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The development of TE modes is mathematically very similar to the development of TM

mode. In the transverse electric case, you have EZ equal to zero, because the electric field has

to be transverse to the direction of the propagation Z. So TE modes are characterised by

having no component of EZ; however, this means that HZ must not be equal to zero and it



will also mean that Hx, Hy, Ex and Ey must all be functions of Hz alone okay.

Now how do we obtain Hz well, this was first step in recognising what components exist and

what components do not exist, the second step would be to apply Helmholtz equation and

solve  this  Helmholtz  equation  for  HZ okay. The  equation  form will  be  exactly  similar,

therefore HZ will have sin of something x cos of something y, we will not write down all

those values okay. You already know what those values are.

However, what we need to write down is the form of HZ in terms of sin for x and y okay. HZ

will have cos kxx sin of kxx, where both forms could essentially be there and then you have

sin or rather you have cos kyy and then sin kyy right, multiplied of course by e power minus

gamma mnz, you understand that gamma must also be having components m and n which

will then be related to kx and ky, you already of course know what is kx, kx is m pi by a

whereas ky is n pi b, I have not written down here, just for notational simplicity okay.

Also we know what is gamma mn, gamma mn will be equal to or this can be related to H

itself. This would be equal to omega square mu epsilon minus kx square plus ky square right

under  square root.  So we already know most  of the things  that  we wanted  to  know, the

amplitude for cos will be a, for sin it would be b, for cos here it would be c, and for sin it

would be d okay.

So this is the Helmholtz equation for HZ, Helmholtz equation solutions for HZ in fact, so we

have not written down the Helmholtz equation, but the equation would be exactly the same

for what we wrote for EZ, you apply the variable separable criteria, you will then obtain this

kind of an equation okay. So we obtained the expression for HZ.

Now, we are now into a small problem, what is the problem, well, let us try to apply the

boundary condition for HZ. What should the boundary condition for HZ be, does HZ go to

zero at walls, no, this is not true, this is wrong because HZ happens to be the tan longitudinal

component for the walls and those components you know are the tangential components will

not go to zero at the waveguide wall.

So what do we do, here we need to either resort to a formal solution of HZ, you know and

then write down the appropriate Maxwell curl equation and then find out a new boundary



condition for HZ or we might recognise that del HZ by del x and del HZ by del y must

somehow be related to Ex or Ey correct.  If they are related to Ex and Ey and for those

conditions,  we  might  want  to  obtain  the  boundary  conditions  right.  So  it  would  be

corresponding tangential or of normal components which we can apply then.
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The up short of all this very hand waving analysis is that, at each of the waveguide walls we

will apply the derivative condition okay or the normal condition. So del HZ by del n equal to

zero where n is  the normal to the wall  okay, normal  to waveguide wall.  The philosophy

behind  the  normal  derivative  of  HZ  being  equal  to  zero  is  simply  that  these  normal

derivatives  will  determine  the  electric  field  components,  which  will  be  tangential  to  the

appropriate waveguide walls.

If you really want to find what is this relationship, you have to go back to del HZ by del x and

you can see that del HZ by del x actually corresponds to Ey and certainly this Ey component

will be tangential at x equal to zero and at x equal to a walls and del HZ by del y corresponds

to Ex components, which would be tangential at y equal to zero and y equal to b walls right.

So this would be the philosophy behind assuming that the boundary condition for HZ can be

written not in terms of HZ itself,  but in terms of its normal derivatives. This is called as

normal derivative where n is the normal to the particular component okay. Of course, HZ

itself happens to be the tangential component for the waveguide walls and that tangential

component derivative of the tangential component with respect to the normal is called the

normal derivative of HZ.



So I will not actually solve this now, the solution is kind of very simple once you know what

is HZ, you need to actually differentiate this one to obtain del HZ by del x and del HZ by del

y and appropriately substitute the conditions at x equal zero, x equal to a, y equal to zero and

y equal to b walls. You do all those things and you will be able to show that b is equal to d is

equal to zero okay.

I will leave this as an exercise to you, the solution is very simple, you take del HZ by del x,

you take del HZ by del y okay and then once you have found out these, you need to apply the

boundary conditions at x equal to zero, x equal to a, y equal to zero and y equal to b. So when

you substitute all these values and especially when you apply the boundary conditions at x

equal to zero and y equal to zero, you will find that b and d terms will go to zero okay.

A simple thing to see that one here is because del HZ by del x will turn cos into sin and that

sin at x equal to zero will vanish this component, but here it would be cos of kxx that would

vanish, so since this is vanishing the only condition that this can vanish is when b is equal to

zero. Similarly, you can show that d must vanish in this expression for HZ okay. So simple

exercise you try this out, if you do not get that one, we will give you the solution during the

notes that we upload okay.

So now that we have applied this boundary conditions and obtained b equal to d equal to

zero, we can proceed to write down what is HZ, HZ will also have some constant H zero, but

the dependence on x and y will be cos m pi by a x cos n pi by b y. There would components

of e power minus gamma m n z, that we may or we may not write down here. Look at this

expression, now you try to find out what would be the corresponding values of m and n for

the lowest order mode to occur.

Can we try the solution with m equal to zero, n equal to zero or any of these combinations.

Certainly you can try because m equal to zero turns cos of some zero component into one, n

equal to zero will turn the cos n pi by b into y term to one and both terms will ensure that HZ

is still not zero right. So substitute m equal to zero, n equal to zero, the expression for HZ

become quite simple, you just are left with H zero e power minus gamma m n into Z.

So you just have a constant H zero. Now the catch here is that this solution is also not alright



because HZ component might exist, but nothing will exist for Ex, Ey or Hx and Hy okay. So

because these other  components  are  going to  zero,  you will  not  be able  to  get  m and n

components go to zero. In the TM case what we had was, TM m n, neither m nor n should

have been equal to zero.

For T case, the modes will vanish only when both components are zero. However, one of

them can be non-zero okay. So you cannot of course have for the TE m n case, m also equal

to zero, n also equal to zero however, you can certainly have for the TE m n case, m equal to

zero, n should not be zero or the other way around, m is not equal to zero, n is equal to zero.

You can have this kind of solutions okay.
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The fundamental mode for TE case turns out to be not zero zero as we thought it should be

because the other components are not cooperating. The fundamental component for TE is that

of one zero mode. This is the dominant mode and by far one of the most important choice for

a mode to be propagated. So if you take a waveguide, your kind of assume that it is to be

excited so as to launch a TE one zero mode.

Unless  you are using these  waveguides  for  filters,  matching  networks  other  things,  most

likely you are interested in trying to put all of your energy into TE one zero mode. There are

very good reasons for it. First of all, it has a lowest cut off frequency, supports larger range of

frequency operation and third would be that this has the least amount of dispersion okay.

So these are the different attributes of TE one zero mode, which is the dominant mode for a



waveguide. So given a rectangular waveguide this is the dominant mode for the rectangular

waveguide and for that mode it is interesting to just write down the expressions for electric

and magnetic fields.
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For the TE one zero case, the HZ component will be some constant H zero cos of pi x by a

right. All the dependants on y is gone. There would e to the power minus gamma m n z that

can be written as a common factor. If you go to Ex, you will see that Ex will be equal to zero

because that would correspond to differential of HZ with respect to y whereas you will have

Ey component that is non-zero.

Ey is given by minus j omega mu, these constants are really coming from the earlier module

where we wrote down the longitudinal components. So if you do not get this constants, do not

worry too much, just understand what the form of the solution should be since Ey should be

del HZ by del x. Instead of cos it would become sin, the dependence on x would become sin

and again the y dependence drops out okay.

So the y depends drops out and you get sin pi x by a, let me not write down the expression for

how the dependence on z all the time. So what would be the other component that would

exist, interesting, you have Ey component, therefore the component that should exist must be

Hx and Hx component will be gamma one zero because you are really writing down the

solutions for TE one zero mode.

So for the TE one zero mode, we can substitute m equal one, n equals zero and gamma is one



zero and you will have component along sin. There are some additional components here so

you have H zero a by pi okay sin pi x by a. These are the three components that would exist

for TE one zero. So if you leave out this HZ, this is almost like a plane wave, wherein you

have Ey and a minus Hx right.

So  the  ratio  of  these  two  should  of  course  also  give  you  the  wave  impedance  for  this

particular waveguide. We will come to that one later. First what is the cut off frequency for

this case. Cut off frequency expression is the same whether it is TM mode or the TE mode.

Now substitute m equal to one, n equal to zero, it would be one by two a square root of mu

epsilon right.

So you remember this one, it was actually one by two pi square mu epsilon m pi by a square

plus n pi by b square under root. So now substitute m equals one and n equals zero, this b

dependence goes away and m equal to one will pull out this pi by a here, and the numerator

and denominator cancels and this is the expression that you are going to obtain.

We have already have said that one by mu epsilon, one by square root mu epsilon is the

velocity of the wave inside the waveguide. So you can even think of this and in fact this

velocity of the wave would actually be equal to the velocity of the TEM mode, not that is

supported, but in the free space kind of a situation this would be the velocity right. So this can

be written as u of the phase velocity or you can write down this as the TEM phase velocity

divided by two a okay.

What would happen to gamma, gamma one zero will be equal to j beta one zero assuming

that your frequency is larger than Fc one zero and this would be equal to j omega square root

mu epsilon one minus Fc one zero by F square right. So this would be the expression for

gamma okay. So we have written down the corresponding expressions for TE one zero.

The last thing that I would like to write down is the expression for the surface currents at the

walls again as before I will write down the surface current at x equal to zero and in this case it

would be x hat cross your H evaluated the surface.  Now what are the H components,  H

components are x as well as z right. So for the x equal to zero component x cross x will go to

zero, but x cross z will give you a current along minus y direction right.



So you will have x cross z will be along minus y direction and that would be H zero and that

would be H zero and that is exactly equal to the corresponding surface current. So Js is equal

to minus y hat H zero substituting x equal to zero will give you that one and of course along z

it would still go as e power minus gamma one zero z for the case where F is greater than Fc,

this gamma one zero can be written down as J beta one zero okay.
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So this is your surface current at the x equal to zero wall but what is the surface current at y

equal to zero wall, it would of course be the same surface current for Js it would be the same

surface current at x equal to zero and at x equal to a because of the symmetry, but for y equal

to zero it would be y hat that would the normal from the waveguide wall, so y hat cross Hx

and Hz, y cross x will give you a component along minus z direction and then y cross z will

give you a component along x direction.

So you will actually get two components for the surface current and you can evaluate this one

by  taking  the  appropriate  cross  product  and  then  substituting  y  equal  to  zero  in  those

expressions, the answer that you get is H zero cos pi x by a along x direction okay minus

some constant  a,  of  course  a  by  pi  is  the  constant,  gamma one zero  is  the  propagation

constant sin pi x by a.

And this one would be along z direction, okay. So this would be along z direction e to the

power minus gamma one zero z okay. So for the x equal to zero wall,  there is only one

component  of  the  surface  current  whereas  for  y  equal  to  zero,  you  have  additional

components for the current okay. You can also sketch the TE one zero mode or TE one, one



mode, will not do those sketches, you can actually find out them from your textbook.
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Let us try to solve one problem before we go on to the next topics in the waveguide, we want

to consider a waveguide, which is widely used, which is called as WR-75 waveguide okay,

this  numbers  are  just  a  numbers,  which  would  tell  you  the  ratios  of  a  and  b.  For  this

waveguide, which is filled with air, so the waveguide is filled with air, which means that mu

is equal to mu zero and epsilon is equal to epsilon zero.

The dimensions of a and b are, a is one point nine zero five centimeters and be is point nine

five  three  centimeters.  Assuming  that  the  waveguide  itself  is  perfect,  find  the  cut  off

frequency for the TE modes and also find out what is the range of frequencies over much

only this mode exists. That is if you assume F, you know is increasing at some point you will

reach the cut off frequency for one zero.

Here you will start having propagation and after a certain point you will start to have higher

order modes okay. So that range or the bandwidth over, which there is only one particular

mode that is you will have only TE one zero mode, it is called as the dominant mode range or

dominant range. Dominant range is the one in which only TE one zero exist, all other modes

are absent okay.

What is that particular dominant range for this waveguide? Well, the answer would be that

you first find out what is the cut off frequency for TE one zero and then try to find out what is

the next order mode okay. Once you find out the next order mode you can find out the cut off



frequency there and that difference will tell you what is the dominant range. First of all, the

cut off frequency for TE one zero mode, which is the lowest order is given by the phase

velocity UTEM divided by two a.

I know that the waveguide is filled with air therefore it acts like a free space itself. So this

fellow is c and c is three into ten to the power eight, two into one point nine zero five into ten

to the power minus two and you will see that the cut off frequency is seven point eight seven

gigahertz okay. Now what is the ratio of a by b.

A by b ratio is one point nine nine and once you find that the ratio of a to b is actually greater

than square root of three okay. This is greater than square root of three, the dominant region

would happen when the next higher order mode if you find out that would be TE two zero

mode okay. For a waveguide in which this particular case, you know the ratio of a by b is

greater than root three. The next higher order mode is TE two zero after that comes TE zero

one, then comes TE one one okay, then comes TE one one and TM one one.

So the magnetic transfers magnetic mode does not begin to propagate until a few TE modes

have been already propagating for the case of a by b greater than square root three okay. So

for this case, the next cut off frequency would occur at Fc two zero and for that one can find

out and that would simply be multiplying the original frequency Fc one zero by two, which

would be equal to fifteen point seven four gigahertz.

So the range of frequencies over which you will have the dominant mode would be over the

case where seven point eight seven to fifteen point seven four. Although, at seven point eight

seven you really do not consider the waveguide to be propagating because you are really at

the edge of the waveguide so you take some amount of frequency. So here you have this is

Fc,  but  you will  actually  wait  for  some other  you know, factor  before  you consider  the

waveguide to be operating right.

So if this frequency range at the end or at the band you would avoid because you do not want

to  have components,  which are  just  getting  cutting  down over  here.  So you avoid some

percent say let us say twenty-five percent higher than Fc one zero would be the range over

which we operate. That is a very good thumb rule and you will also operate at the lower cut

off frequency mode for the given wavelength to be around. So if  this is your range, you



would operate them at point nine five.

So you would actually operate anything between the range, the next higher order mode, so

just, just about here. So if this is Fc two zero then you just go to point nine five Fc two zero

and you start at one point two five Fc one zero. To avoid, I mean this is just an engineering

thing, obviously there is no reason mathematically that you have to take this as the usable

range. The usable range for this waveguide is chosen in such a way that you are just above

the cut off frequency so that your wave component.

I mean frequency components are not getting attenuated at because of the lower order and

you are not getting cut off because of the next higher order mode okay. So if you calculate the

usable range according to that usable range for this example would be one point two five

times seven point eight seven gigahertz okay to point nine five, five percent less than the next

higher order mode, which is fifteen point seven four gigahertz.

And numerically these values turn out to be nine point eight four gigahertz to fifteen point

three  five  gigahertz.  So  you  have  about  five  gigahertz  of  bandwidth  roughly  and  this

bandwidth is the bandwidth over which only TE one zero modes can be propagated or in the

(()) (21:46) range only TE one zero modes exist and they would be propagated with whatever

the characteristic propagation for TE one zero is concerned.

We will stop at this module. In the next module, we will consider some associated terms for

waveguides and then quickly perform a simple calculation for the waveguide laws and we

will close the chapter on waveguides. Thank you.


