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Lecture Number 21
Problem Solving Session-1V
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Lecture #11B: Problem solving session-1V

So before we go to concatenated codes, let us spend
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some time solving some problems.
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Convolutional codes

@ Problem # 1: Consider rate R = 1/3 convolutional code with
encodmg matrix

+D+D? 1+D?2+D* I-D‘D-')

1
¢(o) ( 1+D* 1+D* 1+ D

So the first question is you are given a rate one third convolutional code with generator

matrix G of D which is given by this.
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Convolutional codes

@ Problem # 1: Consider rate R = 1/3 convolutional code with
encoding matrix

1+D0+D% 1+D2+D* 1‘D‘D-')
1+D* 1+ D* 1+ D2

G(D) (

a) Is G(D) catastrophic? Explain

The first question is, is this a catastrophic encoder? Will an encoder which has a generator

matrix like this; will this result in a catastrophic encoder? So if
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@ Problem # 1: Consider rate R = 1/3 convolutional code with
encoding matrix

1+4D4+D* 1+D*+D* 14D+ D?
LhelEem e ey

a) Is G(D) catastrophic? Explain.
@ Solution: Yes, G(D) can be equivalently written as

1 1+D+D* 1+D*+D* o
G(D)'1+Dz[ 1+D? 1+D? 1+D+D}
or equivalently in the form
_1+D0+D? - -
An input of infinite weight 1713%5-, can result in an output sequence
of weight 5.

you recall what is a catastrophic encoder, a catastrophic
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encoder generates a finite weight output corresponding to an infinite weight input sequence.
Now if we try to look it in terms of state diagram, in a state away from all zero state, there is
a self loop around a state where a non-zero input results in all zero output, right. Now let's

look at this generator matrix
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@ Problem # 1: Consider rate R = 1/3 convolutional code with
encoding matrix

1+D+D* 1+D2+D* 1+D+D?
G(D]'( 1+D* 1+D* 1+D? )

a) Is G(D) catastrophic? Explain.
@ Solution: Yes, G(D) can be equivalently written as

1 1+D0+D* 1+D2+D*
G(D)_'1+D2[ 1+ D2 1+ 0 1+D+D’J
or equivalently in the form
1 . o D + 02 2
An input of infinite weight 1—,15—51'5, can result in an output sequence
of weight 5

and let us try to simplify, put it in a minimal form. So we can see the denominator, one plus D
square is common. So if we take that out, we get here 1 plus D plus D square and this is 1
plus D square, this is 1 plus D square plus D four divided by 1 plus D square and this is 1
plus D plus D square. Similarly we see in the numerator there is a common term 1 plus D
plus D square. If we take that out, what we get here is then this is 1, 1 plus D plus D square

and 1 plus D square. Now how do we know whether this will result in a catastrophic
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encoder or not. So look at
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@ Problem # 1: Consider rate R = 1/3 convolutional code with
cncoding matrix

1+D0+D2 1+D2+ D* l‘D‘D-')

i ( 1+D* 1+D* 1+ D?

a) Is G(D) catastrophic? Explain
@ Solution: Yes, G(D) can be equivalently written as
1 [1-0-0’ 1+D?+D*

G(D
(0) 1+ D? 1+ D2 1+ D?

1—D-D-’]

or equivalently in the form
1+D+D?
1+ D*

-1

G(D) 11+D+D% 1+ D

_",':,!?D can result in an output sequence

An input of infinite weight
of weight 5

this particular generator matrix. Now what is my output sequence? My output sequence v D

isu D times g D.
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@ Problem # 1: Consider rate R = 1/3 convolutional code with
encoding matrix

1+40+D? 1+D?+D* IJD‘D-')

¢(D) ( 1+ D% 1+D* 1+ D?

a) Is G(D) catastrophic? Explain
@ Solution: Yes, G(D) can be equivalently written as
1+D+D° 1+ D%+ D

1+ 02 T e

1
6(D) = 15 [
V(D‘)i u (D) G[D)

or equivalently in the form
1+D+D?
1+ D*

3

G(D) 11+D+0D? 1+ D7

An input of infinite weight 1527 can result in an output sequence
of weight 5

Now is there any input sequence which is of infinite weight but can result in a finite output
weight for v D? If you pay close attention to g of D we notice that if our input u of D is

chosen as 1 plus D four 1 plus D plus D square,
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@ Problem # 1: Consider rate R = 1/3 convolutional code with
encoding matrix

1+D0+D2 1+D2+ D* I-D‘D-')

¢(0) ( 1+D* 1+ D 1+D?

a) Is G(D) catastrophic? Explain
@ Solution: Yes, G(D) can be equivalently written as
1 1+D+D* 1+D°+D* 2
1+ D? 1+ D? 1+ D?

G(D)

or equivalently in the form
1+D+D?

“0)= o

11+D+D* 1+D% |, ,¢
vie)= oo

An input of infinite weight 77 Can result in an output sequence

of weight 5

1+0
+ D+

if our input is chosen in this particular fashion, then what would be the corresponding output
v D? If the input is chosen this way then output will be u D times g D so this term will cancel

this term so what
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@ Problem # 1: Consider rate R = 1/3 convolutional code with
encoding matrix

1+D0+D* 1+D?+D* 1‘D~D-')

¢(D) ( 1+D* 1+D* 1+ D?

a) Is G(D) catastrophic? Explain
@ Solution: Yes, G(D) can be equivalently written as

1 1+0+D° 1+D°+D*
1+ D? 1+D? 1+ D?
or equivalently in the form

1+

G(D)

1+D+ D-‘]
v(0)= u(0) G()
- =

1+ D7
p \,fﬂj—. T+
7= €an result in an output séquence

G(D) “[1 14D+ D

D4

An input of infinite weight
of weight 5

1+0
1+D+

you will be left with is this. So your v of S would be 1, 1 plus D plus D square and 1 plus D

square. And what



Convolutional codes

@ Problem # 1: Consider rate R = 1/3 convolutional code with
encoding matrix

1+D+D* 1+D*+D* I-D‘D-')

¢(0) ( 1+D* 1+D* 1+ D?

a) Is G(D) catastrophic? Explain

e
2 i ] I ,p.&{;—h I1+D
@ Solution: Yes, G(D) can be equivalently written as

1 1+D+D* 1+D?+D* 2

G(D 1+D+ D

(D) l-—D:[ 1+ D? 1+ D? ]
or equivalently in the form \i_(_D_J = \i___[;_f_z GCDJ

5 ;-
G(D E ¥ 11+D+D* 1+ D7
(D) D\ 5

vion)= =T

An input of infinite weight |-I:::'l-j:3— can result in an output séquence

of weight 5

is the weight of this? (Delete kar diya, woh ganda)

Convolutional codes

@ Problem # 1: Consider rate R = 1/3 convolutional code with
cncoding matrix

1+D+0D* 1+D*+D* 1+D+D?
G(D
(o) ( 1+D* 1+D* 1+ D? )
a) Is G(D) catastrophic? Explain va) _f, uorbl HD‘-J
@ Solution: Yes, G(D) can be equivalently written as
1 1+D0+D* 1+D*+D* 2
G(D 1+D+ D
(D) I-Dz[ 1+ D? 1+ D? ]
or equivalently in the form
1+D+D?

G(D) 11+0+0% 1+ D7

1+D*

An input of infinite weight 77 can result in an output sequence

of weight 5

1+0
+ D+

So note here, so the input that will cause this output is given by 1 plus D four by 1 plus D

plus D square,



Convolutional codes

@ Problem # 1: Consider rate R = 1/3 convolutional code with
encoding matrix

1+D+D* 1+D*+D* 1+D+D?
G(D
(D) ( 1+D* 1+D* 1+D-‘)
3) Is G(D) catastrophic? Explain. VLT e 140 )
@ Solution: Yes, G(D) can be equivalently written as

1 1+D0+D* 1+D?+D* ;

G(D 1+D+ D*
(0) hDﬂ[:-D: 1+ D2 ]4&
or equivalently in the form uls J:—D-
| 4p40

1+D+D?

“0)=—p

11+D0+0% 1+ D7

7= can result in an output sequence

An input of infinite weight
of weight 5

1+ 0
1+0+

right? Now we can expand this. So let's say 1 plus D 4, this is 1 plus D plus D square. So let's
just take
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Convolutional codes

@ Problem # 1: Consider rate R = 1/3 convolutional code with
encoding matrix

1+D+D* 1+D*+D* 1+D+D?
S ( 1+ D* 1+ D* 1+ D? )
a) Is G(D) catastrophic? Explainl _ v _f Hpr; u-o"_]
@ Solution: Yes, G(D) can be equivalently written as
1 1+D+D% 1+D°+D* R
G(D 1+D+D
(D) 1—01[1—02 1+ D2 }.;
or equivalently in the form uls -J-ﬂ‘:_
1+D+D? | 4040
Lol L 3 { 2 2] —
G(0)= 5 [1 140+ D7 1407 =23

| 0¥

An input of infinite weight 5 €an result in an output sequence

of weight 5

1+0
1+0+

1. 1 plus D plus D square, this will be D plus D square plus D 4, now
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@ Problem # 1: Consider rate R = 1/3 convolutional code with

cncoding matrix

1+4D+D* 1+D?+D* 1+D+D?
G(D
(0) ( 1+ D* 1+ D* 1+ D? )
a) Is G(D) catastrophic? Explain vig) _ | HDH’L H,D"_I

@ Solution: Yes, G(D) can be equivalently written as

1 [1.0.0 I‘D-'D“I—D—D“]

G(D
(D) 1+ D? 1+ D? 1+ D? -
or equivalently in the form wis _.1:_0-—1
- | 4040
1+ D+ D" 2 (e

11+D+0% 1+D?

12| |4p*
| #0#0 I| ;Dawol
L4

G(D) —I D
: "

An input of infinite weight 152
of weight 5

this will be plus D, this will be D plus D square plus D cube, then this will be D cube plus D

can result in an output sequence

4, you can write D square, so like that basically we, we can see that this is a infinite series.

The input is an infinite series, 1 plus D plus D square is essentially an infinite series. We can
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Convolutional codes

@ Problem # 1: Consider rate R = 1/3 convolutional code with
encoding matrix

1+D+D* 1+D2+D* 1+D+D?
6(D) ( 1+ D* 1+ D* 1+ D? )

2 " i
a) |5: G(D) catastrophic En:]lalnl . vig) _ | 14p#d 14D _I
@ Solution: Yes, G(D) can be equivalently written as

1 1+D+D% 1+D°+D* .
G(D 1+D+D°
(D) 1—.91[1—02 1+ D2 ]4 .|
or equivalently in the form uis __1_'.‘2._‘_-' wiw
T .
1+ 0+ D?, ) = 1 40 40 F—
G(D) W.II‘D*D' 1+ DF) ~ T
LaD"o |_‘-ar9*"

" -
can result in an output sequence .
[+ E

ol

1+0
D+

An input of infinite weight ;
of weight 5

expand it like that where as output is a finite series, it is just 1, 1 plus D plus D square, and

the third bit is 1 plus D square. So you can see, input has lots of 1's in it but the output has

finite 1s. So this is a case of catastrophic
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encoder.

@ Problem # 1: Consider rate R = 1/3 convolutional code with
encoding matrix
1+D0+D? 1+D?+ D l+D+D‘)

G‘D)'( 1+0°  1+D° 1+ D
utﬂ.ﬁ 14pes 140 ]

a) Is G(D) catastrophic? Explain.

@ Solution: Yes, G(D) can be equivalently written as
1+D+D% 1+D*+D* 1+D+02]

1
G(D)'no?[ 1+D? 1+ D?
i +0 _
——— .

or equivalently in the form
1+0+ D%,
GD)=———N1+D+D 1+ D?
1+D* 1 '|»|]'.W°‘ l.‘f;&n"
An input of infinite weight 1—_‘5{—"@, can result in an output sequen

of weight 5

B o5
507
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Convolutional codes

b) Find a mimmal encoder whose encoding matrix 15 equivalent to

G(D)
Solution: An equivalent minimal encoder is given by
G(D)=[11+D+D? 1+D?

Now the second question is what would be the minimal encoding matrix for the generator

matrix given in the previous example.
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Convolutional codes

@ Problem # 1: Consider rate R = 1/3 convolutional code with

encoding matrix
1+D0+D* 1+D*+D* 1+D+D?
G(D) ( . )
1+ D* 1+ D* 1+ D?
a) Is G(D) catastrophic? E‘ﬂlam. . viy) _ | “p‘_;' H‘Q)-_I
@ Solution: Yes, G(D) can be equivalently written as
1 1+D+D* 1+D%+D* 2
G(D 1+D+ D
(D) 1-01[1—01 1+ 02 ]4 -
: P
or equivalently in the form ule _'_%_L-_- ¥ i
I+ ‘
1+D0+D? 2 Ly
6(D)=———=—[11+D0+D* 1+ D|hooe o
1+ D L.O"D | + o¥e &
10" ean result in an output sequence & .
—nip1

An input of infinite weight 5=
of weight 5

If I ask you, find out the minimal encoding matrix for this encoder. So what do we do? We

take out all the common factors. If we take out common factors, then we basically what we

get is like this is our minimal encoding
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Convolutional codes

b) Find a mimimal encoder whose encoding matrix is equivalent to
G(D)

Solution: An equivalent minimal encoder is given by

GD)=11+D+D* 1+ D?

matrix and if we can write, if I ask you to draw this encoder, we can, this is, k is 1, n is 3, the
maximum memory is 2 so I am drawing 2 memory elements here. The first coded bit is just 1,
so this is the information sequence that goes in. Second one is 1 plus D plus D square. So
that's your, let's call it v 0, this is v 1, this is u 0, and the third bit, coded bit is 1, and D square

this is your v 2,
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Convolutional codes

b) Find a minimal encoder whose encoding matrix is equivalent to
G(D)

Solution: An equivalent minimal encoder is given by

GD)=11+D+D* 1+D°
v

o

“ =

v

e

Ok. So this is the minimal encoder for the same generator matrix given in the previous

example.
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Convolutional codes

@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

G(D)

So consider a rate two third non systematic feed forward encoder. So this is a generator
matrix for a non systematic code, rate two third and it is a feed forward encoder. There are no

feedback polynomials here.
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Fa rtomns - cif-ommasssass. &

Convolutional codes

@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by
o o’ 1

&) 1 D 1+D+D°

1) Draw the controller canonical form encoder realization for G(D)

The first question is draw the controller canonical form realization for this generator matrix.

Now in controller canonical form realization we have 1 set
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of shift register for input. Now how many inputs do we have here? k is 2
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@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

D D 1 k=

(D) = 1 D 1+D0+D°

i) Draw the controller canonical form encoder realization for G(D).

so we will have 2 sets of shift registers for this. One for this and second
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Convolutional codes

@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

: k=2
D D 1

i) Draw the controller canonical form encoder realization for G(D)

set of shift registers for this. Now what
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Convolutional codes

@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

-
= []1 DF 1+D+D |

i) Draw the controller canonical form encoder realization for G(D)

should be the maximum memory for each of these shift registers? You can see here the
maximum power of d is 2. So we should have 2 memory elements for the first input.

Similarly for the second input also we should have 2 memory elements. Let's call it u 0 and u
1.
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Convolutional codes

@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

D D 1 Ke2-

1 D 1+D+D

G(D) [I
i) Draw the controller canonical form encoder realization for G(D)

Us ._——.D——D
n ———ﬂ—‘]:\

Now there are 3 outputs. So the outputs are, this is 1 output, D times

(Refer Slide Time 08:06)
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@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with

generator matrix given by

k=2
G(D)

]1[ D° 1+D+D" |
i) Draw the controller canoniTal form encoder realization for G(D)

Us (———D——D
v —E 11

the first and one times u 1, so D times the first input is this, and one times second input so

that is this. So this is your first coded bit. Let's call it v 0.
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Convolutional codes

@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

G(D)

i) Draw the controller canon

Ve

Now what's the second coded bit? This is this term,
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@ Problem # 2:

a) Consider the rate R=2/3 nonsystematic feedforward encoder with

generator matrix given by

G(D)

i) Draw the controller canon

Ve

D square u 0 is this term and D square u 1 is this term, so this is your v 1
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@ Problem # 2:

a) Consider the rate R=2/3 nonsystematic feedforward encoder with

generator matrix given by

G(D)

i) Draw the controller canon

Ve

Vi

and the third output is this.

(Refer Slide Time 08:49)
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@ Problem # 2:

a) Consider the rate R=2/3 nonsystematic feedforward encoder with

generator matrix given by

G(D)

Ve

So this is, just a minute, u 1 and one D term and D square term.



@ Problem # 2:

a) Consider the rate R=2/3 nonsystematic feedforward encoder with

generator matrix given by

G(D)

Us

Uy

So this is your controller canonical form realization for this generator matrix. So this is

(Refer Slide Time 09:20)
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@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

b o’ 1
(D) 1 D 1+D0+D°

i) Draw the controller canonical form encoder realization for G(D)
@ Solutions:

i) Controller canonical form encoder realization is given in Figure 1

Figure: Canonical Form encoder realization

precisely what we have here. You can see, so this shift register is for
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Convolutional codes

@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

Do p? 1
e [ 1 D 1+D+D° ]
i) Draw the controller canonical form encoder realization for G(D)
@ Solutions:

i) Controller canonical form encoder realization is given in Figure 1

Figure: Canonical Form encoder realization

this input and this

(Refer Slide Time 09:34)
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@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by
D p? 1
N —n

1+D+D?

i) Draw the controller canonical form encoder realization for G(D)
@ Solutions:
i) Controller canonical form encoder realization is given in Figure 1

Figure: Canonical Form encoder realization

this shift register is for
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Convolutional codes

@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

G(D) [@E ]

D 1+4D0+D

i) Draw the controller canonical form encoder realization for G(D)
@ Solutions:
i) Controller canonical form encoder realization is given in Figure 1

Figure: Canonical Form encoder realization

this input.
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@ Problem # 2:

a) Consider the rate R=2/3 nonsystematic feedforward encoder with

generator matrix given by

G(D) [
i) Draw the controller canonical form encoder realization for G(D)

@ Solutions:
1) Controller canonical form encoder realization is given in Figure 1

Figure: Canonical Form encoder realization

Maximum memory element for the first one is 2, second one also 2 and we can see now, the

first output is D times u 1 which is this plus u 2 times this.
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Convolutional codes

@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

D D’ 1
o [ 1 D° 1+D+0D°
i) Draw the controller canomcmhzanon for G(D)
@ Solutions:
i) Controller canonical form encoder realization is given in Figure 1

__f e -

Figure: Canonical Form encoder realization

The second output is D square times u 1 and D square times u 2, so that is this.

@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

G(D) [

i) Draw the controller canonical form encoder realization for G(D)
@ Solutions:
i) Controller canonical form encoder realization is given in Figure 1

__f - =

Figure: Canonical Form encoder realization

And the third output is u 1 which is this and this is u 1 D times u 1, D square times u 1, so

that's your third output,
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Convolutional codes

@ Problem # 2:
a) Consider the rate R=2/3 nonsystematic feedforward encoder with
generator matrix given by

1
+D+ D

6(D) [’f o

i) Draw the controller canonlcmhzanon for G(D)
@ Solutions:
i) Controller canonical form encoder realization is given in Figure 1

Figure: Canonical Form encoder realization

Ok.
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Convolutional codes

ii) Find the generator matrix G'(D) of the equivalent systematic
feedback encoder

i) Solutions: We have

G(D)

Now this was a non systematic encoder. Can we find an equivalent systematic encoder or
systematic encoding matrix for this generator matrix, the answer is yes. So how do we find a
systematic encoding matrix? So this has to be put in the form like this; 1 0 0 1 and some

matrix here let's callita 1 D timesa2 D and b 1 D times b 2 D. So we will have to bring
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Convolutional codes

ii) Find the generator matrix G'(D) of the equivalent systematic
feedback encoder —_—

| 028
i) Solutions: We have Ol |
)

D D? 1 |

¢D)=|; p2 l-D-D-‘J

this matrix in this particular form. So we have to get this to 1, this to, this has to be changed

to 1, this has to be brought to 0,
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Convolutional codes

ii) Find the generator matrix G'(D) of the equivalent systematic
feedback encoder N

I o 23
i) Solutions: We have O | 2
D
) ‘Dl p? 1]
1) D? 1+D+D? |
L'_CP

, this has, this we have to brought to 1 and this we have to bring to
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Convolutional codes

i) Find the generator matrix G'(D) of the equivalent systematic
feedback encoder =
————————— a

“aiw
i) Solutions: We have [ oI 1..:-?)

Dhip?
o~ [BH 1 no]

0. Now we will do elementary row operation to get an identity matrix here. So let's do that.
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Convolutional codes

ii) Find the generator matrix G'(D) of the equivalent systematic
feedback encoder

i) Solutions: We have

G(D)

[ D D? 1 ‘
1 D 1+D+D?

L

@ Now applying Row 1 «— (Row 1)/D, we get

o) [ oo]

So first thing that we do is, we make this a 1. How do we make this a 1? We do this
transformation that row 1 is, row 1 by D. So we divide this whole thing by D, what we get is

1 D 1 by D. Next we would like to get a zero here.
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Convolutional codes

ii) Find the generator matrix G'(D) of the equivalent systematic
feedback encoder

i) Solutions: We have

D D? 1

(D) {1 D? 1-D-D‘}
@ Now applying Row 1 « (Row 1)/D, we get
1 D ;

e [-“ D 1+0+0? ]

Here we would like to get a zero. How can we get a zero here?

(Refer Slide Time 12:09)
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Convolutional codes

@ Now applying Row 2 «+ Row 1 + Row 2, we get
1 D :
G(D) [ e ]
0 D+ D? 1+D rl;) o
@ Now applying Row 2 « (Row 2)/(D + D?), we get
1 D

1
D,
01 4F

G(D) {

@ Now applying Row 1 « Row 1 + D (Row 2), we get
[1 0 D
1

60)= | ;

L+0’
=

So we will do this transformation, row 2 is row 1 plus row 2. If we do that, so we
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Convolutional codes

ii) Find the generator matrix G'(D) of the equivalent systematic

feedback encoder

i) Solutions: We have

add these two, this will become 0, this will become D plus D square and what we will get is

(Refer Slide Time 12:28)
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Convolutional codes

@ Now applying Row 2 +

:, ;.";é’.il.t--l- ]

Row 1 + Row 2, we get

G(D) [

@ Now applying Row 2 ¢

G(D) [

@ Now applying Row 1 «

G(D)

- D‘I!)%’U']
0 D D? 2

(Row 2)/(D + D?), we get
1 D 3}
+ L

0 1 4

Row 1 + D (Row 2), we get
1 0 D
0 1 P

this. Next we would like to get a 1 here,
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Convolutional codes

@ Now applying Row 2 «+ Row 1 + Row 2, we get

G(D) [ o

1 D

like to get a 1 here. How can we get a 1 here? We divide row 2 by this. So we do this

transformation that row 2 is row 2 divided by D plus D square and once we do that, we get
this. Next we would like to get a zero here.

(Refer Slide Time 12:58)
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Convolutional codes

@ Now applying Row 2 + Row 1 + Row 2, we get

1 D ;
G(D) [ Al -
0 ,‘_D N D‘. 1+D !l)J [}

—

@ Now applying Row 2 « (Row 2)/(D + D?), we get

1 ;'.'-'
0 1 4F |

G(D) [

@ Now applying Row 1 + Row 1 + D (Row 2), we get

[ D
a-[12 3]

[+

How do we get a zero here? We multiply row 2 by D and add it to row 1. So we do this

transformation that row 1 is row 1 plus D times row 2. And when we do that, we get this. So

this is our equivalent systematic encoder for the
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Convolutional codes

ii) Find the generator matrix G'(D) of the equivalent systematic
feedback encoder GT_—‘
| O _a':.T-'l
i) Solutions: We have [ Ol @
— D
G(D) [_‘_O-‘H.\D-‘ o 1 ‘ }
1) 0 1+D+D? |
1

o

generator matrix this, Ok.
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Convolutional codes

i) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization

i) Equivalent systematic encoder is not realizable, so we can make it
realizable by applying Row 2 « (Row 2)(D?). We get
1 0 D

G(D] D D.‘ 1 i D.‘

Next. Is this equivalent systematic generator matrix, is it realizable? If it is not, find out an
equivalent realizable generator matrix and draw its corresponding minimal encoder

realization. Now note here
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Convolutional codes

@ Now applying Row 2 «+ Row 1 + Row 2, we get

1
G(D) . ]
D

@ Now applying Row 2 « (Row 2)/(D + D?), we get

G(D) { 0

@ Now applying Row 1 «— Row 1 + D (Row 2), we get
1 0 D ]

1+D°
L0 1 57

G(D) = |

this generator matrix has a term 1 plus
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Convolutional codes

@ Now applying Row 2 «+ Row 1 + Row 2, we get
1 D ;
60)= | g+ ot gt Lo |
0 :_D'D'_I 1 L)rl;)' o

——

@ Now applying Row 2 « (Row 2)/(D + D?), we get

1 ‘D!
1

1
: D.
0 +0r

D

G(D) {

@ Now applying Row 1 «— Row 1 + D (Row 2), we get
[1 0 D
01 1+D°

G(D)

D square in the denominator. Now this cannot be realizable. So any denominator term that we

have, it has to be of the form 1 plus some polynomial here



(Refer Slide Time 14:13)
IO

il -cesmesssssc

AT 1N

Convolutional codes

@ Now applying Row 2 «+ Row 1 + Row 2, we get

1 D :
G(D} [ 0 ‘.D_'_ Ei |.u.%-.u'

@ Now applying Row 2 « (Row 2)/(D + D?), we get

1

0

1
D,
& DF

o

G(D) {

@ Now applying Row 1 « Row 1 + D (Row 2), we get

1 0 D
s

but here this 1 is not here. So we cannot realize a rational function of this form using our shift

register. So this particular equivalent systematic encoder is not realizable. However if we

multiply this by D square, what we

(Refer Slide Time 14:33)
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Convolutional codes

iii) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding mimimal encoder realization

iii) Equivalent systematic encoder is not realizable, so we can make it
realizable by applying Row 2 « (Row 2)(D?). We get

1 0 D ]

6(D) 0 D 1+D?

get if we do this transformation, what we get is this. This is no longer, so what we are getting

now is basically a new equivalent encoder which is in the feed forward form and it is

realizable.
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ii) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization.

iii) Equivalent systematic encoder is not realizable, so we can make it
realizable by applying Row 2 « (Row 2)(D?). We get

1 0 D

0 D? 1+D?

@ Controller canonical form encoder realization of the equivalent
encoder is given in Figure 2

G(D) =

Figure: Canenical Form encoder realization of the equivalent encoder

So how do we realize it? Again if we using controller canonical form realization we will have

one set of shift registers for this
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Convolutional codes

i) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization.

iii) Equivalent systematic encoder is not realizable, so we can make it
realizable by applying Row 2 « (Row 2)(D?). We get

G(D)

0 D 1+D? ]
@ Controller canonical form encoder realization of the equivalent
encoder is given in Figure 2

Figure: Canonical Form encoder realization of the equivalent encoder

input, another set of shift registers for this input.
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ii) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization.

iii) Equivalent systematic encoder is not realizable. so we can make it
realizable by applying Row 2 « (Row 2)(D?). We get

@ Controller canonical form encoder realization of the equivalent
encoder is given in Figure 2

G(D)

Figure: Canonical Form encoder realization of the equivalent encoder

What's the maximum memory for the first row? The maximum power of D is 1. So we will

have 1 memory element for the first input and what's the maximum power of D for the

second? That's 2 here, 2 here, 2 here

Convolutional cod

ii) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization

iii) Equivalent systematic encoder is not realizable, so we can make it
realizable by applying Row 2 «— (Row 2)(D?). We get

1 0 B

6(D) s W,

@ Controller canonical form encoder realization of the equivalent
encoder is given in Figure 2

Figure: Canonical Form encoder realization of the equivalent encoder

so we will use 2 memory element
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Convolutional codes

ii) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization

iii) Equivalent systematic encoder is not realizable, so we can make it
realizable by applying Row 2 « (Row 2)(D?). We get

1 0 D*

60)= |

@ Controller canonical form encoder realization of the equivalent
encoder is given in Figure 2

Figure: Canenical Form encoder realization of the equivalent encoder

for the second input. And again what are our outputs? There are 3 outputs. The first output is

this,

(Refer Slide Time 15:34)
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i) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization

iii) Equivalent systematic encoder is not realizable, so we can make it
realizable by applying Row 2 & (Row 2)(D?). We get

G(D) =

@ Controller canonical form enco@er realization of the equivalent
encoder is given in Figure 2

Figure: Canonical Form encoder realization of the equivalent encoder

this is u 1 times, this is just u 1 so this is this, second one is D square
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Convolutional codes

ii) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization

iii) Equivalent systematic encoder is not realizable, so we can make it
realizable by applying Row 2 « (Row 2)(D?). We get

@ Controller canonical form encoffer realization of the equivalent
encoder is given in Figure 2

A

—

Figure: Canenical Form encoder realization of the equivalent encoder

of u 2. So D square of u 2 is just this term.
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Convolutional codes

ii) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization.

iii) Equivalent systematic encoder is not realizable, so we can make it
realizable by applying Row 2 « (Row 2)(D?). We get

G(D)

@ Controller canonical form encofer realization of the equivalent
encoder is given in Figure 2

A

—

Figure: Canenical Form encoder realization of the equivalent encoder

So this is my second output and the third
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ii) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization

iii) Equivalent systematic encoder is not realizable, so we can make it
realizable by applying Row 2 £ (D?). We get

@ Controller canonical form encoffer realization of the equivalent
encoder is given in Figure 2

A

—

Figure: Canenical Form encoder realization of the equivalent encoder

output is this,
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Convolutional codes

ii) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization

iii) Equivalent systematic encoder is not realizable, so we can make it
realizable by applying Row 2 & (Row 2)_We get

T
1/{0 D
G(D
(D) [o[1F [k + &
@ Controller canonical form encodér realiZation of the equivalent
encoder is given in Figure 2

A

—N

Figure: Canenical Form encoder realization of the equivalent encoder

D times u 1 D which is this one and one times u 2 D and D square times u 2 D, so that's this.

This is our third
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Convolutional codes

i) Is G'(D) realizable? If not, find an equivalent realizable generator
matrix and draw the corresponding minimal encoder realization

iii) Equivalent systematic encoder is not realizable. so we can make it

realizable by applying Row 2 +— (Row D<) We get

@ Controller canonical form encodeér realiZation of the equivalent
encoder is given in Figure 2

Figure: Canenical Form encoder realization of the equivalent encoder

output. Now given

(Refer Slide Time 16:15)
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Convolutional codes

@ Problem # 3: In Figure 3, a rate R = 2/3 systematic convolutional
encoder is shown

Figure Figurc for Problem 3

below is a rate two third systematic convolutional encoder. Please note this is neither in the
controller canonical form realization or in the observer canonical form realization. Note here
the feedback terms that are coming here are not only coming from the same encoders like
this, feedback is not only, so if you look at the feedback, feedback from this is going to this
encoder and feedback from here is going to this encoder. So not only feedback is coming to

the same encoder but it is also going to the other encoder.
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Convolutional codes

@ Problem # 3: In Figure 3, a rate R = 2/3 systematic convolutional
encoder is shown.

-
-V,

Figure F<gurc for Problem 3

So this realization is

(Refer Slide Time 16:58)
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Convolutional codes

(a) Give the expression for the generator matrix G(D)

@ Solutions:

a very compact realization. The question that has been asked is can you find out the generator

matrix corresponding to this encoder? So



(Refer Slide Time 17:10)

I+ a s = <jaanan Y
Forrto=as- il ==msslisssasn

Convolutional codes

(a) Give the expression for the generator matrix G(D)

@ Solutions:
@ We can write

V1(0] U!{D)
w(D) w(D)
w(D) (1+ D+ D*)x(D) + y(D)

- .

how do we find the generator matrix? We know this is a relation between the input and the

output. So how these

(Refer Slide Time 17:20)
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Convolutional codes

(a) Give the expression for the generator matrix G(D) i ul®) GO

@ Solutions:
@ We can write

w(D) n(D)
v(D) (D)
w(D) (1+ D + D*)x(D) + y(D)

- =

inputs are getting mapped to the output, that is governed by this generator matrix.
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(a) Give the expression for the generator matrix G(D
) P 4 ( }vfbj'-U(‘D-j CD])
@ Solutions: —_— =,
@ We can write

w(D) (D)
w(D) w(D)
w(D) (1+ D+ D*)x(D) + ¥(D)

- .

So what we are going to do is we are going to write the output v D in terms of input u D. And
then that would give us our generator matrix. So our objective is to write v 1, v 2, v 3 in terms

ofulandu?2,

(Refer Slide Time 17:50)
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Convolutional codes

(a) gi\;e t.he expression for the generator matrix G(D) iD= u® CDJ)
@ Solutions: —_— .
T T

@ We can write

w(D) n(D)
v(D) (D)
v(D) (1+ D + D*)x(D) + y(D)
o
"
I . —a
3 v
v .

fine. We use some auxiliary variables; x and y which basically will help us find the contents

here. So if this is x of D, this term will be D times x of D and this will be D square times x

times D.
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Convolutional codes

(a) Give the expression for the generator matrix G(D) i~ ol e
@ Solutions: — =—= :]

@ We can write ‘_‘F— _‘?—
w(D) = w(D)
v2(D) w(D)
wi(D) (1+ D + D*)x(D) + y(D)
—
o
v Py : A
e ~ 170 D)
b3 v
v ol |

Similarly if this is y, this term will be D times y of D.

(Refer Slide Time 18:16)
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(a) Give the expression for the generator matrix G(D) iD= o CDJ)

@ Solutions:
@ We can write ._‘F T
w(D) = w(D)
v2(D) w(D)
w(D) (1+ D+ D*)x(D) + (D)
Nz
v Py : ]
e = iln) D)
3 v
DY
v =

Sowhatis v 1 of D? v 1 of Disu 1 of D, you can see u directly goes, this input directly goes

here. Sov 1
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Convolutional codes

(a) Give the expression for the generator matrix G(D) D~ o CDJ)
@ Solutions: =

@ We can write f _‘?—
wi(D) = w(D)
v2(D) w(D)

w(D) = (1+D+D*)x(D)+ (D)

AN
%,

PY D

of D is u 1 of D. Similarly this input u D directly goes to the output here.
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Convolutional codes

(a) Give the expression for the generator matrix G(D) e o CDJ)

@ Solutions:
@ We can write _“F _‘?—
(D) = wu(D)
v2(D) w(D)
w(D) = (1+D+D*)x(D)+ y(D)
-
"
i) D)
3 v
PY

Sov2ofDisu?2of D. Now what is v 3 of D? v 3 of D is this term which is x of D, this term
D times x of D and this term which is D square x of D. So this is this term plus this term. So

it is these 3 terms. Now what is this term? This is y of D. So we have
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(a) Give the expression for the generator matrix G(D

) ) c:oi
@ Solutions: V_.(_?-?--_ U—(l'
-—‘?—' _‘?_'

@ We can write

vi(D) = w(D)
v2(D) w(D)
w(D) = (1+D+D%)x(D)+ y(D)
— —— e ———— . ",F
-
-

written v 1 of D, v 2 of D, v 3 of D in terms of u 1, u 2, x of D and y of D. Now note we need

to get rid of x of D and

(Refer Slide Time 19:30)
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(a) Give the expression for the generator matrix G(D)

@ Solutions: — ———
@ We can write -_‘Fr 1
w(D) = w(D)
v(D) w(D)

(D) = (1+0+0*(D)+ ¥(0)

LN

y of D, and we have to
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Convolutional codes

(a) Give the expression for the generator matrix G(D) iD= U CD]’

@ Solutions: —

@ We can write T T
wi(D) = w(D)
w(D) uwz(D)

WD) = (1+D+ o>k(0)+ m

-
w

write these in terms of u 1 and u 2. Now what is x of D? x of D is this and this. Similarly

what is y of D?
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Convolutional codes

(a) Give the expression for the generator matrix G(D) i vl CDJ)
@ Solutions: —

@ We can write -:‘?: T
v(D) = w(D)
w(D) w(D)

(D) = (14D o- b))

-
"

y of D is this term, this, this term sorry this term and this term, Ok. So we can write
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(a) Give the expression for the generator matrix G(D

fn:) U(DJ 4.3) i
@ Solutions:
@ We can write -_‘F—
wi(D) = w(D)
v2(D) w(D)

!_rz(D) - (l-D-O'- D

v f_.' .

2 more equations

(Refer Slide Time 20: 02)
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@ Also,

(D) = w(D)+ D*x(D)+ Dy(D)
(D) = w(D)+ Dy(D)

@ Solving for x(D) and y(D), we get

1 D?

"0 = o7 O+ o0
D 1+D

(D) = 5 —p5lD)+ ——pp5w(D)

@ Hence, v3(D) is

1+D+D*+D°

¢ D+ D
i+0+0 O+ oo D)

y(D)

for x of D and y of D. So again y of D as I said is u 1 of D,
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(a) Give the expression for the generator matrix G(D)

@ Solutions: e
@ We can write -_‘F— T
vi(D) = w(D)
v2(D) (D)

!_lz(D) = (1+D+ 02.(1‘3] +ly(D)

WS

y of D is u 1 of D which is this one, thisisu 1 of D

(Refer Slide Time 20:21)

li“ AN T fe=.
Fa rresms~ci

@ Also,

¥D) = w(D)+Dx(D)+ Dy(D)
(D) = w(D)+ Dy(D)

@ Solving for x(D) and y(D), we get

1 D?
¥(D) 20O+ 157D
D 1+D
x(D) oy, D,m(Dl K e D;U:(D)
@ Hence, v3(D) is
1+D+D*+D? 1+ D%+ D?
y(D) w0 2P+ 5D

plus D square x of D.
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Convolutional codes

(a) Give the expression for the generator matrix G(D)

vim= u(m) (D)

T

@ Solutions:
@ We can write

wi(D) = w(D)
v2(D) w(D)

-
w(D) = (1-0-0"-&0!)

1

w

D square x of D is this term, D square of x of D is this term which is coming here, this term

and there is another term
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Convolutional codes

(a) Give the expression for the generator matrix G(D)

@ Solutions: — ==
@ We can write -_‘F T
wiD) = Ul[D)_
w(D) w(D)
w(D) = (1+D+ 03.(01 + (D)
- —
v
-

here
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@ Also,

D) = w(D)+D*x(D)+ Dy(D)
x(D) = w(D)+ Dy(D)

@ Solving for x(D) and y(D), we get

1 D?
"0 = oo+ 1o psP
D 1+D
X0) = 15 —p5lD)+ —p 55D
@ Hence, vy(D) is
1+D+D*+D° 1+ D%+ D?
y(D) s 2P+ 5D

which is D times y of D. So D
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Convolutional codes

(a) Give the expression for the generator matrix G(D)

@ Solutions: e
@ We can write -_‘F T
vi(D) = w(D)
v2(D) w(D)

wlD) = (1+D+ 03-(01 + (D)

WS

times y of D, note here, the third input here is this one which is D times y
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(a) Give the expression for the generator matrix G(D

) D - ) ()

@ Solutions: |
@ We can write -_‘F _‘?—
w(D) = w(D)
v(D) w(D)
w(D) = (1+D- 03--’;(.9)
3
174

of D. Similarly x of D is, first one is this term which is u of D, so this is u

(Refer Slide Time 20:58)
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Convolutional codes

@ Also,

(D) w(D) + D*x(D) + Dy(D)
x(D) (D) + Dy(D)

@ Solving for x(D) and y(D), we get

3

1
y(D) = 1+ DsD° D,”l(Dl 2, Diﬂ:(D]
D 1+D
(D) = (D) + — 2 un(D)
@ Hence, vy(D) is
1+D+D*+D° 1+D?+ D3
y(D) oD 2P+ 5D

of D and the second term is
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Convolutional codes

(a) gi\;e:.he expression for the generator matrix G(D) (= u® CDJ)
@ Solutions: — =
@ We can write T 1
w(D) = w(D)
v2(D) w(D)

i"[D] = (1+D+ D:-(D] + ;(D)

—

WS

this term which is D times y of D,
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Convolutional codes

@ Also,

¥(D) = w(D)+Dx(D)+ Dy(D)
(D) = w(D)+ Dy(D)

@ Solving for x(D) and y(D), we get

1 2
(D) = 1+D+ D’ui(D) g fr_u_,ﬁ“’(m
D 1+D
D) = (D) + — (D)
@ Hence, vy(D) is
1+D+D*+D? 1+ D%+ D?
y(D) s 2P+ 5D

this one, Ok. So now we have got equations of y of D, x of D in terms of u 1 D and u 2 D. So
let's write, bring y of D at one side and x of D at one side and write them in terms of, y of D
and x of D in terms of u 1 D and u 2 D. So if we solve this, what we get is y of D is given by
this and x of D is given by this. Now we plug these values of y of D and x of D given by this

into



(Refer Slide Time 21:46)

e e ———

Convolutional codes

(a) Give the expression for the generator matrix G(D)

@ Solutions: V_.{_?-?- U—("E‘ e
@ We can write T T
w(D) = wu(D)
v2(D) w(D)
w(0) = (1+0+0*(0)+j0)]
- 2z
v
=%
v
here, into this expression of
(Refer Slide Time 21:51)
s = C2F-

Convolutional codes

(a) Give the expression for the generator matrix G(D) v = v )
@ Solutions: altize—s

@ We can write -_‘F- T
vi(D) = w(D)
v2(D) uw(D
w(D) = (1+ D+ D*)x(D)}+|y(D)
v o
_.f
——

y 3 of D. So we plug this value of x D and y D which we just computed,
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(a) Give the expression for the generator matrix G(D)

= u(®)
@ Solutions: V_.(_E‘.)- e
@ We can write -_‘F T
vi(D) = w(D)
v2(D) w(D)

[o®) —a+53 omm

we plug those values in here. If we do that, we
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Convolutional codes

@ Also,
¥(D) w(D) + D*x(D) + Dy(D)
x(0) = w(D)+0y(D)

@ Solving for x(D) and y(D), we get

1 D*
w(0) = 5@+ 5%=0) v

 x(D) (D) + 5

D
1+ D+ D3
@ Hence, vy(D) is

1+4D+D*+D° 1+ D%+ D°

y(D) D+ D° "‘[D)'I-D-D’

(D)

will get the expression of y 3 of D, Ok. Now,
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Convolutional codes

@ Therefore, G(D) is given by

1 0 1+D+D’+D*
G(D) S

14.0° 4+ D*
01 T

so if we do that finally

(Refer Slide Time 22:14)
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Convolutional codes

@ Also,

#D) = w(D)+D’x(D)+ Dy(D)
x(D) uz(D) + Dy(D)

—_— —

@ Solving for x(D) and y(D), we get

1 D?
(D) = 5@+ 1550 v
1

+ D
; x(D) T W

D
(D) + (D)

@ Hence, w(D) is

1+ D+ D? + D3 D? + D
¥(D) il

1+ 3
v+ 0+ TP

this is v 3 of D, so if we do that what we get is then v 3
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@ Also,

¥(D) (D) + D’x(D) + Dy(D)
(D) (D) + Dy(D)

—_—

@ Solving for x(D) and y(D), we get

WO0) = 5 —pstlD) + ——p—55(D)
D + D
D) = D) + o (D)

@ Hence, v3(D) is

1+D+D?+ D?
¥(D)

D? + D
! D+ D (D)

+rD+D°

14
(D) + 3

of D is this times u 1 D plus this times u 2 of D. So now we are in a position to

(Refer Slide Time 22:30)
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Convolutional codes
(a) (siu.;elt.he expression for the generator matrix G(D) v = v )
@ Solutions: — =
@ We can write & 1
w(D) = w(D)
v(D) w(D)
wd) = (+0+0k0):fio) |
—_—
- ol
v
e 17
v

write the generator matrix. The first equation that we will require is this one. Second equation

we will require is this one.
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(a) Give the expression for the generator matrix G

(D)
- u(® CDJ’
@ Solutions: V_.(_E‘.)- =
T B

@ We can write

wd) = w® —O
w(D) = w(d) -

'D'.\:(h) D)

And the third

(Refer Slide Time 22:40)

@ Also,

HD) = w(D)+ D*x(D)+ Dy(D)
x(D) = w(D)+ Dy(D)

@ Solving for x(D) and y(D), we get

- 1 D W
+¥(D) 10O+ 50
D 1+D
(x(D) = s—e—zn(D)+ (D)
@ Hence, v3(D) is
1+ D+ D?+ D 1+ D%+ D?
v}(D] 13D+ D (D) + -0+ D uz(D)

equation that we will require is this one,
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@ Also,

¥(D) u(D) + D*x(D) + Dy(D)

x(©) = (D) + ox(0)

@ Solving for x(D) and y(D), we get

0550 .

w(D)

+1y(D) un(D) +

IL)D‘

1%(D) (D) +

D
1+D+ D3 1-D-D"

@ Hence, vy(D) is

1+D+D*+D° 1-D1
y0) - 2 o)+ TS o) (3)

right. So
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Convolutional codes

@ Therefore, G(D) is given by

G(D)

1 0 ko:o:o

T1+0+DY

01 tDD'
FO+DY

you can think of it as like this, so we have 3
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(a) (sii\;elt.he expression for the generator matrix G(D) (D= u® )
@ Solutions: — =
+ T =

@ We can write

wd) = wp —O

w(D) = (D) =G
[0 = (+0: oko)-foy) |
—_—
e -

output, v1,v2,v 3, 2inputu 1, u 2, so we are writing

(Refer Slide Time 22:56)
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@ Therefore, G(D) is given by

G(D)

1 0 ko:psp

l-ﬁ..-ﬁ‘

01 1+0°+.0°
1+D+DY

v1iD,v2D,v3DintermsofulD,u?2D and this G matrix.
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Convolutional codes

E‘(DB Vo (D) V’J(l’)] = [u,fa) \J;_,{'D}j G

@ Therefore, G(D) is given by

G(D)

So whatisv1 D?v 1Disu 1 of D. So then our G matrix here, again G matrix is 2 cross 3, so
viDisulofD,soweget10.v2of Disu2D,soweget0 1, and whatisv 3 of D, v 3 of

D is this, this times
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EI{D} o (D) Vg(n)] & [u,fn) ‘JL{D)] G‘
G-J1 o0 ]

LO |
A S

1 Fupr

@ Therefore, G(D) is given by

G(D)

u 1 of D and this times u 2 of D.
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D,{DS o (5 V’J(")] = [u,fp) \JL{'D)j G
G =] o ]
o |

10 (1—,.,7,—'1”_'.‘? ‘”'l
01 ] f:'.fn'.'nfw ]

@ Therefore, G(D) is given by

G(D)

So this will be our final generator matrix corresponding to the encoder that is shown in this

(Refer Slide Time 23:58)
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Convolutional codes

@ Problem # 3: In Figure 3, a rate R = 2/3 systematic convolutional
encoder is shown.

.
v,

Figure: Figure for Problem 3

figure, Ok. Now
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(b) Realize the convolution encoder in controller canonical form. How
many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

the next question is can we realize this encoder in the controller canonical form? So the

answer is yes, we can realize it.

(Refer Slide Time 24:14)
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@ Therefore, G(D) is given by

G(D)

We can have the expression for generator matrix. So to realize it in controller
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canonical form again, so there is one
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o |
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@ Therefore, G(D) is given by

set of shift registers for each input, so this is one input, this is second input right. Please note

this is a feedback polynomial so we would require a feedback polynomial and now maximum

degree here is 3, maximum degree here also is 3,s0
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Convolutional codes

(b) Realize the convolution encoder in controller canonical form. How
many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

we will require 2 set of shift registers, first one is this one. Please note this as

(Refer Slide Time 24:58)
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Convolutional codes

(b) Realize the convolution encoder in controller canonical form. How
many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

3 memory elements and similarly second shift register, this also has 3 memory elements.
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Convolutional codes

(b) Realize the convolution encoder in controller canonical form. How
many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

That is because the maximum degree

(Refer Slide Time 25:08)

ALY A T T (T T L )

P

Convolutional codes

of this rational function is 3 and similarly maximum degree of this rational function is 3. And

we just implement this.
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Convolutional codes

(b) Realize the convolution encoder in controller canonical form. How
many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

Sov1,v1DisjustulD, so that's just this.
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Convolutional codes

(b) Realize the convolution encoder in controller canonical form. How
many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

v 2 Disu 2 D, that's just this.
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Convolutional codes

(b) Realize the convolution encoder in controller canonical form. How
many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

What is

(Refer Slide Time 25:35)
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Convolutional codes

E,(D} o (8 V’J(")] = [u,fp) UL(D)j G
G =] o0 ]
o |

@ Therefore, G(D) is given by

v3D?v3Dis 1 plus D plus D square plus D cube divided by 1 plus D plus D 3 u 1 D, plus
1 plus D square plus D cube 1 plus D plus D cube u 2 D,
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Vs(n)= _'_‘f_bf_pﬂi Ude) + ‘___,_ - U (D
I-i'D""D1 | +D0+D

right? So relationship between v 3 and u 1 D is given by this. So let's
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Convolutional codes

A e P
Vs(n)= _|:_b_+_ﬁ:—D_ (o) + r:j_ T Us (D
— I+D+D — | +D0+D

implement this. So numerator has 1 plus D plus D square plus D cube. So you can see here,
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(b) Realize the convolution encoder in controller canonical form. How

many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

this is my 1, this is my D, this is my D square, this is my D cube.
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(b) Realize the convolution encoder in controller canonical form. How

many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

—_— —

Figure: Answer to Problem 3(b)

And similarly the denominator has 1
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Convolutional codes

D,(D} a5 V’J(")] = [u‘fp) UL{D)] G
G =] o0 ]
o |

@ Therefore, G(D) is given by

> e W
Vs(n)= _l_f_b.+_ﬁ:b_ (o) + r:_p._ T Ua (D
— | +D4+D" — | +D0+D

plus D plus D cube. So
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(b) Realize the convolution encoder in controller canonical form. How

many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

the denominator, this is the 1 term, this is the D term; this is the D cube term. So this part is

implemented.
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(b) Realize the convolution encoder in controller canonical form. How

many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

Next is this. Following the same procedure
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E‘(D} Vol ngb)] = [u,fp) UL(D')j G
G =] o0 ]
o |

@ Therefore, G(D) is given by

|+D+54D" ¥
Vs(n)= =l S
e 3

we can find out the mapping between u 2 D and v 3 D. The feed forward connections are 1, D

square and D cube. So then this is
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(b) Realize the convolution encoder in controller canonical form. How

many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

1, this is D no connection,D square is this and D cube is this.
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(b) Realize the convolution encoder in controller canonical form. How

many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)
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@ Therefore, G(D) is given by

i
vg(e)= [1FBFD 4D,
— |4+D+D —

Similarly the feedback connections are 1, D and D cube. So
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(b) Realize the convolution encoder in controller canonical form. How

many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

the feedback connections; this is the 1, this is D and this is D cube. And
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(b) Realize the convolution encoder in controller canonical form. How

many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

v 3 is the combination of these 2. So this is my v 3.
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(b) Realize the convolution encoder in controller canonical form. How

many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

So I hope this is clear how we can realize
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this encoder using controller canonical form realization.

Now the next
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(b) Realize the convolution encoder in controller canonical form. How
many termination bits are required to terminate the encoder for
controller canonical form realization.

@ Convolutional encoder in controller canonical form.

Figure: Answer to Problem 3(b)

question is how many termination bits are required to bring this encoder back to all zero

state? Now what does termination means? Termination means
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we are bringing this encoder back to all zero state. So no matter what the state is, if you want

to bring them back
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(b) Realize the convolution encoder in controller canonical form. How

many termination bits are required to terminate the encoder for
controller canonical form realization.

@ Convolutional encoder in controller canonical form.

Figure: Answer to Problem 3(b)

to the all zero state, the number of termination bits required is equal to how many memory
elements we have. So in the controller canonical form realization to bring this shift register,
the first shift register you want to bring it to all zero state, we would require 3 bits because we

have 3 memory elements here, 1, 2 and 3. Similarly



(b) Realize the convolution encoder in controller canonical form. How
many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

for this shift register we require additional 3 bits, so 4, 5, 6 so
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Convolutional codes

(b) Realize the convolution encoder in controller canonical form. How
many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

total we require 6 termination bits, 3 to terminate this encoder and 3 to terminate this encoder.

So we require
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(b) Realize the convolution encoder in controller canonical form. How
many termination bits are required to terminate the encoder for
controller canonical form realization

@ Convolutional encoder in controller canonical form

Figure: Answer to Problem 3(b)

@ The controller canonical form realization of this encoder uses 6
memory elements, so the encoder will require 6 termination bits to
return to all-zero state.

6 termination bits.

w &
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Convolutional codes

@ Problem # 4:

(a) Show that the a-priori probability can be written in this form
P(u = £1) = A ™=

where L,(-) is the a-priori L-values of the information bits

Finally let's come to the B C J R algorithm that we talked about. So the first question is can

you write
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@ Problem # 4:
(a) Show that the a-priori probability can be written in this form

Pu = £1) = A exp™i=()?

where L,(-) is the a-priori L-values of the information bits.
(b) Using this result, show that the branch metrics v"(s,5") for a
continuous-output AWGN channel (in log-domain) can be written as

. Ll (in
o (s.5) = bt)

+ Lor - wy

where L. = 4E,/No is the channel reliability factor. Notations are
the same as used in class lectures

the a priori probability in this particular form, and also the branch metric in log domain, can it
be written in this particular form? Now u | is my input, L a is the a p p value for the a priori

inputs, L c is the reliability factor which is given by 4 times E s by N naught,
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Convolutional codes

@ Problem # 4:
(a) Show that the a-priori probability can be written in this form

P(u; :” A.QID”{'II” 2

where L,(-) is the a-priori L-values of the information bits
Using this result, show that the branch metrics +7(s, ") for a
continuous-output AWGN channel (in log-domain) can be written as

(b

v (s.5")

where{? 4E, E is the channel reliability factor. Notations are
the sife as used in class lectures

nLa
% + L.ry - wy

other notations are same as which are used in the lecture. v is codeword, r is received

sequence so can we write these in terms like this. So let's look at it.
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@ Solutions: We can write
[P(u = +1)/P(u = —1)]*!

P(uy = 2 :
(u 1) {1+ [P(w = +1)/P(u = -1)]*1}
E.'l.f"l
{1 i PTL,JU-]}
Cienuds wla(w)/2
{1 + e Lulm)}
Ajebalin)/2.

So what's the probability of u being plus 1 or minus 1? Let's take like plus 1, let's say what's

the prob, what's the probability that u 1 is plus 1? Now this can be written as this by 1.
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@ Solutions: We can write

[P(ur = +1)/P(u = —1)]*'

Pz = @+ 1P =+1)/P = -1
?(Lh-*') E:lktu._l
L {1+ exL(u)]
g e elslm)/2
{1+ e Liu)}
= Apetdm)/2

So I can write as probability of u 1 being plus 1 divided by probability u 1 is plus 1 plus

probability u 1 is minus 1, I can write it
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Convolutional codes

@ Solutions: We can write

[P(w = +1)/P(u = -1)|*!

Plon=21) = TP = +1)/P(a = 15
?lu=+2 eldm)
T {1 + e*Liu))
?(UL_"_:-)____ o= AN PuL,[u.? 2
)+ P -0 {1+ et}
— A,e“"'[”" “_

this way, right? And if I divide by probability of u | being minus 1, then what I get is
probability being plus 1 by probability of u 1 being minus 1, 1 plus probability of u 1 being
plus 1, probability of u I minus 1.
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Convolutional codes

@ Solutions: We can write

[Pl = +1)/P(u = —1)]*!

Pz = @+ 1P =+1)/P = -1
?(u..n‘} et ldw)
1 {1 4 p.‘L.icl-]}
Plui= ») [ B il (m)/2
e Pl -0 {1+ e Gl)
p(ve- ,2 = Ajeitdm)/2
— e
| _t;/rjal—.qa‘

So this is what I will get of the form here. You can see here, the form for, when u l is plus 1, I
get probability of u | being plus 1, I get in this particular form. Now let's look at what's the
probability that u I is minus 1. Again I can follow the same procedure. I can write this same
as this by 1 or I can write the probability of u 1 is equal to minus 1 divided by probability of u

1 being plus 1 plus probability of u 1 being minus 1 and
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@ Solutions: We can write

Pl . ['I [u-' — "l] P[“f 1]]1
( - l { - [‘. (ui = '.1] .P[u, - ]}] ."I.}.
F (U,{ - —I) P(U_! = =4 )

etldm)

?(U.- #) " P(o
| {1+ ettsum)) | vaﬁﬁ)*?ﬁqﬂ)
plu= 2 a—L(w)/2 bl
?_a;_fﬂ-)ﬁ- ?(!J,.a 1) {1+ e Lilw)
] _ AJE‘L"[“" .»-

I can divide this by probability of u 1 being 1, so this will be probability of u | equal to minus
1 by probability of u 1 being plus 1, 1 plus probability of u 1 being minus 1, probability of u 1

being plus 1, right?
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@ Solutions: We can write
[Plur = +1)/P(w = l.:l]’1
Plu = +1 e T
@=5) = @r1P=+1/Pu =D

?(u.-rl‘) gtllm) P(t.u--lj_'_ E@d‘;\]
p {1+ exLa(u)) T Plug = +) ¥Ha=y)
Yl’i:_i) e Llw)/2 gotalw)/2 ) P(u‘tﬁﬂ
Tower)s P -0 {1+ -G o)
. A‘eu.i,(u.I 2 -_'d_:_?(dq"‘}
| f’(u‘-“)

So this I can also write as this is equal to probability of u 1 being plus 1 by probability of u 1

being minus 1 raised to power minus 1 and this is 1 plus the same thing, raised to power

minus 1. So if I combine this and this what I get
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is the first step here, Ok.
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I can write by combining this and this, I will get this. Now if I write these ratios of

probabilities in terms of L values, so what is this L value of u I, this is log of probability of u 1

being plus 1 by probability of u I being minus 1. So this can be then written as
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e raised to power L au l. If I do that, if I plug this in
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first line what I get here is this term, Ok.
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Now note I can further simplify this into this expression.
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You can see when u 1 is plus 1, when u l is plus 1, what do we get? When u 1l is plus 1,
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this is e raised to power L a u 1 by 2 and e raised to power minus L a by 2. So this will be

basically 1 so this will be 1 times 1 plus e raised to power minus L a u which can be
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written ase L au 1 plus e L a u. This is
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precisely what I have written here. And if u 1 is minus 1, this will be e raised to power minus

L au by 2 and e raised to power L a u by 2. So this term will become, in that case, e raised to
power minus L. a u 1 plus e minus La u . So this term can be written in terms of this, right?
And what is this term? What is this term? This I can simplify this term, let's make some
space. I can simplify this term as e raised to power minus L a u 1 by 2 and I have e raised to
power minus L a u | by 2, this is e raised to power L a u | by 2 plus e raised to power minus L

aulby 2.
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So what I am doing here is I am writing this particular term. So this I can write as this and

this. So this cancels out.
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And this is e raised to power x plus e raised to power minus x. This will be cosh of x and
that's the symmetric function, so that does not depend on sign of u | whether u 1 is plus 1 or

minus 1, it does not depend on that. I can write this in terms of this expression.
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So we will use the expression that we derived in the previous slide for a priori value which

was u | being plus 1 or minus 1 as a L e raised to power ul L a u 1 by 2. We will use this



(Refer Slide Time 36:03)

;4 FTeo=mn -z,1 :‘o'-l;l.i----- 10 sevems ]

Usx Lalugd
=

plu - +D: By €
@ Also,

(s, 5) Aff"t'(”] 2 o= (E./ No)lImi=wi|I"
A;e“""" 2 G(2E./ No)(rr-w)—(E/ Mo In| "+ 1wilI7)

Aje (Ex/Na)|Im 1?4 ']Pu-I.{u: Z‘PH'. 2)rw)

AJB[EU'[‘:”'] L'EH.. 2w}

expression to simplify the expression for our branch metric for our b c j r algorithm. Now
note if you recall we have written the expression for branch metrics as a priori probability u 1

and then we had, for a w g n channel we had this expression and

(Refer Slide Time 36:30)

= YT
Fo rtesss-cif-+nanissansc s

Us Lalugd
P(Ul=+'7" Bs & -

@ Also,

ples)
'.:(5' 5) A{eul.(u] 7E (E./ No)lri=wi |
T Ay et Lalun)/2 g(2E./ No)rrwi)=(Ex/Na)(| Il +1 1wl *)
= Ae (Eo/ Mo )| 17117+ ']pul.[u? Z‘E,H. 2)riw)

AIBreu-I'..Il.--J :E”" 2)(rw)

of course there was some constant factor which did not depend on u of 1,
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right. So what we did just now was we derived that this a priori probability can be written in
this particular fashion, right. Let's further simplify the expression for branch metric. So this
we can expand as r square plus v 1 square plus 2 times dot product or r and v 1. Now this does
not depend on choice of v of 1. And if v of 1 is mapped to plus 1 and minus 1, v 1 square will
be 1. So this also will be a constant term. So then this term will then not depend on choice of
v of I. So what then will we be left with is, so this term we can just take out as some sort of

constant which does not
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depend on choice of v of 1 and what will be left is this term which we are
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writing here, which we are writing here and
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the next term that will be left is this term which we are writing
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here. Please note
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L cis 4 times E s by N naught. So that's why we are writing it as E raised to power L c by 2

and dot product
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between r and v 1. So then we can just simplify this expression as some constant terms
multiplied by this a priori, this a priori term and this is the term which depends on received

channel values.
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So this is the simplified expression for branch
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algorithm if we are considering additive white Gaussian noise
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channel. Now if we consider branch metric in the log domain, then log of this term will be

some sort of constant, we just
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ignore it because this does not depend on choice of v of 1, u of 1 so this will become u |, L
value, a priori L value by 2 plus L c by 2 and dot product between the received sequence and

the transmitted codeword. So this will be then our simplified expression for
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for branch metric computation
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for B C J R algorithm over additive white Gaussian noise channel, thank you.



