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In this module, we will study briefly the concept of radiation and antennas. In this and the

next module, we will be concentrating on the fundamental principles of antennas and we will

discuss only one antenna, which is called as linear thin wire antenna. The reason why we will

use antennas is probably not required to even point out. If you want to send electromagnetic

energy from an AM transmitter to a receiver that is located far away.

And these two are not connected by a wire then you have to use an antenna at the transmitter

to properly consider the electromagnetic energy and put it out in a particular direction. Of

course, there are certain antennas, which would spew the energy in all the directions in an

equal manner or in a slightly equal manner. These antennas are called as isotropic antennas.

Isotropic antennas are one in which electromagnetic energy basically is the same. 

They transmit energy or receive energy in an equal measure around all of that one. So, there

is no directional dependence on the power that is being transmitted, but such antennas are

rarely  useful  for  us.  You most  likely want  an antenna,  which has  a specified  you know,



direction  of  transmission.  For  example,  if  this  is  an  antenna  that  we have  and  this  is  a

receiving antenna here we have, okay. 

For some purpose, this could be an AM transmitter. This could be a mobile AM receiver,

okay. So, this is an AM transmitter and this is a mobile receiver. You want almost all of its

energy to be concentrated in this particular narrow band of region, right. So, you want some

sort  of  directionality  to  your  antenna,  which  means  that  antenna  spews  out  energy  in  a

particular direction.

Regardless  of  what  an  antenna  and  how  you  know  all  these  different  parameters  are

connected, there are some fundamental principles behind which these antennas operate. And

in this short two module class that we can have it will not be possible for us to go into details

about antennas. Antennas are you know such a wide subject that it is perhaps useful for you

to consider this as a separate course rather than considering.

I mean, it is necessary for you to take up a separate course on antennas to really understand

different types of antennas, okay. So, we will not attempt to be anywhere exhaustive in terms

of antennas.
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Our idea would be to see if you can describe the fundamental characteristics of the antennas

with  the  help  of  a  very simplified  antenna  that  we will  consider  and then  later  we will

consider one example of an antenna that is kind of practical. So, the first thing that we are



going to discuss is somuhat theoretical antenna,  but that is sufficient for us to understand

some of the fundamental characteristics of antennas, okay.

At this point, I would like to point out that there are very good references to antennas. The

text  book  that  we  have  followed  in  the  course  would  not  really  be  enough  for  you  to

understand  more  about  antennas.  One  of  the  good reference  to  antennas  is  Antennas  by

Balanis. This particular book is in its third edition, if I do not, if I am not wrong, so you can

refer to this or if you want slightly more practical flavor.

But at an older literature level, we can also look at Antennas by Kraus, okay. Having said this

let us consider some preliminary stuff that we need to perform in order to go ahead with

considering what radiation and antennas are. How radiation is fundamentally different from

so far the methods we have used to guide energy. Then in a very broad sense, even an antenna

can be considered as a transmission line except that you know you do not have a wire or

something connecting the source and the load end. 

Everything is done in free space or in a medium with no connection between. But there is the

concept of energy being transmitted from one point to another point that is sufficient for us to

characterize  antennas  as  a  transmission  line.  Traditionally, of  course  antennas  have  been

considered as radiators because they kind of radiate energy from one point to another point in

space and by titling the antenna.

You know you can imagine that there is an antenna, which is giving out energy in a particular

direction, but if you tilt that antenna, the energy direction would change, okay. So, because of

this antennas are studied as a separate category. They are studied under the general heading of

radiations. So, radiations from antennas is perhaps a better fitting title for this module. So,

before we can even discuss radiation, there are certain things that we need to do.

First, there are two ways of discussing radiation from antennas, one method begins with E

and H, which are the quantities that are already present in Maxwell’s equation. They do not

introduce any additional vectors for discussion, whereas more common method of analysis of

radiation begins by auxiliary potentials, okay. The primary auxiliary potential that we use is

called as the magnetic vector potential.



Sometimes there is also a different type of potential that is used, which is the scalar potential,

but scalar potential is not commonly used. It is the magnetic vector potential that is quite

commonly used, and the reason why it is used is because it can be used to relate both E and

H. So, A, the magnetic vector potential can be related to electric field E and H. We have of

course seen already how to use.

I mean we have already seen how this magnetic vector potential is defined and we have also

obtained an equation for this A, but we are going to consider slightly different picture. So, it

is worthwhile to go back to the definitions of A and see how the expressions for E and H are

related to A. So, the definition for A is where we began even in one of the earlier modules is

to recognize that del dot B is equal to zero always.

Because, there are no magnetic monopole for you to have a divergence, non-zero divergence

for the magnetic field B. So, because del dot B is equal to zero, it is possible to actually

represent B as curl of some other quantity. This some other quantity is the magnetic vector

potential A. So, we write down B as del cross A, since B and H at least in free space are

connected just by the permeability of the free space. 

We can also write down H in terms of curl of A as curl A divided by mu zero. So, at least one

equation we have obtained, in which we see the H is curl of A. Is this sufficient? Is this

sufficient to completely characterize my H and A relationship? Unfortunately, no. Because

consider what happens, if I consider A prime, okay. A prime is related to A by this particular

operation. 

So there is A, which is the magnetic vector potential that we have considered, to that we have

added a gradient of some scalar function, okay. This is a gradient of some scalar function phi.

Now consider what happens to del cross A prime. This del cross A prime, because del cross

can be applied individually to these two elements will give you del cross A plus del cross

gradient of phi. 

But we already know that curl of gradient of phi is equal to zero uniformly, which means that

curl of A prime is equal to curl of A. So, there is some sort of an ambiguity in defining A, we

get around this activity in the same way we got around the ambiguity for scalar potential. We



said that in scalar potential case, there could be some ambiguity, but we are not interested in

the actual scalar potential or potential at a point. 

We are only interested in the potential difference between one point to another point, because

those are the meaningful results that we can have. So, you have voltage at one point, by itself,

that does not tell you anything, but voltage difference between two points is what we are

interested. One point we call as reference, the other one is the voltage at that point we are

interested in. So, because of that there is this ambiguity in A which we understand, okay.

But we do not really do anything about this except saying that there is ambiguity of gradient

of phi, at least for now let us accept this. So, we have a relation for H and A, we still require a

relation for E. How can we obtain the relationship for E? I already know that curl of E is

equal to minus del B by del t, this is from one of the Maxwell’s equations. This is in fact

Faraday's law, but since we are considering E and B all as, E and B as phasor quantity.

So, in terms of phasor, this del by del t will be replaced by minus j omega and B can be

replaced by mu zero into H. So, I have this relation, but I also know that H itself can be

written as del cross A divided by mu zero, cancel mu zero on both sides. What you get is curl

of  E plus j  omega A must  be equal  to  zero.  Now this  equation looks very nice there is

something that you are saying as curl of quantity is equal to zero, which means that I can

express since curl of a quantity is equal to zero. 

I can actually express this quantity F in terms of gradient of some scalar function, right. So, I

can write down this as E plus j omega in terms of gradient of some quantity phi and in fact,

you can use this as a definition of phi because I know E, I know A. I have already defined A

in terms of B. So, I can obtain the definition for phi. It is electric scalar potential, not in the

static case because we are already in the time varying case. 

E can be written in terms of A and phi, A being the vector potential,  phi being the scalar

potential as minus j omega A minus gradient of phi. So, in defining this gradient of phi or

introducing this gradient of phi, we are able to now relate both E and H to this quantity A. We

in fact remember that we went one step ahead. We said that we can actually put this equation

over here, so we have this del cross A here, right.



So, we have this particular equation and we can obtain a wave equation for this one. We can

actually try and see what we will get for del dot if we take del cross B. So, we will take the

del cross B over here, right. So, I have del cross H, let us take del cross H because that is

simpler. Again del cross del cross A divided by mu zero and del cross H can be written as in

terms of Maxwell’s equation.

This would be j omega epsilon assuming that there are no surface currents. I can write this as

j omega epsilon E. So, I have del cross del cross A is equal to j omega mu zero epsilon E and

I can substitute for E. E is nothing but minus j omega A minus gradient of phi, but I can also

write down this del cross del cross A itself as del of del dot A by expanding it minus del

square A.

This would be equal to j omega mu zero epsilon times minus j omega A minus gradient of

phi. So, it is kind of getting difficult to write down this one, so I will only write down the 

RHS term here, expanding this I get omega square mu zero epsilon A that is, this terms minus

j omega mu zero epsilon gradient of phi. What happens to the left-hand side term? The left

hand side term still remains del of del dot A minus del square A.
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Equating this left hand, right-hand side terms, what we get is del of del dot A minus, so this is

the equation that we have, right. So you have a gradient of something over here, you have

something here as well. This kind of reminds you of a wave equation except that your wave is

now A, right. This is a wave equation type equation, okay, which is now A. A is the one,

which is waving, so if it is possible for me to somehow cancel these terms.



Then it would be nice then I can actually have a nice wave equation, whose solutions I can

easily write down because we have now enough experience in solving these type of wave

equations, right. So, we have harmonic solutions and we can easily write down the solution

for a given coordinate system and then do whatever analysis that we want to do. So, if it is

possible for me to somehow cancel these two term.

Then it would be nice for me to have a wave equation. So in order to do that one, let me do

something interesting. So, let me take this term minus j omega mu zero epsilon del phi to the

left hand side and push this del square A to the right hand side. So, if I do that and again

switching back left  and right hand sides,  I  get  del  square A plus omega square mu zero

epsilon A must be equal to gradient of del dot A plus j omega mu zero epsilon gradient of phi.

If I now write down this del dot A, I can take the gradient operator out, so what I get is del

dot A plus j omega mu zero epsilon phi gradient of the whole thing that must be equal to zero.

I can do this because gradient is independent of omega mu zero and epsilon. I am of course

assuming that epsilon itself is a constant, which is valid for air or for any other medium in

which epsilon is constant.

So, this is a homogeneous medium that we are considering. We are of course also considering

the medium to be isotropic and constant medium, time invariant medium as well. So, I have

gradient of some quantity equal to zero, the way I can make this equal to zero is to set this

fellow equal to zero. So, I have del dot A plus j omega mu zero epsilon phi equal to zero,

which gives me a relationship between A and phi itself.

I already have defined phi, the defining equation for phi is to say this as minus gradient of phi

is equal to E plus j omega A, but now I also have a nice relationship for del dot A and phi. If I

choose del dot A as minus j omega mu zero epsilon phi then I also know that curl of A is

equal to B or equal to mu zero H accordingly, then I can specify this A completely. 

This  condition  in  which  the  divergence  of  A is  chosen  as  this  is  called  as  the  Lorentz

condition  or  sometimes  called  as  Lorentz  gauge,  okay  or  Lorentz  condition  might  be

something that we can write down for this course without really bothering what gauge is and,



we know from certain vector analysis theorems, you know from your mathematical analysis

that if I have a vector field and I specify its divergence and its curl.

Then I have completely specified the vector field. So, the way to specify vector field A for me

would be to take this divergence to be equal to minus j omega mu zero epsilon phi. If I do

that substitution, if I take this Lorentz condition, then I get a wave equation for A. So, I have

omega square mu epsilon A is equal to zero. Well, this is very interesting because I can solve

this A. 

I know that A must now be in the form of e power minus j beta z assuming that the wave is

waving along z, then it would be to the power minus j beta z. In case it is waving in any

arbitrary direction then this would be e to the power minus j beta n hat dot to r, where n hat

will be direction of beta. So, if beta is in this particular direction, then define normal n along

the direction of beta and then for any other direction of r.

You know the wave is waving in this particular direction and the component or the phase of

that wave would be beta n hat dot r. This is not the only thing that happens. This is just a

phasor part. What about the time part? So you go back to the time by multiplying the e power

j omega t  and then taking the real part,  right.  So, for now, you just concentrate  on what

happens to this omega t and beta n dot r, okay. 

So, what is happening here is when you take the real part you get cos omega t minus beta n

hat dot r. What you see here is that this is exactly equivalent to a traveling wave omega t

minus k z is what the uniform plane wave that we considered or in any other wave that was

actually waving along z direction.  So, what we have in fact shown is that this is a wave

equation and A will wave, okay. 

So,  A will  wave  along  a  particular  direction  beta,  okay  and  when  it  waves  there  is  a

corresponding beta that we can define beta or the propagation constant that we can define and

the  wave  because  of  this  wave  nature,  we  also  know  that  if  there  is  a  disturbance  of

something at t equal to zero, right. If A changes suddenly from one value to another value t

equal to zero.



Then this disturbance will not be visible to me if I am sitting at a distance of l from the

source. So, if something happens at t equal to zero, then I will be able to see this one only at l

by up where up is the phase velocity for that particular frequency component or for that

matter it is just a time delay. So, there is some amount of time delay that is involved. Again,

this is also not something new to us. 

We have already seen this one in transmission line. We know that if you connect the switch of

the transmission line, it will not be able to see the load immediately. There has to be some

propagation delay. All  that this mathematics has brought to us is that when A waves you

know or A changes at t equal to zero at say z equal to zero then at z equal to l this change will

be visible after a delay of l by u, where u is the phase velocity, okay.

So, this character that something is changing that t equal to zero, but the effects appear later is

what is called as retardation or retardation in time and this potential  is called as retarded

potential.  Retardation  simply  means  time  delay,  okay.  So,  there  is  a  certain  time  delay

associated because of the waving nature, so any change that happens at t equal to zero will

not be visible immediately.

Obviously, since the velocity of propagation is finite, so it will not be visible immediately, but

it will  take some amount of delay. So, whatever you're looking at here, at your side at a

distance  l  from  the  source  is  actually  how  the  wave  looked  some  delay  back.  This  is

equivalent of you looking at a star. The star that is shining or the star thing that you look at is

not how the star is now. 

It is actually equal to the time delay, which has taken for the light to arrive from the star,

which is very distant all the way to earth and to your eyes. So, this kind of time delay means

that things that you are looking at is not now, but it is at the retarded time.
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Now, we also have seen because of the similarity of this equation del square A is equal to

some mu j, right. When the right hand side was not equal to zero, you could show that the

solution for this del square A equal to mu j was given by A of r in terms of this Laplacian

thing, right. So, you had this equivalence to a Laplacian form, del square A is equal to minus

mu j had a solution for A as one by four pi or rather mu by four pi.

Because this is one by four pi epsilon, but epsilon needs to be replaced by one by mu. So, it

would be mu by four pi integral over the volume J of r prime, which is the current that is

changing at r equal to r prime times e to the power minus j beta r minus r prime. This beta r

minus r prime simply incorporates the delay that happens, so e power minus j beta r is the

phase factor that a wave would pickup while it has propagated to a distance of r minus r

prime divided by r minus r prime, right, the magnitude of this one of course. 

So, this is the solution, formal solution of, formal solution of the vector potential A at any

region in space r, so you have some current, which is being carried. There is a current density

that is appropriately defined by j of r prime and from here, so this is r prime. This is the

source point, and you are at a distance r along a particular direction, you are at distance r,

here and observing what is happening here.

So let us call this observing point as P and the origin of this vector point as zero. So, this r

minus r prime will give you the distance between the source and the observation point, right

and this r minus r prime would be approximately equal to r when this length of the antennas



or length of this wire would be very small compared to the distances that you are considering.

Otherwise, you can simply call this as equal to r.

And  this  r  magnitude  would  be  the  one  that  would  determine  the  time  delay  between

something  happening  at  the  source  and  what  you  are  going  to  observe.  So,  this  formal

solution is  what we call  for A of r  is  what  we call  as retarded potential,  retarded vector

potential,  but with that vector thing is so understood that we simply call  this  as retarded

potential.

And all our antenna problems can be boiled down to find A from A you find out H at that

particular point and also find out the electric field at that particular point assume that pi. Phi

of course, also has a similar liquidation, but if there are no free currents than phi can be taken

to be zero, and in any case, we take phi as not of a consequence because we can fix this phi

by writing this del dot A of r condition. So, this actually fixes this scalar potential phi. 

So because of this, almost all of the antenna problems that are studied under this particular

formalism would simply consist of solving this equation. Now you might question, hi what is

the big deal about this? If I know what the current density j of r prime is, this equation seems

to be quite simple. There is a dv prime. This is the integral over the volume in which the

current density is present. So, you can say what is the big deal here?

I can always solve this equation, if not analytically always by numerical methods when I

know what is the current density j of r prime. But the problem with antenna analysis is that,

this  quantity j  of r  prime is  notoriously difficult,  or in fact,  in many cases impossible  to

specify and in fact this is the fundamental problem with antenna analysis. You do not know

the current distribution on the antenna. 

If you knew the current distribution, then all the analysis could have been simplified. So,

because this current distribution is not known, and it is not very easy to measure that this is

where we have this problems of antenna analysis. Luckily, we do not go into so much of

detail in this course, but we will see some flavor of this and when we consider a thin half-

wave dipole or linear antenna.


