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So before we go to concatenated codes, let us spend 
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some time solving some problems. 
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So the first  question is  you are given a rate  one third convolutional  code with generator

matrix G of D which is given by this. 
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The first question is, is this a catastrophic encoder? Will an encoder which has a generator

matrix like this; will this result in a catastrophic encoder? So if 
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you recall what is a catastrophic encoder, a catastrophic 
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encoder generates a finite weight output corresponding to an infinite weight input sequence.

Now if we try to look it in terms of state diagram, in a state away from all zero state, there is

a self loop around a state where a non-zero input results in all zero output, right. Now let's

look at this generator matrix 
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and let us try to simplify, put it in a minimal form. So we can see the denominator, one plus D

square is common. So if we take that out, we get here 1 plus D plus D square and this is 1

plus D square, this is 1 plus D square plus D four divided by 1 plus D square and this is 1

plus D plus D square. Similarly we see in the numerator there is a common term 1 plus D

plus D square. If we take that out, what we get here is then this is 1, 1 plus D plus D square

and 1 plus D square. Now how do we know whether this will result in a catastrophic 
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encoder or not. So look at 
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this particular generator matrix. Now what is my output sequence? My output sequence v D

is u D times g D. 
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Now is there any input sequence which is of infinite weight but can result in a finite output

weight for v D? If you pay close attention to g of D we notice that if our input u of D is

chosen as 1 plus D four 1 plus D plus D square, 
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if our input is chosen in this particular fashion, then what would be the corresponding output

v D? If the input is chosen this way then output will be u D times g D so this term will cancel

this term so what 
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you will be left with is this. So your v of S would be 1, 1 plus D plus D square and 1 plus D

square. And what 
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is the weight of this? (Delete kar diya, woh ganda) 
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So note here, so the input that will cause this output is given by 1 plus D four by 1 plus D

plus D square, 
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right? Now we can expand this. So let's say 1 plus D 4, this is 1 plus D plus D square. So let's

just take 
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1. 1 plus D plus D square, this will be D plus D square plus D 4, now 
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this will be plus D, this will be D plus D square plus D cube, then this will be D cube plus D

4, you can write D square, so like that basically we, we can see that this is a infinite series.

The input is an infinite series, 1 plus D plus D square is essentially an infinite series. We can 
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expand it like that where as output is a finite series, it is just 1, 1 plus D plus D square, and

the third bit is 1 plus D square. So you can see, input has lots of 1's in it but the output has

finite 1s. So this is a case of catastrophic 
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encoder. 
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Now the second question is what would be the minimal encoding matrix for the generator

matrix given in the previous example. 
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If I ask you, find out the minimal encoding matrix for this encoder. So what do we do? We

take out all the common factors. If we take out common factors, then we basically what we

get is like this is our minimal encoding 
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matrix and if we can write, if I ask you to draw this encoder, we can, this is, k is 1, n is 3, the

maximum memory is 2 so I am drawing 2 memory elements here. The first coded bit is just 1,

so this is the information sequence that goes in. Second one is 1 plus D plus D square. So

that's your, let's call it v 0, this is v 1, this is u 0, and the third bit, coded bit is 1, and D square

this is your v 2, 
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Ok.  So this  is  the  minimal  encoder  for  the  same generator  matrix  given in  the previous

example. 
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So consider  a rate  two third non systematic  feed forward encoder.  So this  is a generator

matrix for a non systematic code, rate two third and it is a feed forward encoder. There are no

feedback polynomials here. 
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The first question is draw the controller canonical form realization for this generator matrix.

Now in controller canonical form realization we have 1 set 
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of shift register for input. Now how many inputs do we have here? k is 2 
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so we will have 2 sets of shift registers for this. One for this and second 
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set of shift registers for this. Now what 
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should be the maximum memory for  each of these shift  registers? You can see here the

maximum  power  of  d  is  2.  So  we  should  have  2  memory  elements  for  the  first  input.

Similarly for the second input also we should have 2 memory elements. Let's call it u 0 and u

1. 
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Now there are 3 outputs. So the outputs are, this is 1 output, D times 
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the first and one times u 1, so D times the first input is this, and one times second input so

that is this. So this is your first coded bit. Let's call it v 0. 
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Now what's the second coded bit? This is this term, 
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D square u 0 is this term and D square u 1 is this term, so this is your v 1 
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and the third output is this. 

(Refer Slide Time 08:49)

So this is, just a minute, u 1 and one D term and D square term. 
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So this is your controller canonical form realization for this generator matrix. So this is 
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precisely what we have here. You can see, so this shift register is for 
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this input and this 
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this shift register is for 
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this input. 
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Maximum memory element for the first one is 2, second one also 2 and we can see now, the

first output is D times u 1 which is this plus u 2 times this. 
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The second output is D square times u 1 and D square times u 2, so that is this. 
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And the third output is u 1 which is this and this is u 1 D times u 1, D square times u 1, so

that's your third output, 
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Ok. 
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Now this was a non systematic encoder. Can we find an equivalent systematic encoder or

systematic encoding matrix for this generator matrix, the answer is yes. So how do we find a

systematic encoding matrix? So this has to be put in the form like this; 1 0 0 1 and some

matrix here let's call it a 1 D times a 2 D and b 1 D times b 2 D. So we will have to bring 
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this matrix in this particular form. So we have to get this to 1, this to, this has to be changed

to 1, this has to be brought to 0, 
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, this has, this we have to brought to 1 and this we have to bring to 
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0. Now we will do elementary row operation to get an identity matrix here. So let's do that. 
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So first  thing  that  we do is,  we make this  a  1.  How do we make this  a  1? We do this

transformation that row 1 is, row 1 by D. So we divide this whole thing by D, what we get is

1 D 1 by D. Next we would like to get a zero here. 
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Here we would like to get a zero. How can we get a zero here? 
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So we will do this transformation, row 2 is row 1 plus row 2. If we do that, so we 
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add these two, this will become 0, this will become D plus D square and what we will get is 
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this. Next we would like to get a 1 here,
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like to get a 1 here.  How can we get a 1 here? We divide row 2 by this.  So we do this

transformation that row 2 is row 2 divided by D plus D square and once we do that, we get

this. Next we would like to get a zero here. 
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How do we get a zero here? We multiply row 2 by D and add it to row 1. So we do this

transformation that row 1 is row 1 plus D times row 2. And when we do that, we get this. So

this is our equivalent systematic encoder for the 
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generator matrix this, Ok. 
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Next. Is this equivalent systematic generator matrix, is it realizable? If it is not, find out an

equivalent  realizable  generator  matrix  and  draw  its  corresponding  minimal  encoder

realization. Now note here 
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this generator matrix has a term 1 plus 
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D square in the denominator. Now this cannot be realizable. So any denominator term that we

have, it has to be of the form 1 plus some polynomial here 
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but here this 1 is not here. So we cannot realize a rational function of this form using our shift

register.  So this  particular equivalent systematic encoder is not realizable.  However if we

multiply this by D square, what we 
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get if we do this transformation, what we get is this. This is no longer, so what we are getting

now is  basically  a  new equivalent  encoder  which  is  in  the  feed  forward  form and  it  is

realizable. 
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So how do we realize it? Again if we using controller canonical form realization we will have

one set of shift registers for this 

(Refer Slide Time 15:02)

input, another set of shift registers for this input. 
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What's the maximum memory for the first row? The maximum power of D is 1. So we will

have 1 memory element  for the first  input  and what's  the maximum power of D for the

second? That's 2 here, 2 here, 2 here 
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so we will use 2 memory element 
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for the second input. And again what are our outputs? There are 3 outputs. The first output is

this,
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this is u 1 times, this is just u 1 so this is this, second one is D square 
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of u 2. So D square of u 2 is just this term. 
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So this is my second output and the third 
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output is this, 
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D times u 1 D which is this one and one times u 2 D and D square times u 2 D, so that's this.

This is our third 
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output. Now given 
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below is a rate two third systematic convolutional encoder. Please note this is neither in the

controller canonical form realization or in the observer canonical form realization. Note here

the feedback terms that are coming here are not only coming from the same encoders like

this, feedback is not only, so if you look at the feedback, feedback from this is going to this

encoder and feedback from here is going to this encoder. So not only feedback is coming to

the same encoder but it is also going to the other encoder. 
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So this realization is 
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a very compact realization. The question that has been asked is can you find out the generator

matrix corresponding to this encoder? So 
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how do we find the generator matrix? We know this is a relation between the input and the

output. So how these 
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inputs are getting mapped to the output, that is governed by this generator matrix. 
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So what we are going to do is we are going to write the output v D in terms of input u D. And

then that would give us our generator matrix. So our objective is to write v 1, v 2, v 3 in terms

of u 1 and u 2, 
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fine. We use some auxiliary variables; x and y which basically will help us find the contents

here. So if this is x of D, this term will be D times x of D and this will be D square times x

times D. 
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Similarly if this is y, this term will be D times y of D. 
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So what is v 1 of D? v 1 of D is u 1 of D, you can see u directly goes, this input directly goes

here. So v 1 
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of D is u 1 of D. Similarly this input u D directly goes to the output here. 

(Refer Slide Time 18:43)

So v 2 of D is u 2 of D. Now what is v 3 of D? v 3 of D is this term which is x of D, this term

D times x of D and this term which is D square x of D. So this is this term plus this term. So

it is these 3 terms. Now what is this term? This is y of D. So we have 
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written v 1 of D, v 2 of D, v 3 of D in terms of u 1, u 2, x of D and y of D. Now note we need

to get rid of x of D and 
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y of D, and we have to 
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write these in terms of u 1 and u 2. Now what is x of D? x of D is this and this. Similarly

what is y of D? 
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y of D is this term, this, this term sorry this term and this term, Ok. So we can write 
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2 more equations 
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for x of D and y of D. So again y of D as I said is u 1 of D, 
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y of D is u 1 of D which is this one, this is u 1 of D 
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plus D square x of D. 
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D square x of D is this term, D square of x of D is this term which is coming here, this term

and there is another term 
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here 
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which is D times y of D. So D 
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times y of D, note here, the third input here is this one which is D times y 
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of D. Similarly x of D is, first one is this term which is u of D, so this is u 
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of D and the second term is 
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this term which is D times y of D, 
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this one, Ok. So now we have got equations of y of D, x of D in terms of u 1 D and u 2 D. So

let's write, bring y of D at one side and x of D at one side and write them in terms of, y of D

and x of D in terms of u 1 D and u 2 D. So if we solve this, what we get is y of D is given by

this and x of D is given by this. Now we plug these values of y of D and x of D given by this

into 
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here, into this expression of 
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y 3 of D. So we plug this value of x D and y D which we just computed, 
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we plug those values in here. If we do that, we 
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will get the expression of y 3 of D, Ok. Now, 
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so if we do that finally 
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this is v 3 of D, so if we do that what we get is then v 3 
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of D is this times u 1 D plus this times u 2 of D. So now we are in a position to 
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write the generator matrix. The first equation that we will require is this one. Second equation

we will require is this one. 
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And the third 
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equation that we will require is this one, 
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right. So 
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you can think of it as like this, so we have 3 
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output, v 1, v 2, v 3, 2 input u 1, u 2, so we are writing 
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v 1 D, v 2 D, v 3 D in terms of u 1 D, u 2 D and this G matrix. 
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So what is v 1 D? v 1 D is u 1 of D. So then our G matrix here, again G matrix is 2 cross 3, so

v 1 D is u 1 of D, so we get 1 0. v 2 of D is u 2 D, so we get 0 1, and what is v 3 of D, v 3 of

D is this, this times 
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u 1 of D and this times u 2 of D. 
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So this will be our final generator matrix corresponding to the encoder that is shown in this 
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figure, Ok. Now 
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the next question is  can we realize this  encoder  in the controller  canonical  form? So the

answer is yes, we can realize it. 
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We can have the expression for generator matrix. So to realize it in controller 
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canonical form again, so there is one 
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set of shift registers for each input, so this is one input, this is second input right. Please note

this is a feedback polynomial so we would require a feedback polynomial and now maximum

degree here is 3, maximum degree here also is 3,so 
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we will require 2 set of shift registers, first one is this one. Please note this as 
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3 memory elements and similarly second shift register, this also has 3 memory elements. 
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That is because the maximum degree 
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of this rational function is 3 and similarly maximum degree of this rational function is 3. And

we just implement this. 
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So v 1, v 1 D is just u 1 D, so that's just this. 
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v 2 D is u 2 D, that's just this. 
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What is 
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v 3 D? v 3 D is 1 plus D plus D square plus D cube divided by 1 plus D plus D 3 u 1 D, plus

1 plus D square plus D cube 1 plus D plus D cube u 2 D, 
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right? So relationship between v 3 and u 1 D is given by this. So let's 
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implement this. So numerator has 1 plus D plus D square plus D cube. So you can see here, 
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this is my 1, this is my D, this is my D square, this is my D cube. 
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And similarly the denominator has 1 
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plus D plus D cube. So 
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the denominator, this is the 1 term, this is the D term; this is the D cube term. So this part is

implemented. 
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Next is this. Following the same procedure 
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we can find out the mapping between u 2 D and v 3 D. The feed forward connections are 1, D

square and D cube. So then this is 
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1, this is D no connection,D square is this and D cube is this. 
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Similarly the feedback connections are 1, D and D cube. So 
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the feedback connections; this is the 1, this is D and this is D cube. And 
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v 3 is the combination of these 2. So this is my v 3. 
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So I hope this is clear how we can realize 
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this encoder using controller canonical form realization. 

Now the next 
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question is how many termination bits are required to bring this encoder back to all zero

state? Now what does termination means? Termination means 
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we are bringing this encoder back to all zero state. So no matter what the state is, if you want

to bring them back 
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to the all zero state, the number of termination bits required is equal to how many memory

elements we have. So in the controller canonical form realization to bring this shift register,

the first shift register you want to bring it to all zero state, we would require 3 bits because we

have 3 memory elements here, 1, 2 and 3. Similarly 
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for this shift register we require additional 3 bits, so 4, 5, 6 so 
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total we require 6 termination bits, 3 to terminate this encoder and 3 to terminate this encoder.

So we require 
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6 termination bits. 
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Finally let's come to the B C J R algorithm that we talked about. So the first question is can

you write 
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the a priori probability in this particular form, and also the branch metric in log domain, can it

be written in this particular form? Now u l is my input, L a is the a p p value for the a priori

inputs, L c is the reliability factor which is given by 4 times E s by N naught, 
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other  notations  are  same as  which  are  used  in  the  lecture.  v  is  codeword,  r  is  received

sequence so can we write these in terms like this. So let's look at it. 



(Refer Slide Time 29:46)

So what's the probability of u being plus 1 or minus 1? Let's take like plus 1, let's say what's

the prob, what's the probability that u l is plus 1? Now this can be written as this by 1. 
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So I can write as probability of u l being plus 1 divided by probability u l is plus 1 plus

probability u l is minus 1, I can write it 
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this  way,  right?  And if  I  divide  by probability  of  u  l  being minus  1,  then what  I  get  is

probability being plus 1 by probability of u l being minus 1, 1 plus probability of u l being

plus 1, probability of u l minus 1. 
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So this is what I will get of the form here. You can see here, the form for, when u l is plus 1, I

get probability of u l being plus 1, I get in this particular form. Now let's look at what's the

probability that u l is minus 1. Again I can follow the same procedure. I can write this same

as this by 1 or I can write the probability of u l is equal to minus 1 divided by probability of u

l being plus 1 plus probability of u l being minus 1 and 
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I can divide this by probability of u l being 1, so this will be probability of u l equal to minus

1 by probability of u l being plus 1, 1 plus probability of u l being minus 1, probability of u l

being plus 1, right? 
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So this I can also write as this is equal to probability of u l being plus 1 by probability of u l

being minus 1 raised to power minus 1 and this is 1 plus the same thing, raised to power

minus 1. So if I combine this and this what I get 
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is the first step here, Ok. 
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I  can  write  by  combining  this  and  this,  I  will  get  this.  Now  if  I  write  these  ratios  of

probabilities in terms of L values, so what is this L value of u l, this is log of probability of u l

being plus 1 by probability of u l being minus 1. So this can be then written as 
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e raised to power L a u l. If I do that, if I plug this in 
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first line what I get here is this term, Ok. 
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Now note I can further simplify this into this expression. 
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You can see when u l is plus 1, when u l is plus 1, what do we get? When u l is plus 1, 
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this is e raised to power L a u l by 2 and e raised to power minus L a by 2. So this will be

basically 1 so this will be 1 times 1 plus e raised to power minus L a u which can be 
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written as e L a u 1 plus e L a u. This is 
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precisely what I have written here. And if u l is minus 1, this will be e raised to power minus

L a u by 2 and e raised to power L a u by 2. So this term will become, in that case, e raised to

power minus L a u 1 plus e minus La u l. So this term can be written in terms of this, right?

And what is this term? What is this term? This I can simplify this term, let's make some

space. I can simplify this term as e raised to power minus L a u l by 2 and I have e raised to

power minus L a u l by 2, this is e raised to power L a u l by 2 plus e raised to power minus L

a u l by 2. 
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So what I am doing here is I am writing this particular term. So this I can write as this and

this. So this cancels out. 
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And this is e raised to power x plus e raised to power minus x. This will be cosh of x and

that's the symmetric function, so that does not depend on sign of u l whether u l is plus 1 or

minus 1, it does not depend on that. I can write this in terms of this expression. 

(Refer Slide Time 35:41)

So we will use the expression that we derived in the previous slide for a priori value which

was u l being plus 1 or minus 1 as a L e raised to power u l L a u l by 2. We will use this 
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expression to simplify the expression for our branch metric for our b c j r algorithm. Now

note if you recall we have written the expression for branch metrics as a priori probability u l

and then we had, for a w g n channel we had this expression and 
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of course there was some constant factor which did not depend on u of l, 
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right. So what we did just now was we derived that this a priori probability can be written in

this particular fashion, right. Let's further simplify the expression for branch metric. So this

we can expand as r square plus v l square plus 2 times dot product or r and v l. Now this does

not depend on choice of v of l. And if v of l is mapped to plus 1 and minus 1, v l square will

be 1. So this also will be a constant term. So then this term will then not depend on choice of

v of l. So what then will we be left with is, so this term we can just take out as some sort of

constant which does not 
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depend on choice of v of l and what will be left is this term which we are 
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writing here, which we are writing here and 
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the next term that will be left is this term which we are writing 
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here. Please note 

(Refer Slide Time 38:02)

L c is 4 times E s by N naught. So that's why we are writing it as E raised to power L c by 2

and dot product 
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between r  and v l.  So then we can just  simplify this  expression as some constant  terms

multiplied by this a priori, this a priori term and this is the term which depends on received

channel values. 
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So this is the simplified expression for branch 
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computation for our B C J R 
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algorithm if we are considering additive white Gaussian noise 
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channel. Now if we consider branch metric in the log domain, then log of this term will be

some sort of constant, we just 
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ignore it because this does not depend on choice of v of l, u of l so this will become u l, L

value, a priori L value by 2 plus L c by 2 and dot product between the received sequence and

the transmitted codeword. So this will be then our simplified expression for 
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for branch metric computation 
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for B C J R algorithm over additive white Gaussian noise channel, thank you.


