An Introduction to Coding Theory
Professor Adrish Banerji
Department of Electrical Engineering
Indian Institute of Technology, Kanpur
Module 05
Lecture Number 20
Decoding of convolutional codes-II BCJR algorithm

(Refer Slide Time 00:14)

Lecture #11A: Decoding of convolutional codes-11: BCJR
algorithm

We are going to continue our discussion on decoding of convolutional codes. In the last class

(Refer Slide Time 00:20)

we talked about Viterbi decoding. And if you recall Viterbi decoding is an efficient algorithm
to compute a path to the Trellis of a convolutional code. Now it essentially finds out, Viterbi
algorithm essentially finds out an estimate of the codeword because any path through the

Trellis of a convolutional code is basically a codeword. Now that not necessarily minimizes

the bit error rate probability. In many applications we are interested to minimize the bit error

rate. So

(Refer Slide Time 01:01)
dOBiBaserensiaaaaay
70 /’Toomua cl]-++ AENEENOEEC0 B smom o

BCJR Algorithm

Outline of the lecture
@ BCIR algorithm for convolutional codes

today we are going to talk about a decoding algorithm which is basically going to minimize

(Refer Slide Time 01:09)

bit error rate probability, symbol error rate probability.

(Refer Slide Time 01:12)
8 =460 ekeyiaiaanfg

O 7TOo e g@|-+esRAEEEEECIRECOD B sesioma iz

@ To minimize the bit error rate (BER), the a-posteriori probability
P(d; = w|r) that an information bit u; is correctly decoded must be
maximized.

So we are going to use a posteriori probability based algorithm to estimate our information

sequence. And this

(Refer Slide Time 01:25)
d ~ 1~ a e e sjsilaaaaad

2o /7Toomud o[«+o AENEREOEECC] B smwms

@ To minimize the bit error rate (BER), the a-posteriori probability
P(f; = wu|r) that an information bit u is correctly decoded must be
maximized.

@ An algorithm that maximizes P(d; = ur) is called maximum
a-posteriori probability (MAP) decoder.

algorithm which maximizes probability of u hat given u given the recieved sequence r is

known as MAP decoder. Now this is known as, also known as

(Refer Slide Time 01:41)
gleaie0s e¢kepiaaaaq

@ To minimize the bit error rate (BER), the a-posteriori probability |
P(d; = w]r) that an information bit u; is correctly decoded must be ‘
maximized.

@ An algorithm that maximizes P(d; = w|r) is called maximum
a-posteriori probability (MAP) decoder.

@ In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCJR
algorithm.

B C J R algorithm named after these researchers who, Bahl, Cocke, Jelinek and Raviv, who
introduced this algorithm in 1974. And this algorithm can be applied to any linear code, block

code or

(Refer Slide Time 01:58)

convolutional code.

(Refer Slide Time 02:02)
= 3| v a Al r-_ld-.."-\.:;."&':"h \ﬁ

O 7T e) cg@|-+eRERNEECIREC D B s ioma 12

BCJR Algorithm

@ To minimize the bit error rate (BER), the a-posteriori probability
P(d; = w]r) that an information bit u) is correctly decoded must be
maximized.

@ An algorithm that maximizes P(d; = w|r) is called maximum
a-posteriori probability (MAP) decoder.

@ In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCJR
algorithm.

@ The BCIR algorithm computes the a-posteriori L-values (APP
L-value) of each information bit.

L(w) —In[

Py -1|r)1 (1)

P(u 1jr)

Now the complexity of this algorithm was much higher than Viterbi algoritilm and that's why
it was not popular in 70s, but in late 90s when, this concatenated codes, turbo codes came
into picture and we required soft estimates then these algorithms became very, very popular.
So what this algorithm does, it computes the a posteriori probability. So I define a posteriori,
Log-likelihood value, T call it L value like this. So it basically computes probability of u 1
being plus 1 given a received sequence r by probability of u |1 being minus 1 given recieved
sequence 1. Take a log of that. Now if this L. value is greater than zero, then you decide in

favor of u 1 being plus 1, otherwise you decide in favor of u I being minus 1.

(Refer Slide Time 03:10)
= - a F e e el Q @ & & sl'_--'

@ To minimize the bit error rate (BER), the a-posteriori probability
P(d; = w]r) that an information bit) is correctly decoded must be
maximized.

@ An algorithm that maximizes P(d; = w|r) is called maximum
a-posteriori probability (MAP) decoder.

@ In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCJR
algorithm.

@ The BCIR algorithm computes the a-posteriori L-values (APP
L-value) of each information bit.

L{w)=In [
@ The decoder output is given by

o +1 if f_(u:) ~> 0 B
i { B kst = P ek (2)

P(u = 4 1|r)l

P(uw 1ir) (1)

So your decoder output will be plus 1 if the L value is greater than 0, otherwise you decide in
favor of minus 1. So we are now going to talk about how to compute these terms, these terms

you see in computation of

(Refer Slide Time 03:31)
3 Aa50: elkessiaaqang
70 7To=mmus o o AEREEECORE 0] W swwms 2

@ To minimize the bit error rate (BER), the a-posteriori probability
P(d; = w]r) that an information bit u; is correctly decoded must be
maximized.

@ An algorithm that maximizes P(id; = uy|r) is called maximum
a-posteriori probability (MAP) decoder

@ In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCJR
algorithm.

@ The BCJR algorithm computes the a-posteriori L-values (APP
L-value) of each information bit.

;‘;’ u = +1r
L(w) = n [t} (1)
@ The decoder output is given by
- +1 if L{w) =0 em
”"{ T Rt A @

A P P value, how do we compute these terms and how we can

(Refer Slide Time 03:37)
=) 2603 ekesssiaaaanm
70 7Toowna cl-+o AERRREONE0 B smwm

@ To minimize the bit error rate (BER), the a-posteriori probability
P(d; = w]r) that an information bit u; is correctly decoded must be
maximized.

@ An algorithm that maximizes P(id; = u|r) is called maximum
a-posteriori probability (MAP) decoder

@ In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCJR
algorithm.

@ The BCJR algorithm computes the a-posteriori L-values (APP
L-value) of each information bit.

_ P u) +1|r
L(w) = =] (1)
@ The decoder output is given by
- +1 if L(w) >0 e
4 '{ o 1 P R @

exploit the structure of the Trellis of the convolutional encoder to simplify this expression.

(Refer Slide Time 03:46)
= L a - ;':'J_"‘\ 4, = o \I'—--

70 /7Toomua c L vV RARAEEECOEEC] B smom u

@ The APP value P(u; = +1|r) as follows:

plw = +11) Lucu; prlv)P(u)

P(u = +1]r) P(r) > o Plrv)P(u)

(3)

where

So let us look at this probability of u 1 being plus 1 given a received sequénce r, this can be
written as joint probability of u 1 being plus 1 and recieved sequence r divided by probability
of receiving this r. Now this probability of u I being plus 1 given a recieved sequence r can be
written as probability of r given v multiplied by probability of u sum over all input sequences
that belongs to the set where u 1 is plus 1 and this can be written as probability of r given v

multiplied by probability of u sum over all input sequences.

(Refer Slide Time 04:34)
i - a b= T'\| 3 Q8 a \I'__-)

7o /7To=mmua o A ESEREEE0BE 00 B swwoms 2

@ The APP value P(u; = +1]r) as follows:

Filrjm plur=+10 L u; P(rlv)P(u)

Al P) 5, (V) P(u)

(3)

where
@ U/ is the set of all information sequences u such that u — +1,

So as I said, since we are interested in joint probability of u 1 being plus 1 and r we sum this

probability over all those set of

(Refer Slide Time 04:47)
ghexegsekessiaaaaag

O 7TOom e) g@|-+esRAEEEEECIRECD B swshoma 12

@ The APP value P(u = +1]r) as follows:

pluy = +1,r) Z[ENHVJP(“)
) Sopepe)

where
@ U/ is the set of all information sequences u such that v = +1,

information sequences where the bit, the corresponding bit is plus 1.

(Refer Slide Time 04:57)
= 3| v o i ‘__I'KJ"" Q Q@ a bE

0 /7Toomu 9 o RllepBEEEE0BECC B swmoms 12

@ The APP value P(u = +1]r) as follows:

(i =+1r) Lueu: Prlv)P(u)

_ P :
Plu =41 = ==5&) 5=, (V) P(u)

(3)
where
s U/ is the set of all information sequences u such that v, = +1,

@ v is the transmitted codeword corresponding to the information
sequence u, and

And our transmitted codeword is v, our information sequence is u and r is the recieved

sequence. Probability

(Refer Slide Time 05:07)
= - a S p‘l-.."\ y, © a \E

08 "TOomm" o &2 BEERESCOERECC B seswome 12

@ The APP value P(u = +1]r) as follows:

plur=+1,1) Lu u; P(r|v)P(u)

P(u = +1[r) P(r) 5, p(r|v)P(u)

(3)

where
a U/ is the set of all information sequences u such that v = +1,
@ v is the transmitted codeword corresponding to the information
sequence u, and
@ p(r|v) is the pdf of the received sequence r given v .

of r given v can be computed from the channel, given channel.

(Refer Slide Time 05:14)
diE=iG0ekegliiaqaaniy

g8 7TO o mu O o &l EEREESCOEECOC B smwome 12

@ The expression in equation (1) for the APP L-value becomes

S ucuy PFIVIP(u)

S wew PIFVIP() |)

L{w) =In |:

where U, is the set of all information sequences u such that
uy=-1

Similarly we can also compute, now if you go back here, the denominator we

compute probability of

need to

(Refer Slide Time 05:24)
ghsienseressacaang

70 TOome " g@[-se AENREEDEEI] B somioma 12

@ To minimize the bit error rate (BER), the a-posteriori probability
P(é; = w]r) that an information bit) is correctly decoded must be
maximized.

@ An algorithm that maximizes P(d; = w|r) is called maximum
a-posteriori probability (MAP) decoder.

@ In 1974, Bahl, Cocke, Jelinek, and Raviv introduced a MAP decoder
that can be applied to any linear code. This is known as BCJR
algorithm.

@ The BCIR algorithm computes the a-posteriori L-values (APP
L-value) of each information bit.

T P(uy +1|r (1)
: P(u = —1]r)]
@ The decoder output is given by)
5 +1 if L(w) > 0 -
iy = { T if L{u) <0 A= (Il k=1 (2)

u | being minus 1 given r so similar to this term we can also write probability of u | being

(Refer Slide Time 05:32)
dCBsw0sekexsaaaang

8 /TOoomWmE " o E|! . BEEEORECC] B s o 12

BCJR Algorithm

@ The APP value P(u; = +1|r) as follows:

P(u = +1Jr) = alon=ckhy_ Fur ALY

i P(r) - X, p(rv)P(u)

(3)

where

minus 1 given r. And probability of r is a common term. So if we do that,

(Refer Slide Time 05:40)
= L a = e & 5l Q Qo \I'—--

70 /’TOouua c+eRERNEEORE0T B smiom u

@ The expression in equation (1) for the APP L-value becomes

S ucuy PFIV)P(u)

5w POVP@) | @)

L(m) = In |:

where U, is the set of all information sequences u such that
uy=-1

what we get is this. So again this L value, the A P P value of u of | is given i)y probability of r
given v multiplied by probability of u where we are summing over all information sequences
where the corresponding bit is plus 1. And similarly for the denominator we are summing
over all information sequences where information bit is minus 1. We will illustrate this with

the help of example and then things will be little more clear.

(Refer Slide Time 06:26)
o -~ 50 b e & J\ L ® 8 ‘IT
Po »7Toomud o 2l SE 0O EEC 0] B smom i

@ The expression in equation (1) for the APP L-value becomes

S acuy PFIV)P(u)

5w POVP@) |)

L{w) =In {

where U, is the set of all information sequences u such that
uy=-1

@ For short constraint length convolutional codes equation (4) can be
simplified by employing a recursive computational procedure based
on the trellis structure of the code.

Now note here, if you have very large sequences, this is sum over all input sequences where u
l is plus 1 and this is sum over all input sequences where u 1 is minus 1. So if your
information sequence is large this is sum over very large number of possibilities. So this is

quite complex.

(Refer Slide Time 06:49)

Now can we use the structure of the convolutional code to simplify this expression?

(Refer Slide Time 06:56)
dhEssaseesssiaaaany
I.)T@wﬂhﬂ c@l-oo AEEEEDCTEE] H smwm 12

BCJR Algorithm

@ The expression in equation (1) for the APP L-value becomes

L(w) = In [%usu‘- p(r|v)P(u) |- »

weu P(rv)P(u) |

where U, is the set of all information sequences u such that
uy=-1

@ For short constraint length convolutional codes equation (4) can be
simplified by employing a recursive computational procedure based
on the trellis structure of the code.

The answer to this is yes. So we are going to basically simplify this equation 4 by using the

Trellis structure of

(Refer Slide Time 07:08)

the convolutional code. We know all possible transitions are not possible. So our Trellis
diagram or the state diagram will, will ensure, will tell us what are the valid transitions. So

we can simplify

(Refer Slide Time 07:22)
diEiegs eesssiaaaqaan
I' A TOoE) gL+ BMENEREEOEEC D W swwms 1

@ The expression in equation (1) for the APP L-value becomes

ul—LI, p("')P(")
3 ueu- P(rIV)P(u)

where U, is the set of all information sequences u such that
=-1.
@ For short constraint length convolutional codes equation (4) can be
simplified by employing a recursive computational procedure based ‘
on the trellis structure of the code.

Lw) = In

this expression using our valid state transitions. So what we are going to do is we are going to

make use of the Trellis structure of the code to simplify our equation number 4.

(Refer Slide Time 07:42)
o =50 ¢ |l _,J QQ @ a \IT

Pao »ToOomud o B[l gm0 aE@O0] B smom i

@ Equation (3) can be re-written as

P = +11p) = P =10 _ Torer; P01 =502 = 51)
P(r) P(r)
(5)
where L is the set of all state pairs 5, = s’ and 5,.; = 5 that
correspond to the input bit u; = +1 at time /

So let us see how do we do it. We again go back and look at this probability of this u I being
plus 1 given our received sequence r as we have written, this can be written as joint
probability of u 1 being 1 and the probability of receiving r divided by probability of r. Now

we are going to, now look at this expression. This is joint probability of u | being plus 1 and

(Refer Slide Time 08:13)

o = 503 e ¢ w5 Q @ G "ﬁ
o Toomud o[- +o MENEEEOOEECIC] B smuom i

@ Equation (3) can be re-written as

[plu=+1.0)) Tis.qex; Pl =5 511 = 5,7)

Plu = +1jr .
i P()

(5)
where L is the set of all state pairs 5, = s’ and 5,.; = 5 that
correspond to the input bit u; = +1 at time /

given the recieved sequence r has been recieved. So if you look at any Trellis diagram, let's

say this is some Trellis diagram, simple 2 state code, like that you have, so we are interested

in where ul is

(Refer Slide Time 08:38)
= . a e« & oA O | q 'bE

70 TOomE " o[-+ AENREEDEEO] B sowioma 12

@ Equation (3) can be re-written as m

Im Lz s)ex; P(s1 = 5" 5141 = 5.7)

P(u = +1|r)

P(r) P(r)
(5)
where L is the set of all state pairs 5, = 5’ and 5,.; = 5 that
correspond to the input bit u; = +1 at time /

plus 1 and where u I is minus 1. Let us say this is 0 by 0 0, this is 1 by 1 1, this is, let's say 1
by 10, this is 0 by 0 1.

(Refer Slide Time 08:52)
= | oo aQ Plle e 5 5Q Q @ & ‘IT
7o 7Toomea cl-+eENRERORE00C B smwm 2

& of el sv !A’”
@ Equation (3) can be re-written as A’E‘-.‘I

(1}
s, 5141 = 5.1)

Ip[u; = +1.r)) (s .sex; P8
P

Pl = +1|r) = —__P(r) =

()

where L is the set of all state pairs 5; = s and s,..; = s that
correspond to the input bit vy = +1 at time /.

(5)

So let's look at one Trellis section. So we are interested in all those transitions which belongs

to u l plus 1. Now what are those transitions? So in this example this is one such

(Refer Slide Time 09:07)
o =~ 003 e ¢ o] «'."'k'-"k'».ﬁ

o ’Toomu" of-se AEEEEEORECC B swmwoms 12

- £ €&2—0
@ Equation (3) can be re-written as m"
P(u = +1]r) —Im LA Ziwper; PO =5 841 = S'r).
i Pt P(r) P(r)
(5)
where L is the set of all state pairs 5, = s’ and 5., = 5 that
correspond to the input bit u; = +1 at time /

transition. And the other is this transition,

(Refer Slide Time 09:11)
= | a e s sl Q& "ﬁ
P70 /’Toomu" of[-+e AREEEEORECC B smuwms 12

ofel 3
. . o T
@ Equation (3) can be re-written as j‘f‘-.‘l
P(uy = +1|r) Im s spex; Pl =5\ 1 = 51)
= Ef= = ;
T T, P(r) P(r)
(5)
where L is the set of all state pairs 5, = s’ and 5., = 5 that
correspond to the input bit u; = +1 at time /

Ok. So what I am writing here is then I am interested in what's the joint probability that the
previous state is s prime, the next state is s and the recieved sequence is r and I am summing

over all those

(Refer Slide Time 09:35)
dloesiensekessdaaaang
,' ATOHo M E S g@-+oBEEEEEDOEECC] B swmwms 12

BCJR Algorithm

lsv' 292

@ Equation (3) can be re-written as "_" cAY;

+1 s'.s 9(51—3 Sjj'sr)
Pl 2= [plu=+11r) 2Zfaex) +

=~ el © (3
(5)

where I is the set of all state pairs s, = s’ and 5., = s that
correspond to the input bit uy = +1 at time /

state transitions that belong to the set pair where the input corresponds to this transition is
plus 1. So note what is my this sigma 1 plus, it is a set of all state pairs where the initial state
is s prime then next state is s so its, it’s a pair of states where the transitions, the input bit
corresponding to a valid transition is plus 1. So, so in this case the set that belongs to this is

given by this red line, Ok.

(Refer Slide Time 10:24)

So I can write the joint probability of u I being plus 1 and r in terms

(Refer Slide Time 10:31)
dlhBsiwniewessaaaadg
zl PTOHo e ¢ @-+o BEEEEEDOEECC] B swsvom 12

@ Equation (3) can be re-written as

e
. _|p[u; =+1,r) l_ a ;'.sléi;ip(s’ =_“e'.r‘
PusHR="=0 — = 7o)

(5) ‘
where L is the set of all state pairs 5) = s’ and 5.1 = s that
correspond to the input bit u; = +1 at time /

of condition on the valid Trellis transitions in this way, I can write it as what is the probability
that the initial state is s prime, next state is s given the received sequence r and I sum over all

those transitions which belong to input bit being plus 1.

(Refer Slide Time 10:56)

Similarly

(Refer Slide Time 11:00)
Bl EatQekegHMaaqaan(a
BEEDOEECOC B sessoma 12

@ Equation (3) can be re-written as

ple = +1,r) Z{r'.:]ct,‘ plsi = &', 5141 = s.7)
P(r) - P(r)

P(w = +1jr) = ¥ |
(5) '
where L' is the set of all state pairs 5, = s’ and 5;., = s that
correspond to the input bit u; = +1 at time [
@ Similarly, equation (4) can be written as

(s s)ex; Plsi = 85101 = 5.7))
Z(s'.slt-jt,‘ plsi=s" si=sr71)|’

L(w) =In {

where £ is the set of all state pairs 5, = s’ and 5., = s that
correspond to the input bit u; = —1 at time /.

I can write exactly the way I wrote, probability of u | being plus 1 given f, I can follow the
same procedure to write what is the probability of u I being minus 1 given r. So what would
be the change here? So I will compute this probability and I will sum over all those state pairs

which correspond to

(Refer Slide Time 11:25)

input bit minus 1. So if I plug

(Refer Slide Time 11:30)
= 1 e a ¢t e v o a0 84 \I:-'
s EEEREODCOREC D W e somd 12

P8 rToomu e gl

@ Eguation (3) can be re-written as

= +1, Yt nept B8 = & S0 = 5,0)
P(u = +1r) = plu = ’P(;_)_l N _ e ’-_P_(r—) '
(5)

where £ is the set of all state pairs 5, = s’ and 5., = s that
correspond to the input bit v, = +1 at time [

@ Similarly, equation (4) can be written as

b = b { Z[s'.:]l-}_; p(si = s' s s.r) } 1 (6)

2w.gex Psi =\ s11 = 5,1)

where I is the set of all state pairs 5, = s’ and 5., = s that
correspond to the input bit vy = —1 at time /.

these values of probabilities which are given by equation 5 and similarly I can calculate the

probability of u 1 being minus 1 given r so instead of this thing here

(Refer Slide Time 11:45)
diEiz8ds elkessiaaaasdg
70 7To=mmua o o AENEEEORE 0] B swwoms 2

P(u, =-l/7)

(w = +1.r) E{g,;,,mp(ﬁ = ¢, 5141 = 5,1)

@ Equation (3) can be re-written as

= _P
i wshin iy - e Pr)
(5

where L is the set of all state pairs 5, = s’ and 5., = s that

correspond to the input bit u; = 41 at time /
@ Similarly, equation (4) can be written as

Efu) = I { X.[,-,,]. I plsi = 5. 5141 = s5,1) } (6)

L gex P(si = 8,511 = 5,1)

where ¥ is the set of all state pairs 5, = s and 5,1 = 5 that
correspond to the input bit 4y = —1 at time /

I will have summation over s prime as summation over all those pairs which corresponds to u

1 being minus 1

(Refer Slide Time 11:54)
glhexeniekessaaaang

78 7TOom M g[-so AENREECEEOC] B somiom 12

om=fr) 3 s
. -

[Y e Zadg)P1 =551 = 1)
P(r) P(r) '

e —

@ Equation (3) can be re-written as

(5)
where £ is the set of all state pairs 5; = s’ and 5., = s that
correspond to the input bit v, = +1 at time [

@ Similarly, equation (4) can be written as

P s { L[s'.:]r b p(si = s 511 = 5,7) }) (6)

Yis e Plsi =5, s141 = 5,7)

where I is the set of all state pairs 5; = s” and 5., = s that
correspond to the input bit vy = —1 at time /.

and I will get this same thing here. So if I do that what I will get is equation number 6. So

note that previously I had the same expression,equation number 4

(Refer Slide Time 12:10)
dlbss60s ekawaacaang

P ’Toomud ol o AEREEEOEECC] B smwom i

@ The expression in equation (1) for the APP L-value becomes

Xm Uy plriv)P(u)

S oeu PEVIPW) |)

L) =In {

where U, is the set of all information sequences u such that
==L

@ For short constraint length convolutional codes equation (4) can be
simplified by employing a recursive computational procedure based
on the trellis structure of the code.

in terms of this input sequence u 1. Now if our

(Refer Slide Time 12:17)

input sequence is very long this is summation over a large number of

(Refer Slide Time 12:20)
dhesions erkesssiaaaang
rl ATOHoE e ¢g@-ooREREEEOEECC B sesnems 12

BCJR Algorithm

@ The expression in equation (1) for the APP L-value becomes

) 1 p_(fIv)P(U)]

L{w) =In 72“”'_ (V) P(a)

(4)

where U, is the set of all information sequences u such that
==L
@ For short constraint length convolutional codes equation (4) can be

simplified by employing a recursive computational procedure based
on the trellis structure of the code.

terms where as I have now

(Refer Slide Time 12:23)
dCssm0ekezaaaasg
20 7T m o gZ|-s+eoBEEEETCOEECTC] B swmsioma 12

@ Equation (3) can be re-written as

m_ X.is'.;]: a,‘?p(sf =

P(u = +1|r —I
ik oo P

_ _ (5)
where " is the set of all state pairs 5; = s’ and 51, = s that
correspond to the input bit vy = +1 at time [

simplified my expression.

(Refer Slide Time 12:25)
= 3w a Al o G Q88 bE

ﬂ_ﬂ AT oM E Y o By I OEE) B smvome 12

P(u, = -u/‘r) E‘:—

plur=+1lr) E{c*.q;ﬂp(s! =5/, 5131 = 5,T1)

@ Equation (3) can be re-written as

5,5) al

Py = +1jr) =

——

P(r) i P(r)

(5)
where £ is the set of all state pairs 5; = s’ and 5., = s that
correspond to the input bit vy = +1 at time /

@ Similarly, equation (4) can be written as

£l I { L[s'.:]r E; plsi = s' 511 = s.7) }) (6)

Yis aperr Plsi =5, S101 = 5,7)

where £ is the set of all state pairs 5, = s” and 5, = s that
correspond to the input bit u; = —1 at time /.

So this, the summation is now only over valid transitions corresponding to u 1 being plus 1

and this summation is over valid transitions corresponding to u | being minus 1.

(Refer Slide Time 12:41)

So I have simplified my equation number 4

(Refer Slide Time 12:45)
dUELv0ieeesdacaana
I'/T@a“i@ c@|- oo AEEEEECEE] B swwms 12

Algorithm

Plu=—1/r)
@ Equation (3) can be re-written as (U' I I/}‘ Eﬁ.‘ﬂ El-
B Cplu =411 X ade)Pls = 5’8 = s.r)
Feetil="roy "~ T W ‘

(5)
where L is the set of all state pairs 5, = s’ and 5., = s that
correspond to the input bit vy = +1 at time [

@ Similarly, equation (4) can be written as

il I {E{s'.s}‘;_[f_p(s’_s'sfﬂ _s‘r)}‘ (6)

Z(-".!jwl:r' p(sl =g, Si+1 = 5, r}

—

where ¥ is the set of all state pairs 5, = s’ and 5., = s that
correspond to the input bit u; = —1 at time /.

in equation number 6 and I have used the state diagram or the Trellis diagram of the
convolutional encoder to simplify my expression. So this will be my a posteriori probability
log likelihood L value a posteriori probability. Now how do I compute this term? This we will
show that if we can write this term as product of three terms and two of these terms can be
computed recursively that's what I am going to show in the subsequent slide. So let us look at
this expression. How do we compute the probability that in the current state it is in s prime,

the next state is s given a recieved sequence r? So as I said

(Refer Slide Time 13:35)
o - [®] o Ql SR+ G 1] ‘IT_

g8 7TO D m w9 o &l EEERECSCOEECC B sesvome 12

@ The joint pdf's p(s', 5. r) in equation (6) can be evaluated recursively

pls’, 5, 1) = pls, s ricistn risi)
= presils’, s, vecr,v)p(s’, s, v0cr 1)
pre=i|s’, s, reciw)p(s. s’ reci)p(s', Feet)
= plre=i|s)p(s.rils')p(s', re<s), (7)

where r,-; represents the portion of the received sequence r before
time [and r,~; represents the portion of the received sequence r
after time /.

we are interested in this. Now this can be written as, so I have this received sequence r. So let
us say this is r at time t equal to 1, t equal to 2 so this is my let us say time instances and I get

some bits, let us say I get some

(Refer Slide Time 13:56)
= | o aQ e e s Qaq .,IT

70 7Toomus c- e AERREEORECC B suwms

@ The joint pdf's p(s’. 5. r) in equation (6) can be evaluated recursively

p(s'.s.r) = pls' s recr v res)
= plre=ils’, s, recrvi)p(s’, s, 0ecr 1)
= p(re=i|s’, s, reciv)p(s nls’ reci)p(s’s rear)

= p(re=i|s)p(s.rils")p(s. Fect), (7)

where r;; represents the portion of the received sequence r before
time [and r;~; represents the portion of the received sequence r
after time /.

r 1 corresponds to what I receive at time t equal to 1, r 2 corresponds to what I receive at time
2, r 1 corresponds to what I receive in time 1 and like that, r 1 plus 1 is what I receive at time t

equal to 1 plus 1, like that. So this

(Refer Slide Time 14:17)
= - =0 ¢lle & o el Q Q. w.ﬁ

70 TOomE " o[-+ AENREECDEE] B somuioms 12

A, e
P el 1s0n

@ The joint pdf's p(s', 5. r) in equation (6) can be evaluated recursively

plsl,5r) = pls, 5 v risi)

= presils’, s, vecs,v)p(s’, s, 00er, 1)

= pre=ils’, 5, reei,v1)p(s.1i|s" veen)p(s', Feet)

= plre=i|s)p(s,rils')p(s’, re<s), (7)

where r,; represents the portion of the received sequence r before
time / and r¢-~; represents the portion of the received sequence r
after time /.

received is, whole thing is my received sequence r, Ok. Now what I am doing is I will

partition that received sequence into 3 segments. So one, which corresponds to, one is this,

(Refer Slide Time 14:36)

dhexsns eeessaaaany
70 /7Toomus clf+o AENEEECDRECT B smwm

4, o . 13 r'{m
Tt bl

=
@ The joint pdf's p(s’. s.r) in equation (6) can be evaluated recursively

ol s = plsf s L Fes)
= p(rest|s’, 5. v, m)p(s’, 5,00t 1)
plre=i|s’, s, vecir)p(s.nls’ veci)p(s’ reer)
= p(re=i|s)p(s.nls")p(s, rei), (7)

where r;; represents the portion of the received sequence r before
time [and r;~; represents the portion of the received sequence r
after time /.

which corresponds to time before 1. So one is this portion, this portion of my recieved

sequence. This is r t less than 1. Next

(Refer Slide Time 14:50)
= 2w o e, elQQaq \ﬁ

o0/ Toomua of-+o RAENEEEORECC] B swwoms 12

=
@ The joint pdf's p(s', 5, r) in equation (6) can be evaluated recursively

plah sl = plaf = Fiy Fest)
= presils’, s, vecn vi)p(s’, s, veer 1)
pre=i|s’, 5, i vi)p(s.ils' veci)p(s". Fecy)
= plrea|s)p(s.rils)p(s' rect). (7)

where r,-; represents the portion of the received sequence r before
time / and ry~; represents the portion of the received sequence r
after time /.

is this section which corresponds to r t greater than 1 and then

(Refer Slide Time 14:58)
3 % 2 0 ke ssiaaaanfg

2O 7TOom e) eg@|- s+ RAEEEREECIRECD B sewioma iz

k_—'l-s-‘-_)l
,j.'.-q-il;—*— : T T Test
4.1 k- b 1s)x

7

@ The joint pdf's p(s', 5. r) in equation (6) can be evaluated recursively

plshsn)l = plats Fi, Fest)
= p(r ..r|$’. S, Fis i-rr)P(sr- 5, Feel)
pre=i|s’, 5, recivi)p(s.nils' veci)p(s', Feet)
= p(resi|s)p(s.mi|s")p(s’, rect), (7)

where r,-; represents the portion of the received sequence r before
time / and ry~; represents the portion of the received sequence r
after time /.

third section is this, which corresponds to r 1, Ok. So what I did was I split this r into 3

segments. One is r corresponds to time less than 1, r at time 1 and

(Refer Slide Time 15:18)
= - 0 e e o sl QaH{ \E

o om

=
@ The joint pdf's p(s', 5, r) in equation (6) can be evaluated recursively

plal, = = plaf =, rr 1)
= plre=ils’, s, vecnvi)p(s’ s, ver,)
plre=i|s’, s, reeir)p(s.w|s' reci)p(s’. reer)
= p(re=i|s)p(s.ri|s)p(s', re<t), (7)
where r,-; represents the portion of the received sequence r before

time / and r¢~; represents the portion of the received sequence r
after time /.

r at time greater than

(Refer Slide Time 15:21)
d BiG0:ekesacaany
08 »Too mm" o &

k__‘l._‘-‘-_)ﬁ—*—-—-___—u.
,j_'-—ril;-'— : L I YT
4.1 b A M

=
@ The joint pdf's p(s', 5, r) in equation (6) can be evaluated recursively

p(s, s, = ol mmm

= p(r; -,,rlsl. 8, P i-rr)P(Sr- 5, Feels V1)
plre=i|s’, s, recir)p(s, w|s’ . recr)p(s’, reei)
= p(resi|s)p(s.mi|s")p(s’, rect), (7)

where r,; represents the portion of the received sequence r before
time | and r,-, represents the portion of the received sequence r
after time /.

1. Now using base rule I can write this probability as probability of r at time greater than 1
given s prime and s and this r into probability of s prime s and r at t less than | and r 1. Now

subsequently I can further simplify this, again apply Bayes rule and I can write

(Refer Slide Time 15:54)

dalEx0s ekessaaaaafg
o/ Toomed o[+ + AEREEEONECT B smwom 2

Tt e— o
,j_'-—ril;-'— g it Jun Tast
4.1 b (AN M

-
@ The joint pdf's p(s', 5, r) in equation (6) can be evaluated recursively

= p(resils’, s, ,_r,)

plre=i|s’, s, reeir)p(s, w|s’ . reci)p(s’. reer)
= p(resi|s)p(s.mi|s")p(s’, rect), (7)

where r,-; represents the portion of the received sequence r before
time [and r,-, represents the portion of the received sequence r
after time /.

this as probability of s and r 1 given s prime and r t less than | into probability of s prime and r

t less than 1. So note now this term that I had here, so applying Bayes rule essentially,

(Refer Slide Time 16:17)

dlEie0 ¢lkeessiaaaasdg
0o ’7Toomud o[- «o AENEEEOEEOC] B smwm i

H&%——_-.
1 L - L r'{.l-ll Test
'TTT::_ AR WM

=
@ The joint pdf's p(s’. s, r) in equation (6) can be evaluated recursively

[PEsf = s s frlefic]
| S ey TS|
= pre=i|s’, s, reeior)p(s.0|s" vee)p(s’. rect)

= p(re=i|s)p(s.r|s")p(s". Feci). (7)

where r;; represents the portion of the received sequence r before
time [and r;-, represents the portion of the received sequence r
after time /.

I broke it up into 3 terms. One is this term, second is this term and third is tl:liS term, Ok. Now
let's look at this. So probability of r when t is greater than 1 given initial state s prime, next
state s and the recieved sequence before 1 and recieved sequence is 1. So let us look at the
Trellis diagram. Let's go back and look at the Trellis diagram at time 1.

Let's take this example of 2 state code. So what I had was 0 by 0 0, 1 by 1 1 then I had this, 1
as 1 0 and this was 0 by 0 1.So this was my Trellis diagram. This is all zero state; this is state

1, Ok.

(Refer Slide Time 17:16)
E a0 ewessacaana

0 7TOHOo M ¢ |- BEREECORECOC W sershoma 12

H"LL—)F_*_"‘_-—"‘
,jl-—ril;-'— ; it Jui Tast
4.1 b tl 4afw

=
@ The joint pdf's p(s', 5, r) in equation (6) can be evaluated recursively

g o i
= presls’, Su)
= plre=i|s’, 5, reci bi)p(s.nls’ rezi)p(s’. reet)
= plre=i|s)p(s.n|s)p(s, reei), e (7)

where r,-; represents the portion of the received sequence r before
time [and r,~, represents the portion of the received sequence r
after time /.

Now note and like that you have, you have, in Trellis diagram you have, this is one Trellis
section. You will similarly have Trellis sections others. So this is a time 1. So you are
interested in what is the probability of r t greater than 1 given previous state s prime given

next state s given the received sequence before time

(Refer Slide Time 17:45)
= @ 0Q e« o9 Q Q8 "E
78 »TOomME " o[-+ AENREECDEEO] B somioma 12

k_—'l..‘-‘-_)ﬁ'—*}—--__é
F-f_.._ri:l;_‘_ - T T ezt
4.1 k- tal 4s)x

-
@ The joint pdf's p(s', 5. r) in equation (6) can be evaluated recursively

p(s, s, = p(s mﬂm
el S T
= p(re=i|s’, s, reerwi)p(s,mls' reei)p(s’ reey)
= p(re=i|s)p(s,nls")p(s', veci), (7)

where r,; represents the portion of the received sequence r before
time / and ry-; represents the portion of the received sequence r
after time /.

t equal to 1 and given the current received sequence. Now note that if I specify this next state,
so probability of r t greater than 1 given s then I don't need information about the previous

state. I don't need information about what is the current input, I don't

(Refer Slide Time 18:12)
= 5| v a e eaq Qaa \ﬁ
o /’Toom " ogf[-+e RAENEEEORECC B swmwoms 12

k__‘l..‘-l-_)ﬁ—*—-—-_q
,f_'-—ril;-'— X it Jui Tast
4.1 - tl dsw

=
@ The joint pdf's p(s', 5, r) in equation (6) can be evaluated recursively

PCsf] s s frdefic]
— = plresdls s, ;.r,)
= plre=i|s’, s, r.,-.)zn)p(s‘nls"rr.-f)p(s',r,_)
= plre=i|s)p(s.vi|s')p(s" eci), s (7)

where r,; represents the portion of the received sequence r before
time | and r,-, represents the portion of the received sequence r
after time /.

need information about what was the received

(Refer Slide Time 18:15)
o " ¢llr el Q&G ‘ﬁ

P20 /7T mu 9 o@[-so RAENEEEORENC] B swmwoms 12

h"-—'_i-‘-l-_)F._‘*H
,f_'-—ril;-*— ’ Tt Jui Tast
4.1 k- AN M

-

@ The joint pdf's p(s', 5. r) in equation (6) can be evaluated recursively

[p(S'-S-Ei [= ot s pralrdrcd]
= p(resils’, s, v J-l‘r)
= p(re=i|s’, str,,.,in)p(s‘nls"rr.- 1)p(s’ re<i)

= p(re=i|s)p(s.mi|s")p(s’, rect), (7)

where r,-; represents the portion of the received sequence r before
time / and ry-~; represents the portion of the received sequence r
after time /.

sequence before 1 provided I know what is the next state s.

(Refer Slide Time 18:21)
E S| v a ¢ ke $gaqaa ‘l._-_.

20 /’Toomu 9 o @-+oeo AENEEEORECC] B smwoms 12

k__,_"-‘-‘-_)ﬁ—*—-—-__é
:L_ri.;_'_ : it S Tast
4:1 5= td ‘leh i

-
@ The joint pdf's p(s', 5. r) in equation (6) can be evaluated recursively

pEag]- o sl
= p(r, J|5’-l$lﬁr,li”ip(5‘H|5"lr.-f)_D(S'.r;.-;)

= p(re=i|s)p(s.mi|s")p(s’, rect), (7)

where r,; represents the portion of the received sequence r before
time / and ry~; represents the portion of the received sequence r
after time /.

So this probability that you see here, probability of r t greater

(Refer Slide Time 18:28)
= = a Pllr e 5l Q QG bﬁ

7o /’Toomu 9 of-+e AENEEEORENC B smuwms 12

k__‘l.‘-l-_)F‘—'h"‘—-—-__é
:_.._ri;;_'_ i Tt Jui Tast
4.1 k- 1A M

-

@ The joint pdf's p(s', 5, r) in equation (6) can be evaluated recursively

p(s'.s.E! ’ = plaf, =, mmm
r

- [p(rearls' 5 5" e)PAS' i)
= p(resi|s)p(s,ms")p(s’, reci), (7)

where r,; represents the portion of the received sequence r before
time / and r¢-~; represents the portion of the received sequence r
after time /.

than 1 given s prime s and this received sequence r can be then written as probability of r t
greater than 1 given only s because knowing this final state s I don't need information about

what was my state

(Refer Slide Time 18:47)
= = a Pl s el Q& \E

28 TOommE" g@[-se AENBEECOEE] B somioms 12

k_—'l._‘-l-_)ﬁ—*"—-—.__é
'j_-__,.i"_-'— - L T YT
4.1 b tal 4s)n

-
@ The joint pdf's p(s', 5, r) in equation (6) can be evaluated recursively

after time /.

here. I don't need information about what my received sequence was here. I don't need

information about what my past recieved sequence was, provided I know what was my next
state s. So this, given these quantities will only depend on s. So I can simplify this expression
like this. The same thing here, look at probability of being s r 1 given previous state and given

the input before time t equal to 1. Now if I specify what the previous state is, then I don't

(Refer Slide Time 19:25)
= 3| v a tlle v o a0 Q4 q \E
70 TOomE" o[- se AENBEECDEEI] W somiom 12

k_—f-.x-‘-_)ﬁ—*—--_q
J_'-—ril;-'— . it Jun Tazt
4.1 k- tl dslw

=
@ The joint pdf's p(s', 5, r) in equation (6) can be evaluated recursively

p(s'.s.Ei ’ -

= p(re=i|s)p(s.mi|s")p(s’, rect), (7)

where r,-; represents the portion of the received sequence r before

after time /.

need what was my input at time t less than 1. So this can be simplified into this expression.
And then of course we have this third expression which is this. So what we have done is this
joint probability we have now split up into three probabilities, one is this, second one is this,

and third one is this, Ok

(Refer Slide Time 19:57)

and we will now show how we can compute each of these

(Refer Slide Time 20:02)
diEimnseesssaaaasg
r' PTHoEE O ¢gd-»o BEEEEDORECC B semiwms 12

el e—— o
Y. T LT Tzt
4:1 - tl ‘!.s,[l ;

=
@ The joint pdf's p(s', 5, r) in equation (6) can be evaluated recursively |

pls' s pecdrifrea

s.n|s’ reci)p(s’. resi)

= p[rr‘.\:ls)p[‘nls’]p(s’.r,a_:). (7)

where r,.; represents the portion of the received sequence r before
time | and r,-; represents the portion of the received sequence r
after time /.

terms. So let us call

(Refer Slide Time 20:05)
= 3| v a - -_EJ 4, Qo ey sﬁ

8 7TOmEE " o[- seBENREECEEO] B somioms 12

@ Defining
ay(s’) = p(s', reei) (8)
(s’ 5) = pls.nils') (9)
I1(s) = plre=i|s). (10)

this probability by alpha, this probability by gamma and this probability by beta. And now we

are going to show then we can write then this joint

(Refer Slide Time 20:20)
E D ¢ = O 13 Q ® & ‘ﬁ
fa rToommac

h:-y' L - L :"(.m Tenl
Tt bl

=
@ The joint pdf's p(s’. 5. r) in equation (6) can be evaluated recursively

p(s'.s.E” : p[s"s.

= p(re>

B P ()

where r;; represents the portion of the received sequence r before
time [and r;~; represents the portion of the received sequence r
after time /. I

probability in terms alpha, beta and gamma.

(Refer Slide Time 20:25)
1 - a = bl---n 2, O © e \I'—-r'

Pa Toomu 9 ol EEEEECEE 0 W s boms 2

@ Defining
-‘lf(S’) — JJ[S‘."{‘ J] [3)
W(5-5) = pls.1ils)) (9)
Bri1(s) = p(re=ils), (10)

So

(Refer Slide Time 20:26)
dOE4ia6ds ekegsiaaaaqg

Pa Toomma g pfk= EEREEOEEC] W s o iz

@ Defining
als') = pls', i) ®)
(s’ s) = p(s.n|s") (9)
I41(s) = p(re=ils), (10)
@ Equation (7) can be written as
p(s'.s.¢) = Bra(s)n(s’, s)au(s'). (11)

we can now write our equations in terms of alpha, beta and

(Refer Slide Time 20:32)
= - a e e 2 alQ QaqQ ..I'—"J

28 »TOo M o[- s BEEREECEEC] B somiom 2

@ Defining
ai(s') = pls,rec) (8)
n(s’, s) = pls,nls’) (9)
I41(s) = p(re=i|s), (10)
@ Equation (7) can be written as
p(s’.s.¢) = Bra(s)n(s’. s)au(s'). (11)

gamma, Ok. So let us now talk about how we can compute alpha, beta and gamma. So these

(Refer Slide Time 20:46)
= L aQ Al P_}J-‘.'x , e G \ﬁ

o 7Toomu c@f-+eBENNEEONE] B smim 12

@ The expression for the probability oy, (s) can now be rewritten as

“i-1[5) = p(ﬁ‘l'r.r.l) Zp(:ﬂS.r;.;-l)

s Emy

Z p(s.r; S'.r,. i]P(SPJ'r- I)

s'Eay

Z pls.vi|s")p(s' Fecr)

sEay

3 uls' s)as), (12)

FEa

where o) is the set of all states at time /

alphas can be computed using forward recursion as follows. So let us look at what is alpha

plus 1 s. Now go back to our definition. So probability,

(Refer Slide Time 20:59)
E - 0 - -\J | Q@ qQ ‘.I'—".
g0 /"TOoE A" o " IRBEREEOEECC] B s 2

BCJR Algorithm

@ Defining
a(s') = (s’ rec) (8)
v(s',s) = p(s,rls’) (9)
I41(s) = p(re=i|s), (10)

@ Equation (7) can be written as

-

joint probability of being in state s prime and received sequence at time t less than 1.

(Refer Slide Time 21:09)

= % a - _I.)I,_._.__«.‘ G ‘.l'—".
7o 7Toowud o[-+ RAEREEECOEEOC B swmioms 2

@ The expression for the probability o, 1(5) can now be rewritten as

ara(s) = plsrarn) = 3 A5 Fecin)

sy

X p(s.n|s’. reer)p(s'. rezi)

s'Eay

Z pls.r|s)p(s' recr)

s Eay

3 s’ sads), (12)

where o, is the set of all states at time /.

So alpha 1 plus 1 from definition, can be written like this. Now I can write this as, so I am

adding a new variable which is the next state s and I am adding a new variable which is next

state, previous state s prime and summing over all previous state. So what is this, summation

over s prime belonging to all possible state at time 1? So what I did was I had some term,

probability term, probability of let's say a b, and what I did was I just added a term

probability a b ¢ and I summed over all possible values of c. So that's what I did here. I

introduced a new variable

(Refer Slide Time 21:55)
= 1| v a Pl 5 |8 @ & \l'_--'

P »7Toomud o[-+ REREEEOEECIC] B smiom i

@ The expression for the probability a,1(s) can now be rewritten as

amls) = plstan) = X ple s aisr) PV
sem p- plesb. e

3 pls.nls’ rec)pls rear) ©

s'Eay

Z pls.v|s)p(s' Feer)

s'Eay

3 s’ sals), (12)

where o, is the set of all states at time /.

s prime and I summed over all these probabilities, all these possible values of s prime. Now
this term can be written as product of these two terms, this is following exactly the same

procedure which

(Refer Slide Time 22:16)
= « 53 ; —JJ & Q 8 q ‘IT

70 /To=omnd ¢ e AEAREEEDEEC] B smom

@ Defining
ay(s’) = pls’.reei) (8)
(s’ s) = p(s.uls) (9)
J41(5) = plre=s), (10)

- 4 T
@ Equation (7) can be written as

p(s'.s.r) = Bra(s)n(s’, s)eu(s’). (11)

we followed

(Refer Slide Time 22:17)
E =L d I:i Ll

aaea

= -.\."J'
70 7Toomu 9 @ gEEEEE0RECC B smome 12

@ Defining
ay(s') = pls’, rezi) (8)
(s’ s) = p(s.n|s") (9)
Bri1(s) = p(re=ils), (10)

here.

(Refer Slide Time 22:19)
o =50 e peslaaaanE
08 "TOoD WM. ©

HS—L_)F‘—A‘}—-—-__A
.j_'.—rll;—'— ; it Jui Tast
4.1 - 1A M

-

@ The joint pdf's p(s', 5, r) in equation (6) can be evaluated recursively

= p(re=i|s)p(s.mi|s")p(s’, recs), (7)

where r,.; represents the portion of the received sequence r before
time / and ry~; represents the portion of the received sequence r
after time /.

When we wrote this, we are basically using Bayes rule, now using Bayes rule, I can write this
probability as product of these two probabilities. Now again the probability of s and r 1 given
s prime and recieved sequence at time t less than 1, if you know the previous state s prime you

don't need

(Refer Slide Time 22:49)
= w03 e« a0 aa ».E
0 7TOomu g~ s AEEREEDEEO0 B smoms

@ The expression for the probability oy, 1(s) can now be rewritten as

(Ii.;(b‘) p(s, Feeigr) Zp@z\r,.:.;) P(GIU

sem - pleub. e

Y pls.mfsfrcp(s)

s'Eay

Z pls.r|s")p(s' Fezt)

s'Eay

> s s)as), (12)

where o, is the set of all states at time /.

this information. So then this probability can be simplified to this probability and this is this.

Now what is this term? This term is basically by definition

(Refer Slide Time 23:04)
E - a d "‘ﬁ_-m;-"« ERRC | """\"E

fa/’To=mma o & AREEEEOEECC W s 2

@ Defining
ai(s) = pls' reci) (8)
(s’ s) = p(s.nls") (9)
J141(5) = p(re=1|s), (10)

. 4 i
@ Equation (7) can be written as

p(s’.s.r) = Bra(s)n(s’, s)eu(s’). (11)

our alpha and what is the next term, this is our gamma. So what I have shown you here

(Refer Slide Time 23:11)
dlhesiens ekszsiaaaadg
70 'TOo M ¢ L[l EEEEE0BEC0 B smems 2

@ The expression for the probability e, 1(s) can now be rewritten as }

pls.recin) = Y P@f_-fmhl) Py

ar41(s)

s'Em ZPC&L,C\) |
= Z p(S-rIEfrrtr)P(S’-"t-.::} = ‘

s'Eay

¢ A
= Y p(s.nls)p(s’ re<r)

s'Eay

= 3 s sads), (12)

sEa;

where o, is the set of all states at time /. ‘

then is alpha at next state s

(Refer Slide Time 23:16)

can be written as, can be computed recursively from alphas at previous state in this particular

fashion. So again

(Refer Slide Time 23:27)
3 Ao0 sesHaaaang

70 /7Toomnd ¢ - =RERSEBC00E00 B smom u

@ The expression for the probability o, 1(5) can now be rewritten as

apei(s) p(s, Freisr) Zp@gn.;.;) ple¥

plesb. e
Z p(s.nﬁr,’.t Np(s’ . reer) =

s'Eay

Y ¢
Z pls.ri|s")p(s" . Fecr)

s'Eay

= 3 s’ s)ads), (12)

where o, is the set of all states at time /.

let's illustrate this with an example. Let's go back to our 2 state code example. So this is 2
state code. This is my all zero state. This is state 1, there are 2 transitions. Let's say this is 0

input, output 0 0, input 1, output 1 1,

(Refer Slide Time 23:49)
B4 eds ekessiaaaang

70 7Toomud o[«o AENEEEOEECC] B smwm i

@ The expression for the probability aj,1(s) can now be rewritten as

aa(s) = plsirici) = 3 pEfs rcin) POV
=23 Zf(,m.,c)

3 pls.nfsfrpls rer) e

s'Eay

v A
3 pls.nls)p(s" reer)

FEa

= Y (s’ s)ai(s), ® o (12)

where o) is the set of all states at time /. o 9

here input 1, output 1 0 and here input 0 and output O 1.

(Refer Slide Time 23:57)
= 2| v a ¢ e+ o alQ Q& q 'bE

Pa »Toomud o[-+ MENEEEOEECIC] B smom i

@ The expression for the probability a1(s) can now be rewritten as

ap(s) = p(s, reeii1) Z p@z‘.r,.:.g) P(qlu
sea Zf(:dhl.,(..)

Y sl pts)

ey

Y "
= Z pls.r|s")p(s' Fecr)

s'Eay

Y usiaks), Lo (12)

)
WAl s
where o is the set of all states at time /. 9‘9

e

So then what would be the value of alpha? So let's say this is time t equal to some | and this is

time t equal to 1 plus 1. So

(Refer Slide Time 24:10)
dCsseas ekessiaaaang
70 7Tommud oo MENEEEOEEC] B smwoms 12

@ The expression for the probability ey, 1(s) can now be rewritten as

ape(s) p(s, reeisr) Z p@i\r,.x.;) p

sem ZFCC’HL,LJ
Z p(s.rp@r,’.‘ e(s’ . reer) c
1o T 4
Z p(s.ri|s")p(s rect)

= Y (s’ s)ai(s),

where o/ is the set of all states at time /.

how can we write let's say alpha at 1 plus 1 for the state 0?

(Refer Slide Time 24:17)
= - 50 e s os]qQaa ‘.l'—".

Pa 7Toomud o[-+ AENEEEOEECI] B smiom i

@ The expression for the probability oy, (s) can now be rewritten as
ar1(s) ps. recis1) Zp@z-n-:-z) pe
[_-) s'Em Ef(d‘L,(._)
Kpn (o » p(s.m@rz’.t Ne(s' rezi) =

s'Eay

¥ ¢
Z pls.r|s)p(s' recr)

s'Eay

3 uls, s)au(s'),

where o, is the set of all states at time /.

Now note here this is given by product of this summation over all input state right, now so

alpha 1 0 can be written as then gamma, this can be written as gamma at time 1 of 0 0. gamma

1 0 0 is previous state is 0, next state is 0, gamma 0 O into alpha I belonging to state 0. So this

is gamma 1 0 0, alpha 1 0 so this is corresponding to this transition, Ok. This is corresponding

to this transition, this term will come, fine. Now there is another transition here which is

basically this. So we can write this will be plus gamma 1 1 0 so gamma 1 1 0 is the gamma

corresponding to this transition when the initial state is 1 and next state is 0 multiplied by

alpha at time I belonging to state 1, Ok . So alpha I plus 1 0 can be then written

(Refer Slide Time 25:53)
= - a ¢ e+ sl Qqq \E
O /7TOomu g~ s BERREEIDREO0 B swems

@ The expression for the probability o, 1(s) can now be rewritten as
apei(s) p(s. Freigr) Z p@z‘.r,.:-;) plw
[_) s'Eay Er(d‘l"(")
Kpn 0 3 p(s.rpﬁrz’.‘ Np(s' rezi) =
- Yl[o)n]dl[".) - prreves 3 7
7 (19,0 > pls.als')p(s' recr)

3 uls, s)au(s'),

where o, is the set of all states at time /.

as this. Now similarly we can also compute what is the value of

(Refer Slide Time 26:01)
= -~ 50 ¢t e v ool Qoo 'tﬁ

2o Toom " of-oe AAEEEEORECC B smwoms 12

@ The expression for the probability a,1(s) can now be rewritten as

i1 (s) p(s. Freiii) ZP@E-N-J-L) pew
s'Em zr(d‘L,(.,)
Y sl nffrEnpts) <

s'Eay

¢ A
S pls.nls)p(s’ vec)

s'Eay

— Z (s’ s)au(s’),

where o, is the set of all states at time /.

alpha I plus 1 at 1. So we repeat the same procedure. So let's write it here. alpha 1 plus 1 in the
final state is 1 can be written as gamma 1 0 1 times alpha 1 0 plus, so this is corresponding to

this transition, gamma | initial state 0, final

(Refer Slide Time 26:35)
d -0 Fle « 5 5lQ 00 q »IT

20 7Toomud -+ BREEEENDEECOC] B swmmma 12

@ The expression for the probability e, 1(s) can now be rewritten as

am(s) = psran)= Y s ran) POV

wem Zy(chl.,c)
X p(s. s riz)p(s . re<s) c
e eam e MO AL L
Z pls.ri|s")p(s' rect)

FEa

= Z (s’ s)ay(s),

where &) is the set of all states at time /.

state 1 and alpha at time 1 O plus this another transition which is this. So this can be written as

gamma | 1 1 times alpha I 1. So these are, for particular convolutional encoder

(Refer Slide Time 27:03)
dBa®0

el essiaqaaang

70 'ToOomba e+ EEEREEOREO0 B smwms 2

BCJR Algorithm

@ The expression for the probability a1 (s) can now be rewritten as

ar41(s)

gieM

pls.reciin) = 3 o5 reciin)

where o, is the set of all states at time /.

2‘;(&&,:)

[
()=, MY |
Y (,)%0)

s'Em

h.D p(s.rﬁ@ rec)p(s’ reer)

s'Eay

¢ A
S pls.nls)p(s’ weer)

s'Eaj

Z (s, s)ay(s'),

sEay

whose Trellis section is given by this, these are, these 2 are my alpha values, this one and this.

So you see I can recursively compute alpha time

(Refer Slide Time 27:17)

1 plus 1 from alpha at time | and branch metric gamma. Now to do this recursion, we need to

know what is the initial condition. What is the initial condition? We need to know

(Refer Slide Time 27:35)
= = =] e e e s Q Q8§ \.I'_-.'
0 /7Toomed g -+ BEEEEEDREO0 B smwm

@ The expression for the probability o, 1(5) can now be rewritten as

(If.1[5) P(S‘Fz.rq) Zp@g.r,.;.;) 1::(015) ‘)
YEa L.c
)

p.0 p(s.n@rﬂ)p(s' . rezi) =
o, ¢ ¢ %y =7 (o))
> pls.rils)p(s' recr) DY)

s'Eay

= 3 s shals).

where o, is the set of all states at time /.

(12)

what is the value of alpha 0 for different states, for state 0, for state 1. We need to know what

the values of these are.

(Refer Slide Time 27:48)
dlsi80s ¢kessiaaaanm
70 //7Toomus clf-co AEEEEEOEE0 0 W swmwms 2

@ The expression for the probability o, 1(5) can now be rewritten as

ae1(s) p(s. recivn) 9@5 Fecivl) péa

ZF(C’HL,LJ
Z p(s.nUr,. a]F'(S JFeei) = —
e g [0o
Z p(s.r|s')p(s" reci) T&(H)“{L(]J

e

Y uls' s)ai(s), (12)

s Eay " d [0] ?
where o is the set of all states at time /. 0‘0 d, ,]\r- 7

Now note initially we assume that the

(Refer Slide Time 27:52)

encoder is in all zero state. So if we assume the encoder is in all zero state then it is,

(Refer Slide Time 28:00)
diEa®ny¢wsssaaaang
I' ATOHom e s »o BEEEEEORECC B semnems 12

BCJR Algorithm

@ The expression for the probability a;,1(s) can now be rewritten as

aa(s) = pls.rcra) = Z F’(EIE-VHM) p(s¥
s Em chﬂvl,ﬂ)
b v

= ¥ p(S-nEfr,ia]p(S’-rm} £
) 7 &y, =7 902
= 3 p(s.nls)p(s' recr) Y1) 0)

= Z (s’ s)eu(s),

e

where o, is the set of all states at time /.

it is going to stay in all zero state then in that case, we consider this probability as 1 and this
all other possibility of it staying all other state is 0. So the initial value when we assume that
the encoder is in all zero state we assume that alpha 0 at 0 is 1 and alpha O at at any other

state is 0. So similarly we can

(Refer Slide Time 28:26)
o = 03 Al r_l}l-z-. Q «'."-;'-'!t.'w.ﬁ

70 TOomME" o[- se AENREEDEE] B somioms 12

@ Similarly expression or the probability 4;(s’) can be written as
Bi(s') = plreg-nls) (13)
S Ao-anl)

SEFj4y

Z p(re=1, 11, 5/5)

SETI

Z plre=i|s’, s, r)p(s, r|s")

SETy

= Y plresils)p(s.nls)

$€Ed1)

Z -ii-l(s)n'i(sl-sl

s€a,,
where @, is the set of all states at time [+ 1.

again we introduce a new variable s and sum over

(Refer Slide Time 28:46)
= 3| v a e e 5l Q0O 8 \l'_--i

o0 ’Toomu9 of-se RAENEEEORECC B swmuwms 12

@ Similarly expression or the probability 4(s’) can be written as

Bi(s") = plrep-yls) (13)
Z F'(’:--(r z)-@sr}

SEF

Z p(re=i, i, 55)

SETI4

z plre=i|s’, s, r)p(s, ri|s")

SETy

= Y plresils)p(s.nls’)

$€ET)4)

= Z -fi—l(s)"ﬂ(;-s)

$€a
where @, is the set of all states at time [+ 1.

all possible values of s, so then this becomes, from here we get this. Now

(Refer Slide Time 28:55)
= -~ 503 rressiaaaang

o ’Toomu 9 of-se RAENEEEORECC B smuwms 12

@ Similarly expression or the probability | ff{s) can be written as

Bi(s") = plreso-yls) —2 (13)
L Pre=(i ,]ﬁs

Z p(re=i, i, 5s)

SEF

Z plre=i|s’, s, r)p(s, ri|s")

SETy

= Y plresils)p(s.nls)

SE€ET)4)

= Z -fi—z(s)"w(;-s)

sEayyy

where @, is the set of all states at time [+ 1.

we split this r into these 2 terms,

(Refer Slide Time 29:01)
=1 L a e« 2 oA O | q \E
o/’ Toomu 9 of-se RAENEEEORECC] B smwoms 12

@ Similarly expression or the probability | I,(s) can be written as

Ai(s") = plre Plresg-vls’) yls’) _2 (13)
L plre- (1 ;]ﬁs

sEm,

= 2 ;
L p(re=i, i, 5/s)

SETI4

Z plre=i|s’, s, r)p(s, r|s")

SETy

= Y plresils)p(s;nls)

$E€E0)4)

Z ,f,_](s)",;(s'.s)

SET

where @, is the set of all states at time /[+ 1.

so we get this expression.

(Refer Slide Time 29:05)
= 3w a P le e o QL Q H o \IT

78 TOo M o[-+ AEEREECOEEO] W somiome 12

@ Similarly expression or the probability | f,{ ") can be written as

Ai(s") = plre Plreg-yls) s’ ’D (13)
L Pre=(i z)@s

X p(re=i, i, 5s)

SETI4

Z plre=ils’, s, r)p(s, r|s")

SETy

= Y plresils)p(s;nls)

$E€E0)4)

Z ,)’,_](s)ﬁ;(s'.s)

$Ea
where @, is the set of all states at time /[+ 1.

Now using Bayes rule I can separate out this term into 2 terms like this. And we know that,

again let's go back to our Trellis section, so 0 0 1 1 1, this is

(Refer Slide Time 29:27)

aCssawd kessiaaaang
70 7Tommua @[+ o MEREEEOEEOIC W smuoms 12

@ Similarly expression or the probability 4,(s') can be written as

(s') = plresq-nls) ? (13)
Z P(fr--,(f 1)-@5’}

SETI4

- 2 ;
L p(re=i, r1. 5|s")

e €]
Z p(re=i|s’, s, r)p(s, rils’) i
SEFiI ———
%0
= > plresils)p(s,nls)
A=

Z .)’;,](5)“;;(5‘. 5]

$E€EF4)
where &, is the set of all states at time / + 1.

110 and this is 0 0 1. This is state 0, this is state 1. So if you are interested

(Refer Slide Time 29:37)
= 3| v o e e & & "-Q.‘&f"ﬁf'\'\ﬁ

o0 /’Toomu 9 of-se AENEEEORECC B smuwms 12

@ Similarly expression or the probability | i,{ ') can be written as

Ais") = plreq 1;\5] 'D (13)
- L plre- (1 z)ﬁS
i p(re=i, 11, 55) s
2 Gy
Z plre=i|s’, s, r)p(s, r|s") h\
TR e @ D/u

= Y plresils)p(s;nls)

SE€ET)4)

Z -7’!—1(5)"-';(5‘-5)

$Ea4
where @, is the set of all states at time [+ 1.

in probability of r t greater than 1, that is this is your, this is your time I so probablhty of rt

(Refer Slide Time 29:50)
= 3w a plle & o Q @ ‘E
o To=swua ol EEEEEOEE 0 W s boms 2

@ Similarly expression or the probability | !,(s) can be written as

Ai(s") = plres Plresg-v)ls’) yls’) FQ (13)
- L plre- (1 1)@5

SEF

Z p(r?.,_E.SIS') 2 ofs)

$€M4 (T &)
Z plresils', s, m)p(s. nls') 0‘1
s O
= ’;lp(n 1|s)p(s. rils') Pl
Z Brea(s)(s’,s)

where @, is the set of all states at time [+ 1.

greater than | given previous state s hat, next state s and r 1, it only depends on,

(Refer Slide Time 29:58)
= - =0 e = o 5l QO & \E

70 TOomE " c@Z[-seAENBEECDEEI] B sowboma 12

@ Similarly expression or the probability | ff{ ') can be written as

Ai(s") = p(rf Plresg-vls’) yls’) ? (13)
- ﬂ('r (1 1)@5
SEF [
= p(resis i, 5|5) T
2 Cyry D,
Z p(re=ils’. : ri)p(s. rls’) h\
= — o0
= Y plresils)p(s;nls) Pl

SE€ET)4)

Z -ﬁ—l(s)":{(sl-s)

SET

where @, is the set of all states at time [+ 1.

so if you know the next state s you don't need information about the previous state, you don't

need information about the current bit. So I can simplify this expression

(Refer Slide Time 30:12)

= -~ aQ FeesaQaq \IT
7o/ 7Toomud o[«o AENEEEOEECC] B smwms i

@ Similarly expression or the probability 4,(s') can be written as

W(s) = p(res-yls) ’2 (13)
Y plreso-1 @)

=y
L p(re=i, ri. s|s")

sEm,

Z p(re=i|s’.Js| r)p(s, ri|s")

SEFI

= T blrislplenls)

SETL,

> Brals)uls’ s)

SET)4y

where o, is the set of all states at time / + 1.

in this particular fashion and if we go back, this is nothing but our betas and this is our
gamma. So let's compute beta for this particular code. So we are interested in computing beta
I for 0 and beta 1 at state 1. So beta I at state 0 would be, so beta 1 at state 0, so we, so we are
interested in computing beta at state 0, so this is sum over all those transitions which are
ending at this state. So there are 2 transitions, one is this one, another is this one. So let's
write the expression for this particular term. This we can write as beta at time 1 plus 1, 1 times

gamma | 0 1. So the contribution of this is

(Refer Slide Time 31:21)
5 im0 kessaaqaad

70 TOo M o[- soABEREECEEO] B somioma 12

@ Similarly expression or the probability 3 {s) can be written as

Bils’) = F-‘(": Plresg-nis) s’ ’D (13)
Pl[")f Ph\{l)?’j_["r]) ﬂ(’: (1 :)ES

sn,

Z p(re=i, 11, 5/s") 2
Z plre=i|s’ [s|ri)p(s, ri|s")

X0 L
= Y plresils)p(s;nls)
> Brals)uls')

$Ea
where @, is the set of all states at time [+ 1.

beta | plus 1 corresponding to state 1 multiplied by gamma of this Trellis section, gamma 1
when the initial state is 0 and the next state is 1. So this, this, this will contribute this term
plus there is another transition which is this, this one right. So we can write contribution of

this as beta | plus 1 zero times gamma 1 0 0.

(Refer Slide Time 31:59)
= S| . a e e e Q \I'—-i
PO 7TOomu cZ[-so MEEREEDEEO0 B swoms

BCJR Algorithm

@ Similarly expression or the probability | ‘f{ ') can be written as

H(s") (r: (1 1}\5] ? (13)
Pl[")f Ph,{l)?’j_[nr])'f‘ ﬂ(’: (i-1):s")

sn,l

Byn(t) YLL"’“) > p(f?r_-?:.sls']

Z plre~i|s’ s|ri)p(s, ri|s")

X0 LA,
= > plresils)p(s;nls’)
> Bra(s)u(s’.s)

$€a14
where @, is the set of all states at time [+ 1.

So this is our expression of beta I for state 0. Similarly we can compute beta 1 for state 1. So
what are the 2 transitions which are ending at this state? One is this one, other one is this one.
So let's write down the expression for this one, this one. So this will be beta 1 plus 1, 0 times
gamma | 1 0 this is this term and what about this particular term, this will be given by beta 1

plus 1 1 times gamma | 1 1.

(Refer Slide Time 32:55)

= % B0 tir s o e Q8] ‘ﬁ
o0 / Toomu o@f[-se REREEEORECC] B smuwms 12

@ Similarly expression or the probability | I,{s) can be written as

h(s") P(": Plreg-nis) s’ ’D (13)
P,t(b): Ph,(l)?’j_["l])'f‘ ' - »D(': (-1
@lh(d YL(,“]O Z p(r{ -'- r;,5|5')
5 (';°J z p(re=ils’.s| r)p(s. ri|s")
b, 01) = bua i) gl
¥ by DAL = D plresils)p(s.rils’)
= Z Bira(s)v(s’, s)

where @, is the set of all states at time [+ 1.

So this is our expression for betas. So as you can see similar to the expression for alphas now
these betas

(Refer Slide Time 33:09)

= 2 . a ¢l e 2 aQ Q O g \E
P/ Toomud o[« ARREREOEEOC] B smwm i

@ Similarly expression or the probability /4,(s') can be written as

(s) = plrep-yls) ’D (13)
NOEE O ACDRS ' ; p(re-g-n gs)
@’.H(OJYL[‘QIO X p('rz‘_,_r;llsls')
oy, (1,8) Z p(re=i|s’ js|ri)p(s, ri|s’)
R .72
+ t’“' {\)"ﬁ[mj = Z p(re=i|s)p(s.r(s")

Z .)’,,1(5)",;(5'. 5)

SET4y

where o4 is the set of all states at time / + 1.

can be computed using,

(Refer Slide Time 33:13)
glsxe0sewesdaaaasy

70 'TOo MmN c -+ o EEEEENOEECC B smwms 2

. Algorithm

@ Similarly expression or the probability | i,(s') can be written as

.'3;(5’)

l’(’r~u yls’) —2 (13)
h[‘) = (’m(l) 7'1,(.‘:")-}' = P('r:-u)4 Bs)
MO ACLS _Z__p(z,-.g‘sw}g e ;
y

(re=ils’,[s| ri)p(s. rils’)
EZ,:"_‘TEL’ P
z plre=i|s)p(s.rls")

§ET.)

z Bisa(s)nuls',s)

SET

where ., is the set of all states at time [+ 1.

so alphas can be computed using

(Refer Slide Time 33:15)

forward recursion and similarly betas can be computed using backward recursion. So then we
would require the knowledge of beta at time at end of the Trellis. Now how do we know the
values of beta? Now if the encoder is terminated, that means if the encoder is brought back to

all zero state in that case, beta at end of Trellis, at end of the time, let's call beta at time k

(Refer Slide Time 33:51)
= }| v a Al RN \l:-'

PO /7TOomud ¢ s BEBREEDEEC0 B smioms 12

@ Similarly expression or the probability | ,[s) can be written as ¢
(s') p(r, Pres-yls’) —2 (13)
Pl(b)7 Pm(')n["'])f ﬂ('r +(1-1) @5

SEF 4y

OMO) TJ.L"’“) b p(r?};. 5|s’)

$ETI

3 plresils'] et vils)
S€ai,, J;
= Y plresils)p(s,nls’)

€,

> Brals)u(s’.s)

SET

where @), is the set of all states at time [+ 1.

which is the end of the block, at state 0 will be 1 and for all other state

(Refer Slide Time 33:57)
dlE& B0 elkessiaaqans
P70/ Toomu" ¢c@[-+oe[AREEEEORECC B swoms 12

@ Similarly expression or the probability | i,{s) can be written as G&(ﬂk :

(s) = ("r Plreg-yls) yls’) 'D (13)
Pl[")'-' f'h\(l)ﬁ[“r])#‘ = ﬂ('r (1 s)ﬁs

@-m(t’JTL[-n’nD X p(re=i, v, 5|s’)

SEF

Z plre=i|s’ s|ri)p(s, ri|s")
= "
= Y plresils)p(s.nls’)

$€ET)4)

> Bra(s)uls',s)

SET

where @), is the set of all states at time [+ 1.

it will be, in this case there are only 2 states, so for all other states it will be 0

(Refer Slide Time 34:04)
dhEiwns ewessaaaacg

I' ZTOHo M cZrvo ARERETDEECIC] B smwoms 12

BCJR Algorithm

@ Similarly expression or the probability | i;[s) can be written as g:gi:,
Bils’) = p(rn(; 1ls’) —2 (13)
h[") = h’"m]’L(PJ})-}' = P(':,.u 1) BS

SETIy

O AL

Z pre=i, 1, s|s)

SETI

> p(ﬂ_sﬂn}p(s rls')

SETI4

= Y e Jepeele)

SETL)

= Z ..3“.1(5)':'!(5’-5}

SET

where @, is the set of all states at time /[+ 1.

This is for the case when the convolutional encoder is brought back to all zero

(Refer Slide Time 34:11)

state, it is terminated. In case the convolutional encoder is not terminated, then we don't know

in which state it has uh ended up with. So what we will do is in that case we will assume

(Refer Slide Time 34:38)
diEimal eksssiaaaang

P00 »TOomEa o[- +o ANNEEOOEEN 0] B smuom i

@ Similarly expression or the probability | f,[s) can be written as G&(ﬁk |

Bel) =0

H(s") p(re PAlreg-nis) yls’) ’D (13)
Pl(")f f‘m(')ﬁ[“)* - S A »D(': (I-1)s @5
MO (o)

Z p(re=i. 11, 5|s)

SEFI

z plre=i|s’.s|ri)p(s, ri|s")
gl T
= Y plresils)p(s.rls)

$€01.)

Z -ﬂ.](s)"»;(s’. 5)

SET

where @, is the set of all states at time [+ 1.

that it is equally likely to end up at all zero state or any other state. So in that case, we would
assume beta at the end of the block to be equal to 1 by number of states. So in this case, we
would assume that beta k 0 is half and beta k 1 is half. So this is for the case when

convolutional encoder is not

(Refer Slide Time 34:56)
= 3| v a e ¢ o Q Q @ ® ;I'—-:
0 7Toomu Y g~ ++[BEREEEDRE0 B swems 2

@ Similarly expression or the probability | f,[') can be written as G“-('ok 1%

Bl =0 |,

J;(s’) = (I‘, |: 1]\5] ’D (13) ZP
Pl(")f Ph\{l)n[“l])'f‘ ﬂ('r (1 1)@5

@'Ln(ﬂntﬂ’n) Z p(ZE.su’) 2

SETI

z p(re=i|s’.s| ri)p(s. ris")
SETy 1’1
= 3 plresils)p(s;nls)

€T,

= Y Buals)uls',s)

SET

where @, is the set of all states at time [+ 1.

terminated. That means it is not brought back to all zero state and this w1ll be the initial

condition when the convolutional encoder is terminated.

(Refer Slide Time 35:07)
= s a ¥ PAJ":-‘ RO 1] \I'—-a

o 7Toom b c@f- o[NNNEEDOEE] B smboms 12

@ The branch metric (5", 5) can be written as

p(s'.s.r)
P(s’")

P(s',s)] [p(s'.s.7)
[P(s’) } [P(s',s) }
= P(s|s')p(rils", 5) = P(us)p(rilwi),

(s, s) p(s.r|s') = (14)

where u; is the input bit and v; the cutput bits corresponding to the
state transition s — s at time /

Now next we compute the branch metric gamma. Now from definition gammas can be
written like this. So this can be written as joint probabilities of being in previous state s prime
next state s given a received sequence at time 1 r I divided by probability of being in previous

state s prime. Now this I introduce the term this so I

(Refer Slide Time 35:40)
= #&0 kessaaaaqd
o ’Toomu o[-+ AREEEEORECC B smoms 12

@ The branch metric v(s’.s) can be written as
e T

p(s'.s.r)

P(s')

S (s

= P(s|s')p(ri|s", 5) = P(u)p(ri|wi).

1(s',s) = p(s,nls)= (14)

where u; is the input bit and v; the cutput bits corresponding to the
state transition s — s at time /.

add this term in the numerator, similarly I add this term in the denominator, Ok.

(Refer Slide Time 35:46)
dheswgs ¢keessiaaaang
l')l‘@mﬂﬂﬂ C@|- oo BEENEEDEECC] B swswome 12

BCJR Algorithm

@ The branch metric (5", 5) can be written as
L

nu(s'.s) = pls,nls) = p(s,i&)n) (14)

el

= P(s|s")p(ri|s".s) = P(u)p(ri|w),

where u; is the input bit and v; the cutput bits corresponding to the |
state transition s — s at time /.

Now this, this quantity can be written as probability of s given s prime ar-ld this probability
can be written as probability of r 1 given previous state s prime and next state s which can
also be written as probability of r 1 given transmitted sequence v 1 multiplied by a priori
probability of getting u 1. So note that this probability will be 1 only when there is a valid

transition from

(Refer Slide Time 36:22)

state s prime to s, otherwise this will be 0, Ok.

(Refer Slide Time 36:30)
i - a Plie e o s Q O @ Q \F
70 7TOomud o +o AEREEDOEEC W smioms 12

@ The branch metric v;(s’. 5) can be written as
AN S o

(s'.5.7)
P(s’)

B [rrz0
P || [P]

= P(s|s')p(ri|s’. s) = Pu)p(ri|v).

—

w(s'\s) = plsmls) =2 (14)

where u; is the input bit and v; the cutput bits corresponding to the
state transition s — s at time /

So what does gamma depends on, it depends on what is the a priori probability of u I and it

depends on this likelihood function, probability of r 1 given v n.

(Refer Slide Time 36:46)
- iopseegiaaaaaEm

@ For a continuous output AWGN channel, if s — s is a valid state
transition,

vi(s', 5) = P(u)p(rivi) = P(w) (VI‘%) o~ M lln—wili® (15)

where ||r; — w||? is the squared Euclidean distance between the
(normalized by /E,) received branch r; and the transmitted branch

v, at time /.

Now if we consider an additive white gaussian noise channel, we can write this probability of
r 1 given v in this particular fashion. So gamma for an a w g n channel will then be given by

this expression. So note this depends on a priori

(Refer Slide Time 37:09)
= -~ 50 teessaaaang

o 7Toomm c@-coBENNEEDEE] W smiom 12

@ For a continuous output AWGN channel, if s — s is a valid state
transition,

vi(s'.5) = Pu)p(ri|vi) Iﬂ(‘.f{'f\lfu) e Blln=wll® (15)

where ||r; — v||* is the squared Euclidean distance between the
(normalized by /E;) received branch r; and the transmitted branch
v; at time /.

probability of u 1. It depends on the Euclidean distance between r 1 and v 1. Now let us assume
that we are considering a binary phase shift keying. So in other words basically we have bits

mapped to plus 1 and minus 1 let's say or plus

(Refer Slide Time 37:31)
o RN tlieessiaqaang

70 7To=omua g co MEREEEOREOIC] W smuoms 12

BPSK

@ For a continuous output AWGN channel, if s — s is a valid state
transition,

A._,(s-’_s) P{u,«)p(h V) Iﬂ(v'ﬂ?f_‘) e .:U.Ulr, - (15)
_ S —

—

where ||r; — w||? is the squared Euclidean distance between the
(normalized by / E;) received branch r; and the transmitted branch
v, at time /.

E s and minus E s, Ok. So let us expand this term and see can we simplify this term? Now

this term is, this term will be common for all the terms which is, which depends only on

(Refer Slide Time 37:49)
= 3w a ¢ e« Q0 & H \E

o/’ Toomu 9 of[-+e AREEEEORECC B swmwoms 12

BPSK

@ For a continuous output AWGN channel, if s — s is a valid state
transition,

(s, s) = P(u)p(r|vi) e Rllnvl " (15)

-

’P(UJ}

where ||r; — v||* is the squared Euclidean distance between the
(normalized by /' E;) received branch r; and the transmitted branch
v; at time /.

signal to noise ratio. And if you look at this particular term, so here there is a

(Refer Slide Time 37:56)
o L« 503 ¢le e o slq Qaq ‘E

20 /’Toomu9 of[-se ARAEEEEORECC B smuoms 12

BPSK

@ For a continuous output AWGN channel, if s — s is a valid state

transition,
J Rl wl'_'! (15)

where ||r; — v||* is the squared Euclidean distance between the
(normalized by \/E,) received branch r; and the transmitted branch
v; at time /.

vi(s'.s) = P(u)p(ri|vi)

—

[P(m}

r 1 square term, there is a v 1 square term and then there is minus 2 r 1 v 1 term. So this r 1,

(Refer Slide Time 38:09)
dlhesvns ekessaaaang
l' PTHo M E S g@-sro BEEEEEDEECC] B swwms 12

BCJR Algorithm

BPSK

@ For a continuous output AWGN channel, if s — s is a valid state ‘
L7 -
transition, -q"-r Ve — 209 |

w(s’.s)=P(unm)={;€u—;}\ @ (15) '

where ||r, — v||? is the squared Euclidean distance between the
(normalized by /E,) received branch r; and the transmitted branch
v; at time /.

r | square term that does not depend on what my v 1 is. And since we are considering ab p s k

modulated signal, so v 1 whether u of 1 is

(Refer Slide Time 38:23)

minus 1 or plus 1, this will basically be the same. This will be just 1.

(Refer Slide Time 38:28)
= " a J e oS C \.E

730 7TOmmE) c[-seBBEREEOEEO 0] B sowmiom 12

BPSK

@ For a continuous output AWGN channel, if s — s is a valid state
transition, -r"'r v, =254

i '; l z(ls::

where ||r; — v||* is the squared Euclidean distance between the
(normalized by \/E,) received branch r; and the transmitted branch
v; at time /.

vi(s'.5) = Plu)p(ri|vi)

—

IP(uy)

So the only term that is changing with choice of v 1 is this particular terrn'. So what we can
simplify this gamma 1, we can just simplify our gamma 1 like this. So this is basically
probability of u 1 and exponential minus E s by n naught and this is basically two times r 1 v n
so it becomes dot product between the recieved sequence and uh this transmitted codeword v

1. So, and of course there is some constant, there is some constant term k 1

(Refer Slide Time 39:12)
o =50 e ¢ v 8| Q @ & \E
O 7TOomu c[- s BREREEDREO0 B swems

BPSK

@ For a continuous output AWGN channel, if s — s is a valid state

transition,

vi(s'.5) = P(u)p(ri|vi) ’P{

where ||r; — v||* is the squared Euclidean distance between the
(normalized by /E;) received branch r; and the transmitted branch

v; at time /. YJ(Si!.J _Esg

which is common. So in nutshell then, our gamma depends on this term, ri;ght and it depends
on what the initial a priori probability of u 1 is. So for an additive white gaussian noise
channel when we are applying b p s k modulation then we can simplify our expression for
gamma. So this can be written as E raised to power minus E s by N naught by 2 times r 1 dot

v

(Refer Slide Time 39:49)
J0esw0seresaaanafd

P20 7Toomu9 of-+e ARAEEEEORECC B swmwoms 12

BPSK

@ For a continuous output AWGN channel, if s — s is a valid state
transition, o a v. =249,

(s, s) = P(ur)p(eilvi) [P(Jiﬁ"” 'l (15)

where ||r; — v||* is the squared Euclidean distance between the
(normalized by /E;) received branch r; and the transmitted branch

v; at time /. YJ(Sf!.J _E 'f.v)
e J‘—‘_

Now what is this r 1 dot v 1? We will illustrate this with an example when we solve, when we
show an example Ok. So the point which I am trying to make is that this expression that you
see for computation of gamma for additive white gaussian noise, it essentially depends on
two terms. One is this, and another is this term.

Next

(Refer Slide Time 40:16)
= -~ a A= ’_Qj"" G Q6 a “E

20 TOomE Y o[- soeAEEREE0EEO] W somiome 12

@ For a continuous output AWGN channel, if s — s is a valid state
transition,

—_—

".-J(Sf. s) P(ui)p(rilvi) P(m} (VI L;;lu) e :\l:‘\lr.- v |..- (15)

where ||r; — v||* is the squared Euclidean distance between the
(normalized by v/ E,) received branch r; and the transmitted branch
v; at time /.

@ On the other hand, if 5' = s is not a valid state transition, P(s|s’)
and (s’, 5) are both zero.

(Refer Slide Time 40:17)
dOEaGas ekegaaaanE
7o 7Tomme 9 o R S BEREEEE0BEC0] B smoms 12

BCJR Algorithm

Initial conditions for recursion

@ Forward recursion:

)= o 170")

I have already specified now that

(Refer Slide Time 40:22)

our joint probability of, the joint probability that we computed, it’s basically a product of 3
terms, alpha, beta and gamma. Now alpha beta can be computed in a recursive fashion. And I

already mentioned that

(Refer Slide Time 40:38)
gCBiGds eeessiaqaaanng
'O THo N E S g@-+oBEEEEEDRECC B swmuwms 12

BCJR Algorithm

Initial conditions for recursion

@ Forward recursion:

)= o 170" 6)

usually our encoder is in all zero state to start off with

(Refer Slide Time 40:43)

and that's why we assume that

(Refer Slide Time 40:46)
d <=0 ressaaaang
20 7T0omud o o MEEEREDEE] W smiom | 12

BCJR Algorithm

p(s,s,¢) = ———

Initial conditions for recursion

@ Forward recursion:

)= o Fo-)

————— e

alpha times 0 is 1 for the state 0 and it is O for all other states. Similarly

(Refer Slide Time 40:59)
= = a Al :"jJ.-"‘\'L('.&{'“. \I'—--

Po »7Toomud o[- +o BAEEEDOEEC] B smiom i

Initial conditions for recursion

@ Forward recursion:

(16)

oo

)= 1{ g 3

@ Backward recursion:

Br(s) = { é: i'_ g ’ (17)

if we assume that our encoder is terminated, that means it has been brought back to all zero
state in that case at the end of our block which is our k, beta k will be 1 for state 0 and 0 for
all other states. So these are our initial conditions for computing the recursion for, for forward

recursion as well as backward recursion. So now then,

(Refer Slide Time 41:31)
dlE4iBds eeegsiaaaanEg
ParToomma gk T T T Il L

rorithm

Step 1 : Initialize the forward and backward metrics ag(s) and Gk(s) using
equation (16) and (17).

Step 2 : Compute the branch metrics +,(s’,s), /=0.1,--- K — 1, using
equation (14).

Step 3 : Compute the forward metrics ay41(s), /=0,1,--- K =1, using
equation (12).

Step 4 : Compute the backward metrics 3(s’), I=K—-1,K-2,-.. .0,
using equation (13).

Step 5 : Compute the APP L-values L(u;), using equations (6) and (11).

Step 6 : Compute the hard decisions u; using equation (2).

to recap how do we compute the a posteriori probability. The first thi;lg is we need to
initialize the values of alpha times 0 and beta times end of the block which is I am calling k.
The next thing I need to do is, now to compute alpha and beta I need the value of this branch
metric gamma. So the first thing I need to do is I need to compute this branch metric gamma.

So I will compute this branch metric for all

(Refer Slide Time 42:06)

(Refer Slide Time 42:13)
diEamgiekssxaaqang
I. PTOHoEE S g+ BEEEEEOEEC B seswms 12

rorithm

Step 1 : Initialize the forward and backward metrics ag(s) and dk(s) using
equation (16) and (17). T -

Step 2 : Compute the branch metrics v,(s’.s). /=0.1.--- K — 1, using
equation (14). i —

Step 3 : Compute the forward metrics a;41(s). /=0,1,--- K =1, using
equation (12).

Step 4 : Compute the backward metrics (s’), I=K-1,K-2,--..,0,
using equation (13).

Step 5 : Compute the APP L-values L(u), using equations (6) and {11).

Step 6 : Compute the hard decisions i using equation (2).

The third step is once I compute this branch metric gamma then I will compute using forward
recursion, I will compute the values of alphas and using backward recursion I will compute

the values of beta. Once I have the values of alpha, beta and gamma

(Refer Slide Time 42:34)

then I can compute the a posteriori probability because I

(Refer Slide Time 42:40)

|
have shown that it is a basically product of these three terms. So I can then compute

(Refer Slide Time 42:46)
diszwnsekessaaaang
g/ THhome) gLi- o BREEEECOEE O] B smuwm 13

BCJR Algorithm

Step 1 : Initialize the forward and backward metrics ag(s) and [k(s) using
equation (16) and (17). B e

Step 2 : Compute the branch metrics v,(s’.s), /=0.1.--- K — 1, using

equation (14). —
Step 3 : Compute the forward metrics ay43(s), /=0,1,--- K =1, using
equation (12). =

Step 4 : Compute the backward metrics 3(s'), I=K-1,K-2,---.0,
using equation (13). =

Step 5 : Compute the APP L-values L(u), using equations (6) and (11).

Step 6 : Compute the hard decisions u; using equation (2).

these A P P values and once I have these AP P

(Refer Slide Time 42:52)
= 1w a v & & o] O O & 6§ $|'—-.

o /’Toomu 9 of[-se AREEEEORECC B smwms 12

Step 1 : Initialize the forward and backward metrics ag(s) and [k (s) using
equation (16) and (17). A
Step 2 : Compute the branch metrics v,(s’.s), /=0,1,--- , K — 1, using

equation (14).

Step 3 : Compute the forward metrics ay41(s), /=0,1,--- K =1, using
equation (12). E

Step 4 : Compute the backward metrics 4(s’), I=K-1,K-2,--. .0,
using equation (13). B

Step 5 : Compute the APP L-values- using equations (6) and (11).
Step 6 : Compute the hard decisions ; using equation (2).

value I will take a hard decision based on whether this is greater than 0 or plus 1. So the final
thing that I am going to do is I am going to take a hard decision based on what is the value of

this A P P value, Ok.

So let's now

(Refer Slide Time 43:14)
= 3| we a Al r-_BJ-\'- "'«‘&"{("k'bﬁ

78 TOomE " o[- somEEREEDEEO] B somiom 12

@ Consider the (2,1, 1) systematic recursive convolutional code with
generator matrix

G(D) = [1 1/(1+D)]

@ We assume an AWGN channel with SNR of
E;/Ny = 1/4 (—6.02dB). The received vector (normalized by v/E;)
is given by

0) (1), (0) (1), (0) (1), (0) (1
B = (ro.r;.lg_r,)—(rc[, }_r(t,);r,f ’_r]”;rélrg];rl;l_rt,])

(+0.8, +0.1; +1.0, -0.5; —1.8, +1.1; +1.6, - 1.6).

show the same using an example. So we are going to consider an example to illustrate how
we can do b c j r decoding. So we are considering a rate 1 by 2 convolutional code with
memory 1 whose generator sequence is basically given by this. The generator matrix is given
by this. We are considering b p s k modulation and we are assuming that initial probability u 1

is equally likely to be plus 1

(Refer Slide Time 43:49)
dBiv0sekesaaaasy

O 7TOom e g@|-+esBAEEEREESCIRECD B swsioms 12

@ Consider the (2,1, 1) systematic recursive convolutional code with
generator matrix

G(D) = [1 1/(1+D)]

@ We assume an AWGN channel with SNR of BPSK P(U‘J
E;/Ny = 1/4 (—6.02dB). The received vector (normalized by v/E;)
is given by

0) (1), (0 (1), (@) (1), (0) (1
= (ru.rl.rg_r,)—(rc[, }kr(t,);r%}.r,”;rzur;];rgl_ril)

(+0.8, +0.1; +1.0, -0.5; —1.8, +1.1; +1.6, - 1.6).

or minus 1. So we are assuming it is equally likely to be, it is plus 1 with probability half and

minus 1 with probability half. We are

(Refer Slide Time 43:58)
drsasnsekesdaaaanm
o’ Toomua o[- «o RAEEEEOEEO0 B smwm i

@ Consider the (2,1, 1) systematic recursive convolutional code with
generator matrix

G(D) =[1 1/(1+ D)

o
@ We assume an AWGN channel with SNR of BPSK P(U‘)\-q
E./Ng = 1/4 (—6.02dB). The received vector (normalized by /E;)

s given by

A

M =

0) (1), (0 (1). (0 .(1). (0 (1
= (ru.rl.rz.r,)—(rc[,).r,_g].'rf).r,“;rzumg].r_(;].ril)

(+0.8, +0.1; +1.0, -0.5; -1.8,+1.1; +1.6, —-1.6).

considering an a w g n channel with s nr of 1 by 4 and we are assuming that recieved signal
are normalized by under root E of s. So what we are receiving is this particular sequence. The
question I am interested is if the recieved sequence is this, I am interested in estimating what

was my information

(Refer Slide Time 44:24)

sequence. So to solve this problem what we need to do is we need to compute the a posteriori
L value. Now to compute the a posteriori L value, we will first have to compute alpha, beta
and gammas Ok and eventually we will compute the a posteriori L. value and then we will

take a hard decision on that to decide, estimate our information sequence. So this is the

(Refer Slide Time 44:59)
disiawnseesgsaaaqng
70 /TOomu c A " CARBEREDEE 1 B s o

BCJR Algorithm

L, A ¥
(5 ML=l (s) emd (g p=liolaml (g jolizlecl (15)
'._’. '-_.-' _-' \._ 4 N

Fei+0.A.+0.1 +1_0.=-0.5 =1 _R.+1.1 +1 _A.=1_Hl =
convolutional encoder that we have considered. This is basically G of D is rate 1 by 2 code

and its

(Refer Slide Time 45:10)

= & aQ r e el Q Qoa ‘I:_
70 7Toomus c-re mEEREEOREC0 B swwms

1 . 1/=1,=-1 (. 1/=1 a Lf=1.-1
i { & £ { 5. } i { L

r=(+0.8.+0.1 +1.0.=0.5 1.8.+1.1 +1 . 1.64

corresponding Trellis dlagram is this. For simplicity I just c0n51dered 4 time instances. So

initially I assume encoder is in all zero state

(Refer Slide Time 45:21)

1 & a - = 5 i S, & & o \I'__:
o /7Toomns chf-comEEEEEOEEO 0 B swmmwm 2

-t |""' ""I. '.
w x b . % <

r=(+0.8.+0.1 +1.0.=0.5 1.8.+1.1 al . 1.64

which is denoted by S 0 and it gets some bits. It moves to elther SOorS1 dependlng on what

bits it recieved. This is first time instance; this is t equal to 2. This is, this is t equal to 3. And

then after this what

(Refer Slide Time 45:42)
= L a = - - S & & o \I'—--

o 7Toomm c@-coBBENEEOEEN] W smiom 12

Pui+0.R.+0.1 +1 . 0.=0_F 1.8.+1.1 bl 1.6

I am doing is I am termmatmg this encoder back to all zero state So this is termination phase.

So I bring this encoder

(Refer Slide Time 45:53)
o ~ 50 s Q Q& | ‘|'_"_
70 7TOomus o[- +e mAEREEOREC0 B smwoms

r=(+0.8.+0.1 +1.0.=0.5 1.8.+1.1 w1 . 1.64

back to all zero state. Now '[hlS is arate 1 by 2 codes, for each Trellis section I am receiving 2

bits. So at time t equal to 1, what I recieved is these 2 bits, point 8 and plus point 1. For t
equal to 2, I recieved these 2, plus point 1 and minus point 5. For t equal to 3, I recieved
minus 1 point 8 and plus 1 point 1 and for, during the termination phase I recieved plus 1
point 6 and minus 1 point 6. Please note I am interested in, given this recieved sequence I am
interested in estimating what was the information bit that was transmitted at time t equal to 1.
What was the information bit that was transmitted at time t equal to 2. What was the

information bit that was transmitted at time t equal to 3? So

(Refer Slide Time 46:56)

o =50 s gsilaaaanE
78 7T mma o L[ESSE

Step 1 : Initialize the forward and backward metrics ag(s) and 3k(s) using
equation (16) and (17).

Initial conditions for recursion

@ Forward recursion:

1, s=0
ag(s) = 0. 540"

as we said the first step was initializing alphas and betas for recursion; so since we started
with all zero state, alpha at time zero for state 0 is 1, and for other states, which is state 1 it is

zero. And since we are terminating

(Refer Slide Time 47:22)
E L D i _BJ =4, B e R ‘I'__-,

70 /’7Toomu o gl o BEEO0 B smwms =

Step 1 : Initialize the forward and backward metrics ap(s) and x(s) using
equation (16) and (17).

Initial conditions for recursion
@ Forward recursion:

oo

wie)={ g3

@ Backward recursion:

1, s=0
f"'(SJ_{O‘:,ttl'

this encoder, so beta k times t equal to 4 is 1 for state 0 and it is O for other states which is
state 1. So that's the first step. Initializing the forward and backward metric for time t equal to
0 and time t at end of the block, in our example t equal to 4. So once we have initialized our

(Refer Slide Time 47:52)

alphas and betas next we need to compute alphas and betas for other time instances and for

that we would

(Refer Slide Time 48:04)

ghelixegseeessiaaaany

BCJR Algorithm: Example

Step 2 :
equation (14).
~0(50, 50)
0(S0, 51)
71(50. 50)
71(50_ 51)
(51, 51)
1(51. %)
72(S0, S0)
72(50, 51)
72(51, S1)
72(51, S0)
73(50. S0)
~al 51 5a)

70 ' Toomud ol e AEEREECRECC B smwm 2

Compute the branch metrics v/(s’.s), [=0,1,--- K — 1, using

e'“ 45 = 0.6376
e’ = 15683
e 0% = 0.7788
e®% = 1.2840
e 975 —0.4724
e3P = 21170
¥ = 1.4101
e 035 — 0.7047
el = 42631
e~148 = 0,2345
=10 |
e!® = 4.9530

need our branch metric. Now how do we compute our branch metric? If you recall for the A

W G N channel we showed that this branch metric can be written as some constant, say call it

k 1 times probability initial a priori probability u 1 and we have exponential plus E s by N

naught 2 times r 1 dot v 1. Now in this particular example

(Refer Slide Time 48:33)
giExeds eeesssiaaaanafg
I' ATOHomE S g@-+oBEREEEDOEECC] B swnms 12

BCJR Algorithm: Example
Step 2 : Compute the branch metrics v(s’.s), /=0,1,--- K — 1, usin

equation (14)' YL(515J7K|P(U»OCTE1C“"J

(S0, S) = e %% =0.6376

(5. 51) = ™ =15683
(5, %) = %% =0.7788
(50, 5) = "% =12840
m(5, %) = e % =0.4724

n(5, %) = £ =21170
72(50, %) = & =14191
72(5,51) = e %% =0.7047
‘}'2(51. S[] - e"‘s = 4,2631
72(51, %) = e 19 =0.2346
(S0, %) = =10
nl5.5) = e'® = 4.9530 8
we are assuming that a priori it is equally likely to be plus one or minus one. So this

(Refer Slide Time 48:43)

probability will be half whether u 1 is plus 1 or minus 1. So we can just, this will be

(Refer Slide Time 48:49)
= - a e v & &) O @ & @ ;E
Po ’7Toomud ol +o REREREOEEO0] B smwm i

BCJR Algorithm: Example

Step 2 : Compute the branch metrics ,(s’,s), /=0,1,--- ,K — 1, usin

Tls)-K o) € B2
70(5, S) = e % =0.6376 S
(S0.51) = &% =15683
71(50, S0) e 925 = 0.7788
(50, 51) e"? = 1.2840
n(5,%) = e %75 =0.4724
(
(
(
(
(

equation (14).

S1. %) a7 = 21170

~v2(50, S0) "3 = 1.4191

72(S0. 51) e %3 = 0.7047

2(5,5) = ol — 42631

12(51. S) e 145 = 0.2346

(S, %) = =10

vl5:.5) = "% =4.0530 .

a constant, so we can just include this in a constant thing and we can just ignore this term. So
what we need to compute, to compute the branch metric is basically some k 2 times
exponential plus E s by N naught 2 times r 1 dot v 1. Now in our example E s by N naught is 1
by 4.

(Refer Slide Time 49:14)

E L] a 4 ™~ ~ = - .:-‘.‘. o (.{ {Ik bE
20 TOmmE " o[- se AENREECEEO] B sowuioma 12

BCJR Algorithm: Example

Step 2 : Compute the branch metrics ~,(s’,s), /=0,1,--- K — 1, usin

eopumtiony (L0F ms‘,s):l-t,P(UJct"'fl(f”'J
(S, %) = e % =06376 — T 1Bf.w
w0(50.51) = &% = 15683 ke
7150, S) e 025 = 0.7788
1(50, 51) e¥? = 1.2840
1(51.5) = e %75 =0.4724

2(50, 50) e"® = 1.4191
2(50. S[] = @ 0.35 0.7047
2(S|. S[] = Pt 45 — 4.2631

11(51, So) &%75 = 21170

72(51, S) e~ 145 = (.2346
7(5.%) = & =10
wl(5.5) = e =4.0530 -

Just go back, E s by N naught is 1 by
(Refer Slide Time 49:19)

diEsBd ¢legssiaaaadg

7o 7TOomma g

@ Consider the (2.1,1) systematic recursive convolutional code with
generator matrix

G(D) =1 1/(1+ D)] "
WX
@ We assume an AWGN channel with SNR of BPSK , a

E./Ng = 1/4 (—6.02dB). The received vector (normalized by 'E;)

s given by

M -

0) (1), (D) (1), (0) (1), (0) (1
c = [ru.rl.rz.r,)—(rc[,).r,g]:r]”.r,“;rzt]‘ré].r_(;].ri])

(+0.8, +0.1; +1.0, -0.5; —1.8,+1.1; +1.6, - 1.6).

4. So then we can write this as,

(Refer Slide Time 49:24)
g Aatgseessiaaaang

20 7Toomua g+ BERREEDRECOD W smwiome 12

BCJR Algorithm: Example

Step 2 : Compute the branch metrics v,(s’,s), /=0,1,--- , K — 1, usin
equation (14). T,\{SJ,SJ:K,P(U;JC*ESIG‘.VAJ
10(S0,So) = e 0 =06376 — ~—3B.0,w
w0(S0,51) = €%4 = 15683 LA
7(50, 5) e 025 = 0.7788 -
(S0, 51) e = 12840
w(5,5) = e %75 =0.4724
7(51, S0) a2 = 2.1170
72(S0, S0) ¥ = 1.4191
v2(So, 51) e 935 — 0.7047
w(5,5) = e =42631
72(51, S0) o140 = 0.2346
7(5,%) = =10
75 5) = e'®=49530

just ignore the constant term. I can write this as r 1 dot v 1 by 2. Now how do we compute r 1
dot v I? Let's take an example.

(Refer Slide Time 49:38)

g Abds eresssiaqaang
Fo /Toomua o co AENEEDOEEOL B swroms

BCJR Algorithm: Example

Step 2 : Compute the branch metrics v(s’,s), /=0,1,--- ,K — 1, usin
equation (14). T,\fs’,s):K,F(UJC*J’EI(r”‘J
(5, 5) = %% =06376 — ﬁ""'_:ffz[n.m
(S0, S1) = €% — 15683 R
(50, S) e 0% = 0.7788 e
(S0, 51) e = 12840
m(51,5) = &0 =0.4724
7(51, S0) a0 = 2.1170
72(S0, S0) e?¥ = 14101
72(S0, 51) e 035 — 0.7047
1(51,5) = &' =42631
(51, So) e 14 = 0.2346
(5, %) = =10
~(51. 5a) "% = 4.9530 8

Let's take this. gamma at time t equal to 0, when the initial state is S 0 and final state is S 0,

so what is this? This corresponds

(Refer Slide Time 49:52)
= = aQ Al 1\.'--'. Q& @ sﬁ

s, }=iisLe 5

r={+0.8.+40.1 +1.0.-0.5 [- DR, 1 (O | (5 O | =

to branch metric for

(Refer Slide Time 49:55)

o :| wn a o || & 8 & &q \ﬁ
7o 7Toomud o[«o AENEEEOEECC] B smwom i

BCJR Algorithm: Forward Recursion

1 -1
L{ g)=tLeml (g V=l/-l,od (g)=l

S

r=(+0.8.+0.1 +1.0.=0.5 Log-+l.1 bl . 1.64

this path. This is time t equal to 0. Initial state is s 0, final state is s 0. Now what is

(Refer Slide Time 50:03)

a %50 reesaqaasg
o ’7Toomud o[- «o AENEEEOEEOC] B smwom i

BCJR Algorithm: Forward Recursion

E" L (g#-1/=1,-1 [\ -1/-1, .-.,j =]

5

r=(+0.8.+40.1 +1.0.-0.5 l.8.+1.1 bl . 6.1 .64
r L, what is the rec1eved sequence corresponding to this Trellis sectlon? The recieved

sequence is given by this. This is plus point 8 and plus point 1.

(Refer Slide Time 50:15)

Al

Aaods ewessiaqaang
7o /’Tomuea cf+o BENEEROEEOC B smwm 2

BCJR Algorithm: Forward Recursion

A
rt
0.5
et
]
1 1,4
L 1/ a€T=1/-1,-1 /o \=1/-1, = 1/-L.=L { =
p=1 -y =" T 1 = 3,
oal P
r=(+0.8.+0.1 +1.0.-0.5 1.8.4]1.1 L R IS |

Now what is the v 1 corresponding to this transition? This is minus 1 and minus 1. So v 1 is
minus 1 and minus

(Refer Slide Time 50:26)
= ! v a = e R+ RO 1% \ﬁ
o/ 7TOomu cZ-+e AEEREEDEEO0 B smwms 2

BCJR Algorithm: Forward Recursion

i“"'“
yo.B
= A
AR I
e B
i
L, .
v v A ;
s f=1,=1 . &7 -1 1]
v v
r=(+0.8.+0.1 +1.0.-0.5 1.8.+41.1 bl.6.~1.64 =

1. Then this dot product can be written as plus point 8 into minus 1 plus point 1 into minus 1.
So
(Refer Slide Time 50:43)

a x50 kessaaaadd
7o Toomud o[« o AENEEEOEEOC] B smwom i

BCJR Algorithm: Forward Recursion

A
rt
pob i
= -
Ve T
v HoN
Ay = yo? A)
o (T .,,.wl = -1
1 3 1, +1
Vo oL :
- 1/=1,=1 a®] =1/=1,-1 /& 1/=1, = /=1, =1 e
Pt P = ' 1 = B
v
r :'.;.\é.iu.l ¢1.0.=0.5 1.8.+#1.1 bl . 6.1 6 =

this will be minus point 9. So r 1 dot v 1 is minus point 9.

(Refer Slide Time 50:50)
E w5 @ p e & oW+ WN 1 ‘IT

20 7TDomud -+ BEEREEDEEOC B smmwm 12

BCJR Algorithm: Forward Recursion

W W
r=(+0.8.+40.1 +1.0.-0.5 L.8.+1.1 bl .6.~1.6d =

So if we plug that in here, minus point 9 by

(Refer Slide Time 50:54)

a 460 ¢egssiaaaang

7a ’ToomudclZ-+eAENNEEORNE00 B smwm 2

Step 2 : Compute the branch metrics (s’,s), /=0,1,--- , K — 1, usin
e L -L,_—.— T;(s’,s):K,P(UJC*‘El(T' w
105, 5) = " =06376 — -‘_-_:E'Lf‘f‘.v‘d
(50, 5) = €% = 15683 k=
(S0, So) e 025 = 0.7788 Sl
(S0, 51) e’ = 1.2840
w5, 5) = e %7 =04724
71(51, %) a?B = 2,1170
72(S0, S0) e®3 = 1.4191
v2(50, 51) e 935 = 0.7047
w(S1,5) = e =42631
¥2(51, So) e~ 145 = 0.2346
(S0, S%) = =10
(5. 5) = e'®=49530 -

2, so this is minus point 4 5 which is given by this. Now you can take any other example.
Let's just take this example. gamma 1 is S1 S 0, so what is this, so gamma 1
(Refer Slide Time 51:11)

a - D 4 e - _BJ-V .-% - "‘I\ :”a- .bﬁ

o »Toomma g @[t EEEEDCOEE 0] W swsioma 2

BCJR Algorithm: Forward Recursion

fs
i
=
=l
Ve (.\‘}*
yort
Ay I* w-l’0 ¥ g g
L »o i
a /0‘9
L, 1
LS E
\’] . 5 =1]

v 4
r=(+0.8.+0.1 +#1.0.-0.5 1.8.+1.1 . 6.1 .64 =

is time instance t equal to 1. so we were talking about this. And initial state is S 1; final state
is S 0 so we are talking about this transition.

(Refer Slide Time 51:24)

Al

icods eressiaqaang
70 7Toomua o[- o RMEEBEEEOREOIC] W smioms 12

BCJR Algorithm: Forward Recursion

.
o8B ¢
L= -
Vg~
- *[,ﬂ*
R
o e .0.\T~l~ = ;|
5/0.‘3
1 o 1, +1
X 7
5, l.—l . L/=1, ;
'
r=0+0Y.40"1 +1.0.-0.5 1.8.+1.1 1.6.-1.6 -

Now what is r 1 corresponding to this transition? It is plus 1 and minus point 5. So this is plus
1 and minus point 5. What is v | corresponding to

(Refer Slide Time 51:39)
E - D il e " | = \.-;'& J”‘- \E
70 7TOomu g~ s AEEREEDREC0 B smwms

BCJR Algorithm: Forward Recursion

LT

v 4
r=(+0.8.+0.1 +1.0.-0.5 L.8.+].1 bl . 6.1 .6d =.

this transition? It is given by plus 1 and minus 1, so v 1 is plus 1 and minus 1; So then what

would ber]

(Refer Slide Time 51:52)

dloe&se0d ke aaaaqg
2o’ Toomud o[«o AENEEEOEEOC] B smwom i

BCJR Algorithm: Forward Recursion

= o Mo, =0
il 1'
: v~ M)
T
letl
/=1, = . g) =1/=1.-]
y i Sp / = ‘
e 7
r=(+0.8.40.1 +1.0.-0.5 1.8.+1.1 bl . 6.1 .64 =

dot v 1 in this example? It is 1 into 1 plus minus point 5 into minus 1. So this will be

(Refer Slide Time 52:04)
= AaG0 ¢eessiaaaaqg

20 7Toomud -+ BEEREEDEEOC] B smwoma 12

BCJR Algorithm: Forward Recursion

o) -y e o, =0
T =1
=" -\ vp» B
el
\ J1C (A Ay Vp = Lowior (03)
+O"* (1)
g lf‘) . - - .
a1 g\ P [3
) /0.9
1. +1
Vo
= /=1,-1 [: L/=1, 3
T T T
r=+04.40"1 +1%.-07s 1.8.+1.1 +1.6.-1.6d -

1 point 5. If you plug that in here, 1 point 5 by

(Refer Slide Time 52:10)
diEsen: ¢ewesaaaang
Iﬂ ATHomE S ¢g@-so BEREEE DB B swwms 12

BCJR Algorithm: Example

Step 2 : Compute the branch metrics v(s'.s). /=0,1.--- ,K — 1, usin
equation (14). | _‘___-—l— *r,,(s',sJ:K.P(UJC*E"C""*‘
10{S0. %) = e °*=06376 — T +Ba(w
(S0 S1) = €% =15683 ke :‘%
n(5 %) = e % =0.7788 nf el
(5, 51) = "% =12840
n(5,5) = e %% =04724
(5, %) = L7 =21170
12(50, %) = €**=14191

72(5,51) = e 9% =0.7047
‘}2(51. S[] == 91'45 = 4,2631
72(51,%) = e '**=0.2346
75, %) = =10
(5.5 = e =49530 =
2, so this would be e raised to power point 7 5. And that's what it is, Ok. So I hope it's clear

how we can compute the branch metric.

(Refer Slide Time 52:22)

Please note we have ignored the common term

(Refer Slide Time 52:25)

=) ~ 00 t [= & ol

RS \I'_--

70 /TOomua cil-+eRERNEEORE0N B smom u

Step 2 : Compute the branch metrics v(s". s), /

equation (14).

%) =

which is common for computation of all

-

0.1, K
+bs v
Vs,)k, P € e

1, usin

045 _ 0.6376 *E‘Lf'(_(.v,_)

e%% — 15683 k=
e 025 = 0.7788 2h
e"? = 1.2840

e 075 = 04724

90 75 z_ﬂ

" ¥ = 1.4191

e~0-3 — 0.7047

el = 4.2631

e 145 = 0.2346

=10

el = 4.9530 .

of them. We are just computing the term which

would be different based on what state transition that we are considering. So similarly we can

compute gammas for other time instance t equal to 1, t equal to 2 and for all other valid state

transitions. Now the next step is

(Refer Slide Time 52:49)

d '« 50

P /yToOomua @&

EEEEDCOEE 0 W s voma 2

BCJR Algorithm: Forward Recursion

f&
'R
fp= *
vl i =\
L X
+O_,¢('D)
) | Tl .o_n-l’\ —
a /0“3
TR
o 7 7
r=wv0¥.+071 +1%.-07s

'\rj_' 4.9,

v = He

sy Vg = 1anl-ot (03)
e Ve e ais
= =

1.8.+1.1 bl . 6.

1.64 =

once we know our gamma we have already initialized our alphas and betas so the next

(Refer Slide Time 52:55)

step would be to compute alphas and betas. And this is shown here. Now we have already

illustrated how we can compute our alphas and betas. When we

(Refer Slide Time 53:11)
diBavgekegsiaaaang

BCJR Algorithm: Forward Recursion

Step 3 : Compute the forward metrics ay1(s), /=0,1.--- K — 1, using
equation (12).

ai(5) = @o(S)v0(50. 5) = 0.6376 (0.2890)
m(5) = ao(S)r0(50.51) = 1.5683 (0.7110)
ax(S) = a1(So)n (S0, So) + 01(5)7(S1. So) = 3.8167 (0.7099)
a(5) = ai(So)m(S0.51) + m(Si)m(51. 51) = 1.5595 (0.2901)
a3(S) = @2(%)1(Se. o) + a2(51)12(51. So) = 5.7821 (0.3824)
a3(51) = a2(S0)2(Se. 51) + 02(51)2(S51. §i) = 9.3379 (0.6176)

explained how to compute these forward recursion and backward recursion we can take
another example. Let's just take this example. alpha 2 at state S 1, so alpha 2 will correspond

to,

(Refer Slide Time 53:28)
= % @03 'FB--\.xsl‘\\I_

o0 /7TOom b9 ¢ @ vveBEEEEE0EE0] W s bom 2

BCJR Algorithm: Forward Recursion

. xo) E - 3 p.o0, =03
Ly TROEE po, =

H‘.l‘ .-ll. \f‘_"

e : (* oy Vp = 1owior (05)
At *()

. ¥0)
"fr_““‘ - .O_H‘l,\ — l..,_ — = |5
03

-

r=(+0.8.+0. l #1.0. L.8.+1.1 ha . 1.6d
so this is alpha at 0, alpha at 1, so this is alpha at 2. So we are 1nterested to calculate alpha 2

at

(Refer Slide Time 53:39)
0w eikeguaaaand
00xr@mmuﬁu&-rﬁ““'illl.lnl-nnlmwu

BCJR Algorithm: Forward Recursion

Step 3 : Compute the forward metrics ay41(s), /=0.1,--- K — 1, using
equation (12).

a1(S) ao(So)v0(So. So) = 0.6376 (0.2890)
ay(51) ao(S0)70(S0. 51) = 1.5683 (0.7110)
a2(S) = a1(Se)n(S0.5) + a1(S)n (5. So) = 3.8167 (0.7099)
a3(51) = a1(Se)y1(Se. S51) + a1(51)0(S:. 51) = 1.5595 (0.2901)
a3(5) m(&z] 12(S0. o) + a2(51)72(51. So) = 5.7821 (0.3824)
a3(5) a2(S0)72(S0, 51) + av2(51)72(51. 51) = 9.3379 (0.6176)

state S 1. So we are interested to calculate

(Refer Slide Time 53:42)
7| A G0 el g 4aaaa 4=

Z yoo)) “ +‘-°.“\'°
il Vaepdhial ™

=1
Ve (.\‘}‘* TL‘\,&_:“M"?(‘*)S‘J

+a-‘*) *(-1)
S .o-”‘lA ==t =] -

02
2 -
L4
e . o A >
e ¥k i O fe s e
R
r=+0%.4001 +1%.-0% 1.8.41.1 bl.6.-1.6) =

alpha 2 at state S 1. So we are interested to calculate alpha value here.

(Refer Slide Time 53:48)
o 1« 503 tlle v a0 Q & & ‘.E
o ’Toomu9 of-+e RAENEEEORECC B swmwoms 12

BCJR Algorithm: Forward Recursion

- a p.a, =03
-
Vg HY =
’fl‘\,r'l:unlbi'(")sj
* (=)
s I'F
: 5, }=4L
I S e
r ﬂ'L,‘.\ﬂ,il].l #1.0. =005 L.8.+].1 (%) I | a

Now what are the transitions that are ending at this state? One is this,

(Refer Slide Time 53:57)
= =003 Pl w2)0 0 Q] ‘l'_—*'

O 7TOom e) og@|- o BAREEEECIEEC D B sesioms 12

BCJR Algorithm: Forward Recursion

- 0.5
. fs-\ e 4.0,
= BN R
a1 R
Ve (.\‘)‘* 'TL‘\IJ;_SI“\'“*('”;J
+O"*) *(=i)
BIET il =P e
?
el A .
5 L.l 5 L/
o
r l"‘u'.\ﬂ,l'd.l 1. 0.=-0.5 [D O bl . 6.1 L6 =

another is this.

(Refer Slide Time 53:59)
g 50 eessaaaani
7a/Toomua okl

-y IPRRPOUIET S
i -
v - He !
’fl‘u&_:unlbi’('osj
-
s I'F
/=1,=1 (e]
v 7 7
r l"u'.\ﬂ,l[.].l #1.0.=0.5 1.8.+1.1 bl . B L6 a

So there will be 2 terms in the alpha computation of this, one corresponding to this transition

which is

(Refer Slide Time 54:11)
o a @03 tlle « & &AL Q & & ».E
70 TOomE " g@[-semEBREECOEECI] W sowioma 12

BCJR Algorithm: Forward Recursion

8 01'('05‘)
Ty VL= 1ewl g

/=1, = 1/=1:-1
v o W
r=(+0.8.+0.1 +1.0. 1.8.41.1 bl . 6.-1.61

given by alpha at time 1, S 0 into gamma 1 S 0 S 1 plus there w111 be another term
corresponding to this transition, this will be alpha 1 at state S 1 times gamma 1, initial state S

1 next state S 1. So this is the value of alpha 2 at state S 1

(Refer Slide Time 54:49)

dlbeio0d kessaaaaqd
70 /7Toomud o« e MEENEADEEOD B smioms

BCJR Algorithm: Forward Recursion

: rs-\ - : 'ﬁ . o, —d\-.‘n
n‘,l' byt =\ o \f‘_ AL
=00
U L’D.\- Ty Ve = |up\|b?‘{—°sj
At -1)
i o
"{I_"“ : .\T‘I\A = g |l“-] =15
»e 09 L(s)=d [sInsss)
- ! 5 ol (5)7, (5, §)

3/=1.-1
.

SR A

W o
r=(+0.8.+40.1 +1.0.-0.5 1.8.+1.1 bl . 6.1 .6

and that's what we have got here. You can check alpha 1

(Refer Slide Time 54:53)

70 / Toom# 9 ¢ Bl BEEEE0REC0 B smom 12

BCJR Algorithm: Forward Recursion

Step 3 : Compute the forward metrics ay44(s), /=10,1,--- K — 1, using
equation (12).

a1 (So) ao(S0)70(S0. So) = 0.6376 (0.2890)
m1(5) wo(So)v0(S0, 51) = 1.5683 (0.7110)
®m(S) = a1(S)n(Se.S) + a1(51)n (51, So) = 3.8167 (0.7099)
alS) = (SIS S)+ ar(Si)n (S, Si) = 1.5595 (0.2901)
a3(Sp) a32(S0)72(50. So) + a2(51)72(51. So) = 5.7821 (0.3824)
a3(5) = a2(5)12(50.51) + 02(51)72(51. 51) = 9.3379 (0.6176)

S0,gammaS0S1,gammaS0S1

(Refer Slide Time 54:57)
dhEz60s eeqssiaaaaaE

70 TOomES o[- soBREREEOEEO] W somuiom 12

BCJR Algorithm: Forward Recursion

= N, =S
oy 0
v - He

- =0 0?('00
T V= 1ewl e

= |5
(s)=d, (S)lsss)
o (5)7, (5, %)

e

o
r l'(j.‘é,il).l +1.0.=-0.5 1.8.+1.1 . 6.-1.6d

and the next term is alphaS 1 gamma S 1S 1,

(Refer Slide Time 55:02)
greiwoseegwiaaaanyg
:' ATHo W E S ¢g@-so BEEEEEDORECC] B smnoms 12

BCJR Algorithm: Forward Recursion

Step 3 : Compute the forward metrics a41(s), /=0,1,--- . K — 1, using
equation (12).

a0(50)70(So. So) = 0.6376 (0.2890)
(5 ag(S50)70(50. 51) = 1.5683 (0.7110)
a5 a1 (So)1(So. So) + a1 (S1)m(S1. So) = 3.8167 (0.7099)

a1(%)
)
)
a(S5) = a1(S)n(S0.S51) + a1 (S))m(51. 5i) = 1.5595 (0.2901)
)
)

)
a3(Se 2(50)72(S0, So) + a2(51)72(51, So) = 5.7821 (0.3824)
as(5 a2(S)12(50. 51) + a2(51)72(51. 5) = 9.3379 (0.6176)

alpha S 1 gamma S 1 S 1. So like this we can compute the values of alphas. And these values
that you see are basically the values of alpha computed this way. Now we can also normalize

the values of alphas. Because alphas are, sum of alphas who are all

(Refer Slide Time 55:22)

state should add up to 1. So in the bracket that you see here,

(Refer Slide Time 55:26)
JrElxealselsssaaan af
0 7TOowm 9 cZ[-+o AREREEDEEO0 B smwems

BCJR Algorithm: Forward Recursion

Step 3 : Compute the forward metrics ay44(s), /=10,1,--- K — 1, using
equation (12).

a1(So) = ao(So)r0(50. S0) = 0.6376 (0.2390]
o(51) = oo(5)r0(S0, 51) = 1.5683 (0.7110)
a2(%) = a1(S)n(S0. %) + a1(S1)n(51. S) = 3.8167 (0.7099)
a(5) = a1(Se)n(S0.5) + a1(S)n(5. 51) = 1.5595 (0.2901)
a3(Se) av2(S0)v2(S0, So) + 02(51)72(51. So) = 5.7821 (0.3824)
m(51) = @2(S0)12(50. 51) + a2(51)72(51. 51) = 9.3379 (0.6176)

these are the normalized values of alpha. So how do I get this? So this is point 6 3 7 6 by
point 6 3 7 6 plus 1 point 5 6 8 3. So this is this

(Refer Slide Time 55:45)
diE 450 ¢lkesssiaaaansg
70 Toommed cl-+o AERREAONRNE00 B swwms 2

BCJR Algorithm: Forward Recursion

Step 3 : Compute the forward metrics ay41(s), /=0,1,--- K — 1, using
equation (12).

. 64374
ai(S) = ao(S)y0(So.So) = 0.6376 (0.2890) SaTer) Si3
a1(5) = ao(S)r0(50.5) = 1.5683 (0.7110)

) e
) N
o) = or(S)n(So.So)+ an(5)m(Se, o) = 38167 (0.7099)
@(5) = ai(So)n(S.5) + ai(5i)n (51, 5) = 1.5595 (@2_1_)
) h
) S0)7

a3 Sy = -‘H(So 12(50. S0) + a2(51)72(51, So) = 5.7821 (0.3824)
35 = oz 12(S0. S1) + a2(S51)72(51, 51) = 9.3379 (0.6176)

quantity. Similarly this is 1 point 5 6 8 3 divided by this one. So

(Refer Slide Time 55:57)
ghEiegs epessiaaaang
'l ATOHo WS @ rooBEREEEDOEECT] B swnwms 12

BCJR Algorithm: Forward Recursion

Step 3 : Compute the forward metrics avj41(s), /=0.1,--- K — 1, using
equation (12). ‘
) = ao(So)r0(Se: So) = 0.6376 (0.2890) & 1374+)543
) = ao(S)h(So.51) = 1.5683 (07110) X
@(5) = a1(S0)n(S0. %) + a1(S1)m(51. 50) = 3.8167 (0.7099) |
)
)
)

a(5) = a1(Se)n(S0.51) + a1(S1)n (5. 51) = 1.5595 (0.2901) |
a3(So) = a2(5)12(S0. So) + 22(51)72(S51, So) = 5.7821 (0.3824)
a3(51) = a2(S)12(50. 51) + a2(51)72(51. 51) = 9.3379 (0.6176)

these are actual values of alpha and these are normalized values because these are, sum of
probabilities should add up to zero so I can, I can take this value. So when I compute alphas
or I can just work with these values or I can work with these values. It is just the scaled
version so does not make a difference except for implementation purpose you may want to

scale

(Refer Slide Time 56:22)

them, add them up to 1, so that the values do not blow up. Once we have computed

(Refer Slide Time 56:27)

= & &0 Al '_'.‘.I"' aqaanfg
78 »TOmmE " ¢ @2 BB E@E0@E0 0] B s mom 2

BCJR Algorithm: Backward Recursion

L-1/¢g 1/=1,=1 (o Yy =1/-1, (e N\ =1/=1, -]

Pui+0.8.+0.1 +1_0.=-0.5 1.8.4+1.1 +1 . f.=1_6A)

alphas, we can follow the same procedure to compute beta. So

(Refer Slide Time 56:33)
o w B0 ¢ | = \Jﬂ QaQ aq ».F

Po 7Toomn o pfrriBaNE00EE 00 B s

BCJR Algorithm: Backward Recursion

Step 4 : Compute the backward metrics (s’), /=K -1,K-2,--..,0,
using equation (13).

H(Se) = Ba(Se)r3(Se. So) = 1.0 (0.1680)
H(51) Ha(S0)73(51, So) = 4.9530 (0.8320)

H(%) = A3(So)r2(S0. So) + £3(51)72(S0. 51) = 4.9095 (0.1870)
B(S) = Bs(So)n(S1.) + As(51)72(S1. 51) = 21.3497 (0.8130)
1(S0) (S0)1 (S0, So) + H2(51)71(S0. S1) = 31.2365 (0.6040)
h(5) H2(S0) (51, So) + F2(S1)m(51. 51) = 20.4790 (0.3960)

beta computation is given here. Again we can, as an example we can take one particular case.

Let's just consider this. beta 1 at state S 1 so this is

(Refer Slide Time 56:45)
= L a = .J-- Q9 & o \I?.

70 7TOom K¢ ¢ i gl 0EEO00 B swems 2

BCJR Algorithm: Backward Recursion

=1 (e 1/=1,=1 e\ =1/-1,-1 { &)=l

Pui+0_R.+0.1 1. 0. =_F T.8.+1.1 bl . A.=1 6D =

beta 0, beta 1 at state S 1 so we are interested in computing beta 1 at state S 1. Now what are

the transitions that are ending in state S 1? One of them is this,

(Refer Slide Time 57:01)

a %650 ressiaqaeadg
P’ Toomud o[«o RAEEEEOEEO0 B smwm

BCJR Algorithm: Backward Recursion

t’l k.)

r=(+0.8.+0.1 +1.0.=0.5 AL+ +1 .h.=1 .6

the another one is this. So

(Refer Slide Time 57:05)

| Aabds eressiaaaasg
70 /7Toommua cif-o mERERRNOEEO0C B swwm 12

BCJR Algorithm: Backward Recursion

b, s

r=(+0.8.+0.1 +1.0.=0.5 1.8.+1.1 +1 . 1.64

what is the contribution from this, this, this transition? ThlS can be written as beta 2 S 0 times
gamma 1 S 1 S 0 plus, and the contribution from this will be beta 2 S 1 times gamma of this,
this is gamma 1, this is 1, gamma 1 of S 1, S 1. So this, the one in green is corresponding to

this transition,

(Refer Slide Time 57:48)
= ieo kessiaaaaag
P00 Toomu of[-+e ARREEEOREOC B swmuwms 12

BCJR Algorithm: Backward Recursion

t,] ‘S.) “Tu

g, L;~3 e (C’)

Pui+0.R.+0.1 +1 . 0.=0_F 1.8.+1.1 +1 . 1.6

the one in red is due to thlS transmon Ok, this transition. So beta S 1 can be written as beta 2

SOgammalS1SOplusbeta2S1gammalS 1S 1.And that's what we have,

(Refer Slide Time 58:06)
dCEieni ekessaaaanE
70 /7TOoomu c Z[i=r=ARERRE0RE B s

BCJR Algorithm: Backward Recursion

Step 4 : Compute the backward metrics 3(s’), /=K -1.K-2,---.,0,
using equation (13).

Ba(S0) = AulSo)n(So.) = 1.0 (0.1680)
H1(S1) = Ha(S0)73(51, So) = 4.9530 (0.8320)
H(%) = [3(50)72(50, 50) + F3(51)12(S0, 51) = 4.9095 (0.1870)

A(S) = B(Se)r2(S1, S) + Ba(51)72(51. 51) = 21.3497 (0.8130)
51(S0) 32(S0)11 (S0, So) + F2(51)1 (S0, 51) = 31.2365 (0.6040)
A(51) B2(So)n (51. So) + A2(S1)71(S51. 51) = 20.4790 (0.3960)

nn

beta2 S 0 gamma 1S 1S 0, beta2 S 1 gamma 1 S 1S 1. We already kI‘IOW the values of
gammas that we have computed earlier. And we know the values of beta at the end of block.
What is this value? This is 1 because the encoder is terminated. And for all other state
basically beta 4 S 1 is 0, so this is 1. We know these values so we can compute what is beta 3.
Once we know the values of beta 3, we can compute the values of beta 2 because beta 3's
values we will require here. Once we know the values of beta 2, we can compute the value of
beta 1. They are required here. So like that basically we can recursively compute the values
of betas. So now what do we have? We have the values of alphas, we have the values of betas

and we have the branch metric

(Refer Slide Time 59:04)

gammas. Next step we need to compute the A P P value. And what is the A P P value?

(Refer Slide Time 59:12)
= w203 Eegslaaaaqd
Fo /7Toomud o 2 "V RAaENE00BE00 B smem =

BCJR Algorithm: APP values

- 1/=1 1 - 1 f=1,=1 - 1/=1 - 1
S } £ s, { g} i { 5

r=(+0.8.+0.1 +1.0.-0.5 L.B. 411 bl . 6.1 L6

If you recall

(Refer Slide Time 59:14)
o w003 b | ‘-_I}l-."&‘i."'\"‘k \IT

70 »TOome" g@[-somEEBREEOEEO] B sowioma 12

BCJR Algorithm: APP values

Step 5 : Compute the APP L-values L(u;). using equations (6) and (11).

ao(S0)70(S0. 51)41(51)
) = o e (e | =047
a1(50)71(S0. 51)32(51) + a1 (S1)7 (5. S0)32(50) |
=) & { a1(50)71(So0. 50)52(50) + ar(S1)71(51. 51) iz(Sl)} -
" B az2(50)72(S0, 51)43(51) + az(S5)‘.-2(51-50)-f3(50)})
) = o o eSS | L

Step 6 : Compute the hard decisions 4 using equation (2).
= (+1,+1,-1)
A P P value, it was product of three terms, alpha, gamma and betas. It's a product of this term.
And what was the term in the numerator? We were summing over all those transitions which

belongs to u being plus 1 and in the denominator

(Refer Slide Time 59:47)
E N L D e -~ ™~ . o -‘\ ;. ‘.;.\ .:I!‘- \E
o0 /’Toomu" of[-+e AREEEEORECC B swwoms 12

BCJR Algorithm: APP values

= (1950 5)8,(9)
ut
Step 5 : Compute the APP L-values L(u;). using equations (6) and (11).

ag(50)70(50, 51)51(51)

o) = o e I
L(mn) i {fll(So)‘-l(Su-Si)-fzwl) + a1 (S)m(51, S0)52(5)
a1(S0)m (S0, So)B2(50) + ar (S) (51, 51)5:2(5:)

Ml = & {'l2(50)7-2(50-51)-f3(51) t az2(51)72(51. So)33(50)
a a2(S0)72(50, S0)F3(S0) + az2(51)12(51, 51)5:(51)

} 0.4778

} = 0.6154

} = —1.0301

Step 6 : Compute the hard decisions u; using equation (2).
= (+1,+1,-1)
we were summing over all those transitions belonging to u being minus 1. So let's look at

how we can compute this. So let's look at first case.

(Refer Slide Time 01:00:12)
d k. Q --—_J—, + U"A"!L"ﬁ

70 /7Toosmus g +e AEEREAOREO0 B smwms 2

BCJR Algorithm: APP values

PSS VO W e i Tl WG ST P T

r=(+0.8.+0.1 +1.0.=0.5 1.8.+1.1 dd . 6.1 .64 =

At time, so u 0 is the information sequence that we are trying to estimate for time, first time
instance t equal to zero so this is we are looking at this Trellis section. Now which are the

transitions corresponding to u | being

(Refer Slide Time 01:00:23)

plus 1? So I am denoting by blue, the transitions which is corresponding to

(Refer Slide Time 01:00:31)
BCsxegsekessiaaaaqy
’l TOHo W E S ¢g@-+oBEREEEDOEECC] B swmwms 12

BCJR Algorithm: APP values

)

(s phistetl(

" ..(.- B . ‘
'::Su,.l 1/=1. 1{ S-’J,:‘ 1/=1,-1 ¢

r=(+0.8.+40.1 +1.0.-0.5 =] Bl e1] . 6.1 .60 =
u | being plus 1 and I am denoting by green the transition corresponding to u | being minus 1,

Ok. Then in the numerator then, I will have one term corresponding to this transition and

what would be that term? It would be alpha 0 S 0 and gamma corresponding

(Refer Slide Time 01:01:14)
= 3| v a flle s oacqQaq \E

o 7ToOomMEa o[-+ MENEEEOEECIC] B smwom i

BCJR Algorithm: APP values

oo (S)7, (5056,

1/=1,=1 /e \=1/-1,-1 (e Y =1/-1.

r={+0.8.+40.1 +1.0.-0.5 L.8.+1.1 bl . 6.1 L6 =

to this transition which is gamma 0 S 0 S 1 times beta 1 S 1. So I have alpha 0 S 0, alpha at
this state, gamma corresponding to this transition, which is gamma 0 S 0 S 1, and beta

corresponding to this state, if we go back what I have,

(Refer Slide Time 01:01:26)
= 2 . a - - D["‘ G Qe a ‘IT‘

7o /Tommed ¢ [AE00000BE00 B s

BCJR Algorithm: APP values

= o (s17(s)5)f,(9)
Thd
Step 5 : Compute the APP L-values L(u), using equations (6) and (11).

ao(S0)70(50. 51)51(51)
L(u) '"{--o—(so)*.ntso.so).f.(sg)} 0.4778
a1(S0)n (S0, 51)52(51) + a1 (S1)n (51, 50)F2(5) |
L) ln{:-1(50)“.1(50_50}.f2(50) ;-(.1(5.)-,.1(51_51).57(51)} S
P a2(50)72(S0. 51)3(51) + a2(5)“.-2(51-50)-%(50)} 5
o) ln{“2(50)"-2[50-50)-5'1(50) F (SRS SIGE)) T

Step 6 : Compute the hard decisions i using equation (2).
G=(+1,+1,-1)

alpha0 S 0, gamma 0 S0 S 1 and beta 1 S 1. At this time instance

(Refer Slide Time 01:01:35)
= 3| v a 3 '-j ol G, Q& @ \I'—--'

Po »7Toomud o[- +o MENEEDOEECI 0] B smom i

BCJR Algorithm: APP values

oy [9)7, (55,08, (5

1/-1,-1 /o \ =1/-1, o \=]

e Y=1/=1:-1 [e
Dy ———

r={+0.8.+0.1 +1.0.-0.5 1.8.+1.1 +l . 6.-1.6d =

is there any other transition corresponding to u 1 plus 1? No. It is only one transition

corresponding to u I plus 1. So we will now look at

(Refer Slide Time 01:01:47)
Bles60: ekesmacaacy

70 7Tosmud ¢ LllcrBERNEE0RE 0] B swwoms 2

BCJR Algorithm: APP values

= o (s17(s)5)§,(€)
uF
Step 5 : Compute the APP L-values L(u), using equations (6) and (11).

aof S0 }o(So0. 51)51(51)
L) '"{-.u(so)ﬁo(sokso).f.(su)} LagTin
) a1(S0)m1(S0. 51)32(51) + a1 (S)51 50)F2(%) |
L) ln{.1,(50)".1(50_50}.f2(50) ; ,.1{51)-,.1(51_sl)xz(sl)} e
~ a2(50)72(S0. 51)53(51) + az2(S5)‘:2(51‘50)33(50)} N
i) ln{“2(50)"-2(50-50}-f'3(5u) PN A CRATACHS A

Step 6 : Compute the hard decisions 1y using equation (2).
= (+1,+1,-1)

the denominator term. So we have to look for all those transitions corresponding to u being

minus 1 and there is only one such

(Refer Slide Time 01:01:56)
a J . D 4 r PPJ - | Il."\ .:I!‘L l\ﬁ

Po 7ToommA o @ mimmmsommO]] B s 3

BCJR Algorithm: APP values

oo ()7, (5 38, (5)

s \=1/=1.=1 { =
| ——

r=({+0.8.+0.1 +1.0.-0.5 1.8.+1.1 bl . 6.1 . 6d

transition so the denominator term would be alpha 0 S 0 gamma 0 S0 S 0 and beta 1 S 0. So

this

(Refer Slide Time 01:02:12)
o a0 ekessiaaaang
7o ’Toomeacl-+eRERREROBE0C B smwwm

BCJR Algorithm: APP values

oy ()%, (5508, (82
By o (S, (S8 ()
1 1;+]
s Yoli=le=l (e Vol/-1,-1 SN -1/-1, I‘:j 1/=1.
r=(+0.8.40.1 +1.0.-0.5 L.8.+1.1 dd . 6.1 .64

is what we have,

(Refer Slide Time 01:02:13)
g =a%0 reouigaaanfy
.eenm

BCJR Algorithm: APP values

= oty (s)7(s0)8, 09)
ut
Step 5 : Compute the APP L-values L(u;). using equations (6) and (11).

u
ag(S0)70(S0. 51)51(51)
tw) = S) =T
a1(S0) (S0, S1)B2(51) + a1 (S51)1(51, So)B2(S) |
S . { a1(50)71(So0. S50)52(50) + a1 (S1)71(51, 51) 1‘2(51)} o i
s a2(S0)72(S0, 51)F3(51) + a2(Si)r2(51. S50)F3(S) |
pad i {nﬂsa)-z(su.so:.u(so) Fa2(5i (50, 5) msn} g

Step 6 : Compute the hard decisions ; using equation (2).
G=(+1,+1,-1)

alpha 0 S 0 gamma 0 S 0 S 0 and beta 1 S 0. So we can then calculate the what's the a
posteriori L value.

Now let's take another example. Let's take for the second time instance. So the second time
instance we are interested in estimating what was our information sequence, information bit.

So

(Refer Slide Time 01:02:45)
o w503 4 .,-_BJ-.--»"'&‘«'."«"'!R \E

oy (5)7, (5508, (82
P o (S, ($5)6,(<)
] L.
S, Jbdabacdal s, JoL/Lec] ..-_:.- VEVED e EVEY
r=(+0.8.40.1 +1.0.-0.5 1.8.41.1 . 41.6.-1.6)

we are now looking at this time instance, this time instance, Ok. Now what are the transitions

corresponding to u 1, information sequence being plus 1? One of them is this. You can see

(Refer Slide Time 01:03:04)
= L a v e ol O Q © o \ﬁ
70 ’Toomu of-se RAENEEEORECC] B smuoms 12

BCJR Algorithm: APP values

oLol5)% (5308

e - o (S0, (&6 (<)

S e
) e)

V%

e V=1/=1.=1 o
) ———

1/=1,=1 /e \=1/-1,-1 (e) -]

ok 8.+0.1 +1.0.-0.5 1.8.4+1.1 bl . 6.1 .6

the information sequence is plus 1, that's when you go from SO to S 1. And another transition

is this one. So

(Refer Slide Time 01:03:15)
dC B0 kessaaaaqg
20 7TODomuS g@|-+oBEEREECDEECOC] B somwoma 12

BCJR Algorithm: APP values

oy (5)%, (5,508, (82

D1 o (S, (S8 (<)

r=(+0.8.40.1 +1.0.=0.5 1.8.+1.1 bl . 1.64
these are the two transitions correspondmg to u | being plus 1. So in the numerator you will

have 2 terms. One corresponding to alpha 1 S 0 gamma 0 S 0 S 1 times beta 2 S 1 and
another term corresponding to this transition which is alpha 1 S 1 times gamma 1 S 1S 0

multiplied by beta 2 S 0 and that's what you see here.

(Refer Slide Time 01:03:52)
dOiB4G0Lekegia’aana

P70 ToOomu ¢ 2 Fr-BEaEE0EEC0 B swoms 2

BCJR Algorithm: APP values

= oty (s)Y[(s0)8, 09)
o+
Step 5 : Compute the APP L-values L(u), using equations (6) and (11).

U
ag(S0)7v0(So. 51)51(51)
o= {“g(_so)”-o(sqﬁ:)-*l) =0
a1(50)71(50. 51)32(51) + 01 (S1)71(51: S0)32(50) |
S ! { a1(S50)71(S0. So)F2(S0) + a1 (S)71 (51, 51)5(51) } L
- a2(50)72(S0, $1)33(51) + a2(Si)r2(51. S0)F3(Se) |
S = {nﬂsu)f-z(su.so:.f;(so) F a2(52(5n, 51) fs(sn} e

Step 6 : Compute the hard decisions 4 using equation (2).
= (+1,+1,-1)
There are 2 terms, one is alpha 1 S 0 gamma 1 S0 S 1 beta 2 S 1 this corresponds to this
transition and the next term that you see here, There are 2 terms, one is alpha 1 S 0 gamma 1

S0S 1beta?2S 1 this corresponds to

(Refer Slide Time 01:04:01)
o &~ ®0Q - 'fﬂ* --""a"&-"f-"!k'sl'_‘i

20 7Toomud -+ BEEREEDEEOC B s mome 12

BCJR Algorithm: APP values

oy (5)7,(5508,(5)
=am N o (807, (596 (<)
1:+]
s, Yebdalecd/ g \=L/=1, ’..;:.. 1/-1, IJ:B_ 1/=1.-1
r=(+0.8.+0.1 1.0, =0_.5 Yo8a%l] L PR IS |

this transition and the next term that you see

(Refer Slide Time 01:04:07)
= S| v a P e = o] O & & o \E
20 /7T ®H 9 ¢ B llREEEORECC B swmome 12

BCJR Algorithm: APP values

Z o NN EDIND)
Step 5 : Compute the APP L-values L(u), using equatlons (6) and (11).

u
ao(S0)v0(S0. 51)51(51)
Hiw) '"{r-o(so) 70(S0, So)Py 2} -0em
a1(50)71 (S0, S1)2(51) + a1 (51)1 (1. 50) B (So) _
il n{"l(su) 1(S50, S0)2(S0) + a1 (S1)m (51, 51)! il'(sl)} ok
B a2(50)72(S0. 51)53(51) + a2(51)12(51. So)33(50)
) = In] o ey | = 1o

Step 6 : Compute the hard decisions ; using equation (2).
= (+1,+1,-1)

here, this one corresponds to

(Refer Slide Time 01:04:11)
= 3| v a o .F_RJ.- ol G, Q ® @ tE

Po /7Toomud @il NEE0RECC B swoms 2

BCJR Algorithm: APP values

oo (S)%,(%,508,(5)

—— o (S, ($,56, (<)
,<__._.—>!{<—-—_=q |

%

e \=1/=L-1 o
Dy | ——

1/=1,=1 (e \=1/=1,-1 { g }=1/-1,-]

r=(+0.8.+40.1 +1.0.=-0.5 1.8.+].1 1 .6.-1.6d

this transition, Ok. Now sunllarly in the denominator you need to look at what are the valid

transitions corresponding to u 1 minus 1 and what are those? One of them is this

(Refer Slide Time 01:04:29)
= = a e = o Sl O & & O \E

78 TOo M gZ[-+seAEBREEDEEO] W s ioma 12

BCJR Algorithm: APP values

dn [S}] YQ[S",S')ﬁ {S')

Dl e o (57, (S S)6 (%)

=
5, prltl (5 V=l

r=(+0.8.+0.1 +1.0.-0.5 1.8. o | . 6.1 .60

and the second one is this. So now in the nurnerator denominator also you will have two
terms, one corresponding to this transition, other corresponding to this transition, this
transition will give you alpha 1 S 0 gamma 1 S 0 S 0 times beta 2 S 0 plus alpha 1 S 1 gamma
1S 1S 1times beta?2S 1. And that's what you have here.

(Refer Slide Time 01:05:04)
anExe0sekegMaaaan

R_J T A g,ﬂ,|-MS:.IIIIID.IITIDI any Hormal | 13

BCJR Algorithm: APP values

2, o ()95 5)8,,09)
Step 5 : Compute the APP L-values L(u), using equatlons (6) and (11).

v
ag(S0)70(50. 51)41(51)
= {“0(50) (50, o)Ay 2} =04me <
a1(So)n (S0, 51)B2(51) + ay (5)y 1(51-50)-3;'(50)} b
2o ! {"1(50} 1(50, S0)32(S0) + a1 (S1)m (51, 51)52(51) e
- a2(50)72(S0, 51)33(51) + "2(51)“.-2(51-50)-?’3(50)})
o) = i e B T (B Tm(S S} = Lo

Step 6 : Compute the hard decisions u; using equation (2).
i=(+1,+1,-1)

So likewise we compute log likelihood ratios, A P P values for all the threé information bits.
Now what is the final step? Once we have computed the log likelihood ratio we will see
whether these log likelihood ratios are greater than O or less than 0. If they are greater than
equal to 0, we decide in favor of u 1 being plus 1, otherwise we decide in favor of u I being

minus 1. So this is point 4 7 7 8, which is greater than zero so we decide in favor of plus 1.

This is greater than zero so we decide in favor of plus 1 and this one is less than zero so we

decide in favor of minus 1. So then the final decoded bits are plus 1,

(Refer Slide Time 01:06:00)
diBiway eressiaaaang
ll ZTR@omud o - +e BRBEEEOEECC] B swsnoms 12

BCJR Algorithm: APP values

Z oty (51,5 5)y, ()

Step 5 : Compute the APP L-values L(u), using equations (6) and (11).

u

ao(50)v0(50. 51)51(51) — 0.4778 v

Egol = "{ng(_s.,)wo{s.,._so}m so)}

- B a1(50)71 (50, 51)42(51) + a1 (51)n (51, 50)32(50) |
Sus)) =~ {ﬂl{sn)“n{snnsa}ﬂ'fz(so)+ﬂl(51)‘?1(51~51]i32(51)} Bair
— o d 22(50)72(S0. 51)33(51) + a2(5112(51. S0)As(S0) | _
) =] ST BB ST} Lo

Step 6 : Compute the hard decisions u; usin uation (2).
i=(+1,+1,-1)

plus 1 and minus 1. So with this I will conclude this lecture, thank you.

(Refer Slide Time 01:06:08)

