information sequence u. The
column distance function of order |, d, is defined as
d = min {d(W]v]) ]o £ [ulo)
[w'Jiu |

- Tiln{ wlv]; : [u]o # 0}
ulj

where v is the codeword corresponding to the information sequence
u. Prove that for noncatastrophic encoders

Jm 1= e

we define the column distance function for a convolutional code as follows. So before that I
am describing output code sequence v which is truncated to up to length 1. So this notation

that you see v sub 1, it shows essentially a codeword up to time 1.
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And what is our codeword up to time 1? So this will be
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@ Problem # 3: An important distance measure for convolutional
codes is the column distance function. Let ‘

0) (1 n-1) (0] (1 n=1 0) (1 n-1
M= (g7 - )Y ) )
denote the /th truncation of the codeword v and let

0) (1 a—1 0) (1 -1 ) (1 n—1
fuls = (&6 o™, ol oD )t

denote the /th truncation of the information sequence u. The
column distance function of order |, d, is defined as

o = min, (V). 1v1) o # o)

[w']i[u

— rmal-l{ wlv]; : [u]p # 0}

where v is the codeword corresponding to the information sequence
u. Prove that for noncatastrophic encoders

fim 1= diee

v 0, v 1, v n minus 1, then v 1, v n because this is a rate, let's say this is a rate 1 by n code

then
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@ Problem # 3: An important distance measure for convolutionaJl_
codes is the column distance function. Let 3

e = O I T ). D)
denote the /th truncation of the codeword v and let
[u]s = (uéu}ué” L. u(ln b Uim”r] . ”i" n _uﬁmuﬁn) - u&n I.j)
denote the /th truncation of the information sequence u. The
column distance function of order |, d, is defined as

d min, {d([v')[v'])) - [W]o # [u"]o)

(O

— rﬂ'iln{w[vlg  [ulo # 0} i

where v is the codeword corresponding to the information sequence
u. Prove that for noncatastrophic encoders

,Ii,"l di = dfree

this for first time instance you have n bits, for second time instance you have n bits then for 1
time instance you will have n bits. So this is your truncated codeword up to time 1. Similarly I
can define my truncated information sequence, Ok so just a minute, this is a typo, this should

be k minus 1,
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@ Problem # 3: An important distance measure for convolutnanaJl_

=

codes is the column distance function. Let

o = (O D OD) Y O )
o B ot S S g g T L A PRTAR
denote the /th truncation of the codeword v and let

(0) (1) (h-1) (0) (1) (n—1) (o) (1) (A—1)
[_l_fl_ﬂ_(”u Up - th JUy U ety sy} g )

denote the /th truncation of the information sequence u. The
column distance function of order |, d, is defined as

d min {d([v]i. [v'])) - [w]o # [u”]o)

(CU TR

= f’l’:jlniW{V|i [u]o # 0}

where v is the codeword corresponding to the information sequence
u. Prove that for noncatastrophic encoders

rllm di = dfree

this should be k minus 1, k minus 1 and of course if k is 1, there will be this 1 input so you
have, for first time instance you have k inputs, second time instance you have k input and
similarly for | time instance you have k input. Now note that both your information and coded
sequences truncated up to length 1. Now we define column distance function of order 1 as

follows. It is the minimum distance between 2 truncated codewords of length 1
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such that, so
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Convolutional cc

@ Problem # 3: An important distance measure for convolutiona}
codes is the column distance function. Let al

0] 1 1 (1] 1 1 i} 1 1
ol = (- D) D). D)

denote the /th truncation of the codeword v and let

P (L T g ot L oo NN

denote the /th truncation of the information sequence u. The
column distance function of order |, d, is defined as

d = min {d{[V].[v]): [u]o# [u']o)
o)

= [

= Tlln{w[v]; : [u]a # 0}
ulj

where v is the codeword corresponding to the information sequence
u. Prove that for noncatastrophic encoders

Jm 1= e

you can see it is a minimum distance between 2 codewords v 1 hat and v 1 double hat both of
length 1, such that u dash and u double dash they are not same. So it's, it’s essentially
Hamming distance between 2 truncated code sequences. Now we know that Hamming
distance between 2 sequences, minimum distance can be written as minimum weight of a non
zero codeword. So the same thing we can write as minimum weight of a Ith truncated
codeword belonging to a non zero information sequence. So we can define our column
distance function of order 1 as minimum weight of Ith truncated code sequence belonging to a
non zero information sequence. Now the thing that you have been asked to prove here is

show that as 1 goes to infinity this column distance function tends towards free distance
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@ Problem # 3: An important distance measure for convolutianaJI_'
codes is the column distance function. Let P

o = (OO Y D)D)
bl o BN ) i I il R o
denote the /th truncation of the codeword v and let

(0) (1) (K-1) (0} (1) (K-1) (0) (1) (k-1
E_"I_ﬂ_(”u AR A ) AR S Uy )

denote the /th truncation of the information sequence u. The
column distance function of order |, d, is defined as

d = min {d(V]Iv]) W # )]

W] fu” ]

-

= Ti'n{lﬂu_l, [IJ]U # 0}

where v is the codeword corresponding to the information sequence

u. Prove that for noncatastrophic encoder
J .:h."l di = dfee |

of the convolutional code. In fact after 3 or 4 constraint length you will see the distance

which is d free and then it remains there,
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@ Solution: By definition, dfree is the minimum weight path that has
diverged from and remerged with the all-zero state.

column distance function. So by definition what is a free distance of convolutional code, it is
the minimum weight path that has diverged from an all zero state and merged back into all
zero state. How do we find minimum weight codeword, minimum length codeword, so if you

have convolutional code, without loss of generality let's say we are
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transmitting all zero codeword then minimum weight codeword would be the length of the
uh, the minimum weight along all non zero, a path that goes through non zero state. So let's
say you have some convolutional encoder, some 4 set convolutional coder and this is your all
zero state, all zero state so this is all zero state and let us say you have some diversion from

this and then you are coming back.
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@ Solution: By definition, dfee is the minimum weight path that has

diverged from and remerged with the all-zero state.

8 g o

So this is your all zero state and what is your
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Convolutional codes

@ Problem # 3: An important distance measure for convolutionahls
codes is the column distance function. Let =

(0) (1) (m—1) (0] (1) (a—1) (@) (1) (n—1)
M= (v v ==l Y S ) gt
Lkt o e e A Lo Sl Lo Sl
denote the /th truncation of the codeword v and let

(0) (1) (K-1) (o) (1) (K-1) (0) (1) (k-1
[E_"I_f_(”o U -1y sy Uy ey RCOOIN ) IR - )

denote the /th truncation of the information sequence u. The
column distance function of order |, d; is defined as

min, {d([v'] [v]p) - [w]o # [u']o}

d =
— [w'];[u

= r:lqiln{w_Iv_h [u]o # 0}

where v is the codeword corresponding to the information sequence

u. Prove that for noncatastrophic encoder
J ,I',"l di = dfree

column distance function? It's a minimum weight of your codeword belonging to non zero

information sequence.
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Convolutional codes

@ Solution: By definition, df, . is the minimum weight path that has
diverged from and remerged with the all-zero state.

T O g o o
o o 9
o) X 8

@ £

And what are the paths through the Trellis diagram? These are all our valid codewords. So we
need to find a path through the Trellis which has minimum weight, so and that will be our
free distance, so the free distance is minimum weight path that has diverged from all zero

state and merged back,
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right. So to get a
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@ Solution: By definition, df, ., is the minimum weight path that has
diverged from and remerged with the all-zero state.

non zero weight you essentially diverge from all zero state and then merge back to all zero

state. Now let us
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Convolutional codes

@ Solution: By definition, dfree is the minimum weight path that has
diverged from and remerged with the all-zero state.

@ Assume that [v]; represents the shortest remerged path through the
state diagram with weight dp .. .

assume that at time t equal to j, so v j represents the shortest remerged path through this
Trellis diagram or state diagram which has weight of d free. So if t equal to j is the smallest
times which represent the shortest remerged path through this Trellis diagram then what does

it mean?
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Convolutional codes

@ Solution: By definition, dfree is the minimum weight path that has
diverged from and remerged with the all-zero state.

@ Assume that [v]; represents the shortest remerged path through the
state diagram with weight dg ... .

@ Let [di]re be the minimum weight of all remerged paths of length |,
it follows that [d]re = dfge for all 1 = j.

It means if we denote by d 1 the minimum weight of all remerged path, what is remerged
path? So these paths that are diverging from all zero state and then merging back into all zero
state. These are our remerged path. Now what we are saying, for t equal to j, that is the
smallest remerged path which has weight equal to d free. So if you have any time any j which
is greater than, any time which is greater than this j then your column, distance column

function will be equal to the free distance. Why this is so, because we have said that for time



equal to j that is the shortest remerged path through this Trellis diagram which has free
distance, which has weight equal to free distance. So we take any time larger than that, then

of course we will have a remerged path having minimum distance d free.
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@ Solution: By definition, df,.. is the minimum weight path that has
diverged from and remerged with the all-zero state.

@ Assume that [v]; represents the shortest remerged path through the
state diagram with weight dg . -

@ Let [di]re be the minimum weight of all remerged paths of length |,
it follows that [dj]re = dpee for all 1 = j.

@ Also, for a noncatastrophic encoder, any path that remains
unmerged must accumulate weight.

Now if there are any non-merged path, what are non merged path? So these paths which have
diverged from all zero state but have not yet merged to all zero state, so those are unmerged
path. Now for a non catastrophic encoder, any path that is not merged must accumulate
weight. Only for the catastrophic encoder we have situation where input weight is higher and

output weight is smaller.
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But if it is a non catastrophic encoder it will accumulate weight. So
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@ Solution: By definition, d.. is the minimum weight path that has
diverged from and remerged with the all-zero state.

@ Assume that [v]; represents the shortest remerged path through the
state diagram with weight d ..

@ Let [di]re be the minimum weight of all remerged paths of length |,
it follows that [d]re = dj;ge for all [ = §

@ Also, for a noncatastrophic encoder, any path that remains
unmerged must accumulate weight

if we have a non systematic encoder, any path which has not yet merged with all zero state

will try to accumulate more and more weight.
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Convolutional codes

@ Solution: By definition, df, .. is the minimum weight path that has
diverged from and remerged with the all-zero state.
@ Assume that [v]; represents the shortest remerged path through the
state diagram with weight df .. -
@ Let [di]re be the minimum weight of all remerged paths of length |,
it follows that [d]re = dppee for all 1 = j.
@ Also, for a noncatastrophic encoder, any path that remains
unmerged must accumulate weight.
@ Let [di]un be the minimum weight of all unmerged paths of length |,
it follows that
lim Iﬂrhm $ OO
=

So what's going to happen? So if we look at distance for, column distance for unmerged path,
then as | tends to infinity, this distance will also grow. This will also go to infinity because it
is a non catastrophic encoder. So what we have shown is so for 1 greater than j, for all
remerged path this column distance function is d free and for un-merged path this is going to

be infinity as 1 goes to infinity. Hence we can
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Convolutional codes

@ Solution: By definition, dp, .. is the minimum weight path that has
diverged from and remerged with the all-zero state.

@ Assume that [v]; represents the shortest remerged path through the
state diagram with weight dp .. -

@ Let [dj|re be the minimum weight of all remerged paths of length |,
it follows that [di]re = df;ge for all | = ;.

@ Also, for a noncatastrophic encoder, any path that remains
unmerged must accumulate weight

@ Let [dj]un be the minimum weight of all unmerged paths of length I,
it follows that

if_l‘l‘rl [di]un = ¢

@ Therefore

_-I_if]l = min {J'_L.ll’l [drlrg.jl_lrll [d,]u“} = dpen

say that limit d 1 is
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Convolutional codes

@ Solution: By definition, d, .. is the minimum weight path that has
diverged from and remerged with the all-zero state.

@ Assume that [v]; represents the shortest remerged path through the
state diagram with weight dp .. .

@ Let [dj]re be the minimum weight of all remerged paths of length |,
it follows that [di]re = dfge for all | = ;.

@ Also, for a noncatastrophic encoder, any path that remains
unmerged must accumulate weight

@ Let [di]un be the minimum weight of all unmerged paths of length I,
it follows that

r\_l‘l‘l'!L [dilun = ¢

@ Therefore

A :
rI_|!1"|‘ = min {JI_\.ryl[d,]rg.rl_nﬂ [d:]un} x diree

minimum of the column distance for remerged path or unmerged path. This is infinity, this is

d free. So we know that as | tends to infinity, the column distance function will be
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Convolutional codes

@ Problem # 3: An important distance measure for convolutiana}
codes is the column distance function. Let »

(@) (1) (n=1) (0] (1) (n—1) (@) (1) (n—1)
Mi=(vg vg =" vy )y e ) YY)
bR Tl o Bt A S |
denote the /th truncation of the codeword v and let

(0) (1) (K-1) (o) (1) (K-1) (0) (1) k-1
[L‘I_ﬂ_(”u U -1y sy Uy -ty yrue g Up Uy ) el )

denote the /th truncation of the information sequence u. The
column distance function of order |, d, is defined as

4 = min {'?l\‘-']‘f-h’”h] : [‘_'Jn # EQG]

(w'];.u”]s

= min{w(v]; - [u]s # 0}
b = =———

where v is the codeword corresponding to the information sequence

u. Prove that for noncatastrophic encoder
J rI|'r1'1 di = dree ]

d free. So this proves that column distance function will go to d free as 1 goes to infinity,

thank you.



