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Lecture - 55
Oblique Incidence of Waves

In this module, we will discuss oblique incidence of waves. We have already discussed normal

incidence of waves and we found that when a wave is normally incident from one dielectric to

another dielectric medium, some part of the wave gets reflected,  some part  of the wave gets

transmitted.  When you have a wave incident  on a conductor, of course the entire  wave gets

reflected. 

We will be looking at oblique incidence of waves on a conductor some time later, when we

discuss wave guides. For now, we will assume that we have two dielectrics that are separated.

These two are perfect dielectrics and they are described by their equivalent wave impedances and

wave is going from one dielectric to another dielectric. And then we will see, what could be the

reflection coefficient and transmission coefficient, which will tell us how the, what is the amount

of wave is reflected.

And what is the amount of wave that is transmitted. Now, compared to normal incidence, the

formulas that we will develop will be slightly complicated because we now have to consider the

angle  at  which  the  wave  is  coming  to  the  second  medium.  So,  when  the  wave  is  incident

normally, there was no problem, the formulas were quite simple. 

However, when you have wave’s incident at an angle, then one has to consider explicitly that

angle of incidence of the wave, in order to calculate the reflection coefficient. So in that way, this

is slightly more tricky. But along way, we will also discover two laws, which is something that

you might have studied in your tenth or eleventh standard. These laws are called as Snell’s laws.

There are two laws, one law is the law of reflection and the other one is law of refraction. 



Law of reflection from Snell’s law states that the angle of incidence must be equal to angle of

reflection, and angle of refraction tells you that the angle of refraction is different. But then the

sign of the angle of incidence to the sign of the angle of refraction are related to the refractive

indexes  of  the  other,  of  the  two  mediums,  which  are  participating  in  this  wave  deflection

phenomenon. 

So something like n 1 sin theta 1 is equal to n 2 sin theta 2 is what probably you might have seen,

where ‘n’ 1 and ‘n’ 2 are refractive indexes, not the wave impedances.  So, we will see that these

two laws are not really laws per se, but they are simply consequences of boundary conditions.

So,  when  you  apply  an  appropriate  boundary  condition,  then  that  particular  law  will

automatically come out. 

So, we begin with oblique incidence, we will consider, we will see that there are two cases to

consider, however we will consider only one case in our study in this module. The other case, I

will leave it as an exercise to you. The analysis is quite similar for the other case also. So you

might actually take it as an exercise and then complete all the steps that are there to arrive at the

reflection coefficient. 
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So, we have a surface. This surface is characterized by ‘Z’ equal to zero. That is this particular

surface is at z is equal to zero. And then the wave is propagating along ‘Z’ direction. So, this is



my surface, this is my X axis, the other axis for this one is the Y axis and this surface separates

two dielectric medium. So, this is the direction along wave is propagating ‘Z’ and let us call this

as ‘X’. 

So clearly ‘X’ cross ‘Y’ should be along ‘Z’. So the appropriate direction for ‘Y’, you have to

assume. The ‘X’ and ‘Y’ planes, if you look from the top view, this would what you would find.

So this would be say ‘X’ and this would be ‘Y’ and then the ‘Z’ axis will actually be going into

the page. So this is what the surface would look. So above the surface is dielectric  medium

having wave incidence eta 1 or equivalently epsilon 1 mu 1. 

And  below  the  surface  is  eta  2  having  epsilon  2  and  mu 2  as  their  respective  consequent

parameters. In this module, we will assume that eta 1 and eta 2 are real. But there is no real

requirement  of  assuming that  one.  The  formulas  will  not  depend  on whether  there  is  some

amount of sigma 1 here and some amount of sigma 2. When sigma 1 and sigma 2 are present,

then, eta 1 and eta 2 become complex. 

The equations are all valid. But unless it will slightly complicate our situation and therefore we

are not going to consider that sigma one1 and sigma 2. If you, if the problem explicitly ask for it,

we can actually take into account. So this is all the geometry that we have described. One can

also describe a normal, which is directed from one surface to the other surface. 

So let us say that if the normal is directed from so along this red arrow, if the normal is directed

from first surface to the other surface, it could be pointing to the ‘Z’ axis. This is the surface

normal. And the directions ‘X’ and ‘Y’ will be tangential. So if this is the normal direction and

then the vectors along ‘X’ and ‘Y’ can be called as tangential vectors. So any vector on the ‘X’

‘Y’ plane can be tangential vector.

Now, we have a wave, which is incident. We are assuming that this particular surface ‘Z’ is equal

to zero and this is the origin that we are considering. And the wave gets incident at a certain

angle. Now how do we measure this angle? There are two ways of measuring the angle. One



with respect to the tangential that is with respect to the surface or the other one would be with

respect to the normal to the surface. 

So, this normal to the surface measurement is quite common, especially in optics. So, we will

follow that notation and call this angle measured with respect to the surface normal as the angles.

So, this ‘theta i’ indicates that this is angle of incidence. So which means that this line which I

have drawn with an arrow is actually the incident wave vector, which is ‘k i’. And as the wave

hits this medium.

There will be a reflected wave that is generated, which will be at an angle of ‘theta r’. And there

will be a reflected wave ‘k r’. So this ‘k i’ and ‘k r’ are the incidental reflected waves. There will

also be some amount of waves, which is transmitted into the second medium, which is described

by the transmitted wave vector ‘k t’, making an angle of ‘theta t’. The subscript ‘i’ stands for

incident, ‘r’ stands for reflected, ‘t’ stands for transmitted. We are going to assume plain waves. 

So I know that ‘E’ must be perpendicular to ‘H’, which must be perpendicular to ‘K’ for a plain

wave. And this  must be there for all  the three waves,  for incident,  reflected and transmitted

waves. So, what direction should I give for ‘E’? There are two directions that I can give. One

case is when the electric field is in the same plane. So, let me use probably a different line here.

So, this would be the direction of the incident electric field. 

Associated with this must be the direction for the magnetic field. So you have ‘E’ cross ‘H’ must

be in the direction of ‘K’. Since ‘E’ is directed along this way, my ‘E’ cross ‘H’ means that ‘H’

must be coming out of the page. So ‘H’ is coming out of the page and that ‘H’ vector is ‘H i’.

Then, I also have a reflected electric field. For the reflected electric field, I will assume that it is

directed along this way. 

Again you do not have to really worry about these directions. If the directions are different, the

equations will already tell us. This is like you know the notation for KCL and KVL. You can

assume certain direction for the current. And if the equation tells you that the assumed direction



is correct or not. If the assumed direction is current, then the current will come out to be positive,

if not, the current will come out to be negative.

So at which case, you can simply change the direction of the current, so very similar thing is

happening. Do not particularly worry about how to draw this ‘E i’ or how to draw this ‘E r’. The

equations themselves will tell you whether this ‘E r’ should be reversed in this way or ‘E r’

should be kept in the same way. This is just convention. You don’t have to really worry about

this. However, having made an assumption the ‘E r’ is in this direction, B consistent. 

If you make an assumption that ‘E i’ is in this way, then you have to have ‘H i’ coming out of the

page. Similarly, if I assume that ‘E r’ is in this way, then ‘H’ must be going into the page. ‘H’

must be going into the page and that can be represented by putting a cross here. And this would

be your  ‘H r’.  So that  ‘E’ cross ‘H’ will  be pointing  in  the direction  of the reflected  wave

propagation. 

Finally, for the transmitted case, we can assume them to be the same directions as the incidence

wave because that is kind of very natural to assume. Both of them are propagating in the same

direction. Therefore, the ‘H’ field for the transmitted wave would also be coming out of the page.

So ‘E’ cross  ‘H’ will  be  pointing  in  the  ‘K’ direction,  ‘K’ transmitted  direction.  Before  we

proceed further, let us write down what are these ‘K i’, ‘K t’ and ‘K r’ are. 

So what is ‘K i’? ‘K i’ will have two components. One component will be along ‘Z’ direction and

other component will be along ‘plus X’ direction. What are those components? ‘K i’ is equal to,

magnitude of ‘K i’, which I am denoting simply by ‘K i’, cos theta i for the ‘Z’ direction plus ‘K

i’ sin theta i for the ‘X’ direction. Similarly, for ‘K r’ you will have magnitude of ‘K r’ and then

cos theta r, but this is actually along minus ‘Z’ direction.

Because this ‘K’ is propagating along minus ‘Z’ axis. So it is obvious because incidence must be

propagating along plus ‘Z’ axis, but as reflected move must be propagating along minus ‘Z’ axis.

However, that ‘X’ component of ‘K r’ will not change the direction. So this would be plus K r sin



theta r along ‘X’ ‘K t’ is very simple. It follows exactly the ‘K i’ kind of signs. So, this is given

by K t cos theta t ‘Z’ direction, plus K t sin theta t X hat. 

So these are the different ‘K’ vectors. Now I also need to write down what is the electric field

vector. So electric field will also have two components. It will have ‘E x’ component as well as

‘E  z’ component.  So  it  will  have  ‘E x’ component  and then  it  will  have  ‘E z’ component.

Similarly, the transmitted field will also have ‘E z’ and ‘E t’. The reflected field will also have ‘E

z’ and ‘E x’. So what are these components? 
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Well, to find out these components, let us slightly expand our view here. So this angle is ‘theta i’.

I know that this must be ninety degrees. So this is my ‘E i’. If I now draw a horizontal line like

this and a vertical line to simulate the origin that I am considering. This line will make an angle

of ‘theta i’. So this angle is ‘theta i’ because this is the angle made by the line ‘K i’ with respect

to the normal, which is along ‘Z’ axis. 

So if this is ‘theta i’, I already know that this ‘K’ and ‘E’ must be ninety degrees. Therefore, this

must be ninety minus ‘theta i’. I also know that this two are ninety degrees. So therefore this

must be ‘theta i’ and this must be ninety minus ‘theta i’. So, these are the different angles that I

have obtained for ‘E i’. And I can use these angles to actually write down the expressions for ‘E

i’. So let me write down what is the incident electric field ‘E i’. 



Please  remember  I  am  writing  everything  in  the  facer  notation.  All  time  dependences  are

assumed to be e to the power J omega t. It is an interesting fact that when you incident light, the

frequency  does  not  change.  What  really  changes  is  the  wavelength.  The  frequency  of  the

incident, reflected and transmitted waves will remain same. So you have ‘E i’, which is at an

angle of ‘theta i’ with respect to the horizontal that is along ‘X’. 

So, you can now write down what are these components. So ‘E i’ is given by magnitude of ‘E i’

cos theta i along ‘X’ axis and along ‘Z’ axis you have minus ‘E i’ sin theta i, because this is ‘E i’,

sin theta i along ‘Z’ axis. But, this ‘E i’ itself will varying as some ‘E i zero’, ‘E’ to the power

minus jK i dot r. Now, what is this K i dot r here? Well, I know that if a wave this propagating

along ‘Z’ direction and has wave component along the ‘Z’ direction.

And wave vector having only the ‘Z’ component, then the phase factor can be written as E power

minus jKz. However, since ‘K’ actually has two components, it has ‘X’ component as well as the

‘Z’ component and we are describing the wave propagation in region, where ‘X’ and ‘Y’ both are

changing, the corresponding phase factor should be e power minus jK dot r, where ‘r’ is the

position vector, xX hat plus zZ hat. 

There is no ‘Y’ component and therefore I am not put that one down here. But in theory, this

actually  has  yY hat.  But  because  ‘K’ is  described  only  having  ‘x’ and  ‘z’ component,  that

component along ‘y’ does not really matter. So with this, the component along ‘x’ will be E i

zero e power minus jK dot r. 
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So, let us rewrite what is that ‘K i’ dot r correctly. So I get E i zero e power minus j, now ‘K i’ I

already know, which is given by (K i cos theta i z plus K i sin theta i x). So, this is the component

that we were looking for, for the ‘x’ component. Similarly, there will be a ‘z’ component, which

is E i zero e power minus j K i dot r and then sin theta i Z hat. So this is the incident electric

field. 

What about the reflected electric field? What about the transmitted electric field?
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Transmitted  electric  field  can  be  written  down  quite  simply  because  this  is  of  the  same

directions. So ‘E t’ will be equal to, ‘E t’ the magnitude of this fellow, times cos theta t X hat



minus E t sin theta t Z hat. Please remember that in this ‘E t’, you have to replace this ‘K i’ by ‘K

t’. What about ‘E r’? Well, to get to ‘E r’, let us go back to this diagram and take a look at ‘E r’

in slightly more detailed fashion. So, this is ‘E r’. 

Again I am going to write down these two lines here. I know that this angle is actually ‘theta r’

because this angle is ‘theta r’ made by ‘K r’, with respect to the normal. So this is ‘theta r’. And

therefore this is ninety minus theta r. I know that ‘K r’ and ‘E r’ are ninety degrees and therefore

if  this  is  ninety  minus  theta  r,  this  should  certainly  be  equal  to  ‘theta  r’.  So  what  are  the

components for ‘E r’ I have? ‘E r’ will be E r cos theta r along X, E r sin theta r. 

So you will actually have E r cos theta r along X, but for ‘Z’ it could be positive, it could be plus

E r sin theta r Z. Alright. So we have three components here, ‘E i’, ‘E t’ and ‘E r’. 
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Next  what  we  need  to  do  is  to  apply  boundary  conditions.  So,  when  we  apply  boundary

conditions, the first boundary condition that I am going to apply is that the tangential electric

field  is  continuous  across  the  boundary.  Why  do  I  say  that  the  tangential  electric  field  is

continuous across the boundary? Because for this boundary case that you are considering, there

are no free charges or no currents.



And  therefore  on  the  surface,  there  is  nothing  happening.  So,  tangential  electric  field  is

continuous. So this continuity of tangential electric field means that you need to first identify

what are the tangential fields. For the incident wave, the tangential field is ‘x’, for the reflected

wave the tangential field is ‘x’ and for the transmitted wave also the tangential field is ‘x’. So, it

is the ‘x’ components, which are actually tangential. 

The ‘z’ components are normal; therefore, they do not have be written down that. Now, where

are these tangential electric fields continuous? They are continuous at the entire boundary z equal

to zero. So in these expressions, you have to go back and write them down to be zero. So, let us

apply this boundary condition. For the incident wave, the total electric field in the region one is

incident plus reflected.

So, the incident wave itself is given by E i zero cos theta i and e power minus j K i sin theta i x.

‘z’ is zero. And the corresponding component here is E i zero cos theta r and e to the power

minus j K r sin theta r x. This is the electric field in, sorry this is not E i zero, this is E r zero and

this is cos theta r, which is correct, this is K r sin theta r into x. So, what about the fields in the

region two that is in the second medium? It is only the transmitted electric field. 

So, for the transmitted electric field, this is E t zero cos theta t e to the power minus j K t sin

theta t along X. So, this is the boundary condition that we have. This boundary condition is

slightly different or radically different in the way if you think about it, from the case of a normal

incidence. In the normal incidence, there was no ‘x’ component. So on the boundary, when you

have a normally incident wave, if you satisfy wave boundary conditions at one point, you would

have satisfied boundary conditions at all other points. 

So that is very important. So you satisfy boundary conditions at one point, you would satisfy

boundary conditions at all other points. However, in this case, we have a situation, where there

are these phase factors. So, these phase factors show that they will be different at different values

of  ‘x’.  So  satisfying  boundary  conditions  at  one  point  is  not  enough.  You  have  to  satisfy

boundary conditions at all points. 



Now, this boundary condition does not really seem to be helping us much. It will actually help

us. We will come back to that one later. So before we go to the next boundary condition, let us

actually write down the corresponding expression for the magnetic field. So, what would be the

incident magnetic field? The incident magnetic field will be sum H i zero, so it could be sum H i

zero and this would be the magnetic field ‘H’ along ‘y’ direction. 

The reflected field has ‘H’ along minus ‘y’ direction and the transmitted field has ‘H’ along plus

‘y’ direction. So, I can write down this ‘H’ as H i is equal to H i zero, which is the amplitude of

the incident magnetic field, and then e to the power minus j. What about the ‘K’ vector? It is K i

cos theta i z plus K i sin theta i x. So, it could be e power minus j K i cos theta i z plus K i sin

theta i x. So, this would be for the incident field. 

What about the reflected magnetic field? Reflected magnetic field is along ‘minus y’ direction.

So, let me write down the ‘y’ direction for this one. So, this is minus y direction. So, it could be

H r zero e power minus j K r cos theta r z and this is the minus sign here, plus K r sin theta r x.

And finally for the transmitted field, which would be along ‘plus y’ direction, it would be H t

zero e power minus j K t cos theta t z plus K t. 

So, the transmitted H field into the second medium is given by its polarize along ‘y’ direction. H

t zero into the power minus j and the K vector  is  essentially  the same as, I mean the same

direction as the incident K vector. So this is K t cos theta t into z plus, you have K t x sin theta t.

So, we now have one equation in which we have used the tangential electric field continuity at

the interface z equal to zero. And we have obtained one equation. 
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We can similarly use the second boundary condition, which states that the tangential electric field

component  must  also  be  continuous.  Why should the  tangential  electric  field  component  be

continuous? Because this is the case where we are considering the two boundaries to be perfect

dielectrics. So because of this perfect dielectric, there is no chance of having a current sheet

between the boundary on the interface, there are no chances of having a current sheet. 

And therefore tangential ‘H’ field is also continuous. And in, if you look at the expressions for

incident, reflected and transmitted H fields, we will see that all these fields are tangential to the

interface. Because the interface is actually characterized by the vectors ‘X’ and ‘Y’, whereas ‘Z’

is the direction along which the wave is propagating and Z equal to zero is the boundary which

actually separates the two medium with incidences eta 1 and eta 2. 

Therefore ‘Z’ is the normal to the interface as you can see over here, whereas ‘X’ and ‘Y’ define

the interface plane itself. So, for that H y being on the tangential component on the interface that

will also be continuous, so this again continuity condition or the boundary condition must be

imposed at ‘Z’ equal to zero on the interface. So when you impose that one, what you see here is

that H i o at Z will be equal to zero.

Therefore, you just are left with the phase term, which is e power minus j K i sin theta i x minus

Y direction. Therefore, this would be minus H r zero e to the power minus j K r sin theta r x. This



must be equal to H t zero e to the power minus j K t sin theta t into x. So, now we have two

equations here, one equation for the electric field tangential condition, one for the magnetic field

condition. 

And what you have to see is that these two conditions must be true for all values of ‘x’. In the

case of a normal incidence, it was possible for us to equate these two continuity conditions or the

boundary conditions at a single point on the interface because the phase factors were completely

independent of the interface point. But in this case, you have the phase points ‘x’ coming into

picture and this equation must be satisfied for all values of ‘x’. 

So for all ‘x’, 1 as well as 2 must be true. Now you can convince yourself that the only way in

this statement can be true that is for all interface points, the boundary conditions have to be true.

It can only happen when the corresponding phase terms they are all equal. So, if K i sin theta i is

equal to K r sin theta r, which is equal to K t sin theta t, that is the first condition that needs to be

satisfied. 

And the second condition is that these sums H i o minus H r o must be equal to H t o. Similarly,

for the case of this electric field condition, the phase terms, so the phase terms must all be equal

and the corresponding amplitude terms must also be equal. So, E i o cos theta i plus E r zero cos

theta r must be equal to E t zero cos theta t. So you have these two conditions and these two

corresponding amplitude conditions. 

So, you can substitute them and what you get is very interesting. 
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Let us first write down the fact that the phase terms must be equal to each other. So you have K i

sin theta i is equal to K r sin theta r, which must be equal to K t sin theta t. Consider first this

equation, where K i sin theta i is equal to K r sin theta r. So in this equation, if you observe

carefully, you will see that the magnitude of K i must be equal to magnitude of K r. Why is that

so? 

Because  the  K vector  is  given  by omega into  square  root  of  Mu epsilon,  corresponding to

whether the medium is incident medium or the second medium. So, K i and K r, both will be

characterized  by  the  same  medium  constants  mu  1  and  epsilon  1  and  they  have  the  same

frequency.  Therefore,  the  magnitudes  of  K  i  and  K  r  must  be  equal.  They  are  actually

corresponding to the same medium. 

And because they are on the same medium, their corresponding magnitudes must be same. So

because their magnitudes are same, so K i and K r can be removed from this equation and what

you get is a very interesting equation, which states that sin theta i must be equal to sin theta r and

since theta i  can be only between zero to ninety degrees,  so it  could either  go from normal

incidence to parallel or almost gracing incidence. 

So, because of that reason sin theta i is equal to sin theta r, also implies that theta r must be equal

to theta i. And this equation, you would recognize as Snell’s first law or Snell’s law of reflection.



What it says is that the angle of reflection, as measured from the normal to the interface is equal

to angle of incidence. So, this is the first Snell’s law or Snell’s law of reflection. So, now you see

that the Snell’s law is not really a law in itself. 

But this is simply the fact that there is a boundary condition to be satisfied and for the boundary

condition to be satisfied at all points on the interface, the corresponding phase terms must be

equal to zero, which automatically gives you Snell’s law. So, let me put this one in quote to

indicate that this is not really a law like a Newton’s law of motion. There is a second thing that

we need to consider. We still have K i sin theta i is equal to K t sin theta t. 

Again write down what is the corresponding expression for K i and K t, in terms of the material

Constance. So you will be able to write this as omega square root mu 1 epsilon 1 sin theta i is

equal to omega square root mu 2 epsilon 2 sin theta t. Omega is the same on both sides, they will

go away. Typically, what happens is that mu 1 is equal to mu 2 and both are non-magnetic, which

means that they are actually equal to mu 0 and they can be removed out of this expression. 

So, what you now are left with epsilon 1 sin theta i is equal to square root epsilon 2 sin theta t.

Now if you recall that square root of epsilon 1 can be written as epsilon 0 epsilon r 1 under root

and square root of epsilon 2 can be written as square root of epsilon 0 epsilon r 2, assuming that

the medium are dielectric with no losses. You can see that square root of epsilon 0 cancels on

both sides and remembering also that square root of epsilon r stands for refractive index of the

medium. 

So the relative permittivity is actually refractive index of the medium. What you get is the second

form of Snell’s law or Snell’s law for refraction. So you have n 2 sin theta t is equal to n 1 sin

theta i.  So, this expression is called Snell’s law for refraction.  So this is your Snell’s law of

refraction.  So,  you  have  two  Snell’s  law.  One  Snell’s  law  stating  that  angle  of  reflection

measured with respect to normal is equal to angle of incidence measured with respective normal. 



The second law is the law of refraction, which states that n 2 sin theta 2 must be equal to n 1 sin

theta i,  where n 2 and n 1 are respectively the refractive indexes of the second and the first

medium. 


