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Lecture - 50
Uniform plane waves

So in this module, we will continue talking about uniform plane wave. In the last class or in

the last module, we actually derived an expression for wave equation of a wave, which was

propagating along z direction, and then it had no dependency on x and y coordinates, right.

So we picked up a  particular  component  called  the  electric  field  and we picked up this

particular x component of the electric field, and then we wrote down the wave equation.
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We solved the wave equation and in the process, obtained an expression for electric field,

right, which was Ex of z given by some constant E0 e to the power minus jkz. This was the

wave which we said was propagating along positive z direction, right and a small tilda over

this Ex indicates that this is actually a phasor form. 

Because the wave we obtained the solution of this equation or the wave we obtained this

particular  expression  was by  solving  the  Helmholtz  equation,  and Helmholtz  equation  is

actually given in terms of the phasor, that is the time independent equation. However, to put

the time dependence back, you have to go back from phasor to real time notation. And to do

that one, you have to multiply this phasor by e to the power j omega t.



And then take the real part of it, right. So when we did this, we actually obtained the electric

field in terms of full vector form, the electric field as a function of z and t, z because it is the

direction  in  which  the  wave  is  propagating  and  therefore  it  depends  on  the  particular

coordinate. And obviously, this is a time dependent wave form. To obtain this full expression

which actually involves time as well as this direction of propagation.

You have to start with the phasor, multiply by e power j omega t, and then take the real part

of it. So when you did that you, you actually saw that this is given by x hat, indicating the

direction of the orientation of the electric field, E0 being the amplitude, cos omega t minus

kz. So these are the only wave components that we actually saw in the last module. Now,

given electric field, alright, can I also find out what is the magnetic field H. 

To do this one, should I take an approach in which we derive wave equation.  So, do we

derive wave equation for H, solve it, and then obtain the corresponding expression for the

magnetic field. Actually no, what we do is, we use Maxwell's equation, okay, and then from

Maxwell's equation we obtain the expression for H field. So, how can we do that, well we

have this Faraday's law, which tells us that the electric field, the curl of electric field is given

by minus j omega mu into H.

Of course, the wave we have return this one means E and H are supposed to be phasor. But E

and H are also vectors, right. So we have to now indicate that electric field is a vector, as well

as a phasor. In print, it might be very easy to do, for example, in print you can actually say

that this electric field written in bold, right, would correspond to vector, and on top it you can

place this tilda, in order to make it into a phasor.

But in handwriting the notation is little clumsy, but you have to carry out this notation as you

work along, because it will remind you that this is actually phasor. What is the phasor and

what is the vector and the inter relationship between that. So with that in mind let me write

the electric, let me indicate that this is actually phasor by writing a tilda on top of it, okay. As

I said this is slightly clumsy notation.

But this is important to keep in here,  because this  expression is valid only in the phasor

domain, okay, because this is valid only in the phasor domain, I have to indicate the field

quantities as phasors. And my notations of field quantities as phasor is to indicate them by a



tilda, okay. Alright, I have this Faraday's law, and I know what is the electric field phasor,

which is E0 e power minus jkz.

And I know what is omega, I know what is mu, and therefore I can easily use this expression

to find out what is H, right. So H is given by one by j omega mu minus curl of electric field,

right. So electric field phasor, if you look at it, it is actually this x hat E0 e power minus jkz,

right.  So this electric  field phasor is actually x hat indicating the vector direction for the

electric field, amplitude E0 and the phase dependent part or the space dependent part, which

is e power minus jkz, right.

So, what is the curl of this expression. I have x component of the electric field varying only

as the function of z variable, which means, that the corresponding component for the curl will

have  only  y component,  right.  So,  you can  actually  convince  yourself  by looking at  the

expression for the curl.  So what you will essentially see is that this will have only the y

component.

And for the y component the curl of electric field is actually given by del Ex by del z, okay.

So this is the corresponding curl, y component of the curl.
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So, you can actually substitute that one into this expression to, into this expression to see that

H will have only the y component. So, Hy phasor is given by minus one by j omega mu del

Ex phasor divided by del z. Now del Ex phasor divided by del z can be evaluated, which will

simply pull out, minus jk and then leave everything else as it is. So what you get here is



minus j and the minus j from the numerator and denominator cancel with each other and get k

by omega mu Ex phasor.

So if you look at the ratio of the electric field phasor Ex to the magnetic field phasor Hy, you

will see that this ratio is given by, so you can actually use this expression, So Hy comes

down, so this fellow goes up and this is given by omega mu by k. Now, at this point we can

proceed further  if  we remember  what  k  omega and mu are related  to.  See,  in  the  wave

equation that we had for the electric field Ex, you had something like this.

Electric field del square Ex by del z square was equal to minus omega square by v square Ex,

right, this was the phasor, where v square was given by one by mu epsilon. And we know that

Ex will have e to the power minus jkz dependence, so when you differentiate it twice you are

going to get k square, because you are going to get minus jz into minus jk, which will turn

out to be minus k square.

And  this  should  be  equal  to  minus  omega  square  by  v  square,  Ex  being  the  same.  So

cancelling of minus signs on the both side, we see that k square is related to omega square by

v square, and we said that this k is actually the propagation constant, okay. So, this k is the

propagation constant, it tells you as you go along the z axis, as you go, as the wave proceeds

along the z axis, what is the rate at which its phase is changing, or rather what is the phase

variable that is changing, okay.

So this k is propagation constant and is actually given by omega by v, and we already know

that v is one by square root mu epsilon. Therefore, this is nothing but omega into square root

mu epsilon, right.  So v is one by square root mu epsilon. Therefore,  this  one is equal to

omega into square root mu epsilon. Now, coming back, why did we go to this one, because

we wanted to use this expression for k omega and mu.

And then see happens to this expression omega mu by k, which gives you the ratio of the

amplitude of the x component of the electric field to the y component of the magnetic field.

So substitute for k as omega square root mu epsilon, so you have omega mu in the numerator,

you have omega square root epsilon in the denominator, omega cancels out. This is for the

same frequency wave we are considering, and there is mu on top and mu here, so this can be

written as square root of mu by epsilon, okay.



In free space, mu will become mu zero, right, mu is mu zero, and epsilon is nothing but

epsilon zero. Therefore, this ratio of square root mu zero by epsilon zero, which will tell you

the ratio of the amplitude of electric field, x component of the electric field to the magnetic

field y component is given by square root of mu zero by epsilon zero, and when you plug in

the numbers you will actually see that this is around 377.

Now, mu zero has units of Henry per meter, and epsilon zero has units of Farad per meter.

And when you actually put in the ratio here, and then, if you remember that E itself has a

ratio of volt per meter, and H has a ratio of ampere per meter. The ratio of these two should

be volt per ampere, right. Now, volt per ampere is nothing but, voltage by current and voltage

by current will actually tell you that this is nothing but impedance.

And impedances are measured in terms of ohms, right. So, this ratio of square root mu zero

by epsilon zero under root is actually given by, is approximately given by 377 ohms. And this

is called as free space wave impedance, okay. So one actually imagines that free space or

vacuum is actually an impedance kind of a medium, you know it is kind of a resistance. But it

is kind of a generalized resistance in the form of an impedance.

And you are looking at, or you are imagining that free space itself kind of an impedance, but

an impedance for electric field to magnetic field ratios, because electric field is volt per meter

magnetic  field is  ampere  per  meter. Their  ratios  would turn out  to  be in  the form of an

impedance quantity. And this is precisely what you are getting now here. So this square root

of mu zero by epsilon zero is indicated by a special symbol called eta zero, that zero stands

for free space.

And this eta zero is given by 377 ohms. What if your medium is not free space, right. So, if

the medium is not free space, I know that mu can be written as mu zero mu r, epsilon can be

written as epsilon zero epsilon r. So,  substituting this  square root  of mu by epsilon,  and

calling that entire thing as impedance eta, you are going to get square root of mu zero by

epsilon zero into mu r by epsilon r under root, correct.

But I already know what is square root of mu zero by epsilon zero, which is nothing but eta

zero. And most cases that we are going to consider in this course will have mu r is equal to



one. We are dealing with non magnetic materials. So, mu r is equal to one and then epsilon r

is whatever the value of the dielectric constant or the permittivity of medium. So, this is eta

zero by square root epsilon r, okay.

And sometime in one of the earlier modules we remarked that square root of epsilon r is

nothing but refractive index n, okay, this is the refractive index. So, I can equally write this

eta as eta zero divided by small n, okay. I know this is getting little confused, because you

have n here, you have eta here. But I do hope that once you go through this equation several

times,  you will  really  able to appreciate  the difference between eta and n, okay, n is  the

refractive index.

And what you can see is that, the medium impedance, not in free space but any other medium

impedance,  is  actually  inversely  proportional  to  the  refractive  index.  So  the  larger  the

refractive index, the medium impedance will be smaller, okay. So this is about the magnetic

field. Well, we have not yet completed the solution for the magnetic field, let us do that one. 
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What we have just found out is that, the phasor for Hy actually is given by this k by omega

mu, right. This is what we find out, if you are not sure, you can actually go back and take a

look at this part here. So, Hy phasor is equal to k by omega mu times Ex phasor. And k y

omega mu is a real quantity, which is actually one by eta, right. So this is nothing but one by

eta, and then you have Ex phasor, right.



But what is Ex phasor, Ex phasor is E0 e power minus jkz, right. So this is your phasor for

Hy written in terms of the amplitude for electric field. If you want you can redefine E0 by eta

as some H0, and then write down the corresponding expression. So you will have Hy phasor

is given by some amplitude H0, what is actually related to the electric field amplitude E0 as

E0 by eta e to the power minus jkz.

As before, we are interested in finding the actual electric field, right, as a function of z as well

as time. To do that one we need to multiply this phasor by e power j omega t, and then take

the real part of it, right. So multiply by e power j omega t, and then take the real part of it, in

order to obtain H0, cos omega t minus kz.

Thus, what you see here is that electric field x component, magnetic field y component, both

are in phase with each other, both vary as cos omega t minus kz as a function of z and t. But

at the same time, the amplitude for the magnetic field is reduced compared to the amplitude

of the electric field by a factor medium impedance, eta, okay.
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Alright so this what I wanted to talk about, the electric field and magnetic field. Now, at this

point, you might say that well what we have done is quite arbitrary, right. Let us actually try

and understand how the fields themselves vary, so if I am looking at the electric field lines,

this electric field lines will all be very uniform. They do not change their values, so they start

getting crowded together, so it is kind of a sinusoidal wave form, right.



So they get crowded and then the field lines will get slightly away from each other, right.

After a certain time, then they will have to start becoming negative, right. At this point, they

start to become negative, so the field lines actually go to zero over here and then they start to

become negative. They go in the opposite direction, okay and then the density of field lines

continue to decrease. Again reversing back once the wave hits positive direction, right.

This is how the electric field is. They are all bunched together. This bunching happens at the

nodes of the wave and then they are spread out at the trough of the wave. So these are the

electric field lines, so this is how I am picturing the electric field lines. As you can see, the

electric field lines are all uniform, right. They do not change their orientation.  They are all

oriented along either plus x or minus x, does not matter, right.

So it could be the plus x or minus x, but in general they are oriented along x direction. What

about the magnetic field lines. Well, magnetic field lines will have to curl around them or

they have to come out of the page, into the page, out of the page, into the page, right. So that

is what actually happens over here, so you have the magnetic field lines over here, right. So

they also getting crowded at the node points just as the electric fields lines would curl, okay.

And then they start to thin out again, then they start to thin out again. Then, they eventually

become more in the opposite direction. So for example, if you consider this open dots as the

field lengths, which are coming out, along the y direction, then this cross would consist of

electric field as going in the minus y direction. So this is your h field lines, okay. So this is

how the  magnetic  field  lines  would  look  like.  They  would  crowd and  then  they  would

separate.

They  would  change  their  orientation  just  as  electric  field  lines  would  change  their

orientations. So this kind of behavior is sometimes captured by writing the electric field lines

and the magnetic field lines in this fashion. So you have the electric field lines here. These are

all the electric field lines. At the same time, you have the magnetic field lines also coming up

here. You might have seen this one in many, many textbooks, right.

And this is how the electric field lines would look, okay. So, these are the electric field lines

and then these are the magnetic field lines, right and this is the direction of wave propagation,

okay. This is the direction of the wave propagation.



As I was saying, we kind of seem to be a little arbitrary in our selection of electric and

magnetic field lines. Why do I say that this is arbitrary because, we pick ex, we found out the

corresponding hy, so we picked ex, solved the wave equation for that one. We found some

way of deriving a sinusoidal wave of a particular  frequency and for this  ex,  there was a

corresponding hy component.

Now, you might ask, can I actually have an ey component to begin with, not ex component,

but ey component to being with and what will be corresponding magnetic field component

and you will be right. You can actually begin with ey component and then write down an

expression in terms of, by simplifying Helmholtz equations, so you will actually will have to

go back to the steps. I am not going to derive them over here.

I assume that you can actually do this by yourselves after you look at the Helmholtz equation,

but nevertheless, again assuming that ey is a function only of z and t and with t,  we are

assuming them to be in the form of e power j omega t, therefore we can drop that particular

thing.
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So I have del square ey by del z square given by minus omega square by v square ey. Again

the solution for this equation will be ey phasor will be given by some constant E0 and now I

have  already  used  up  this  constant  E0  once,  that  is  for  x  component  of  electric  field.

Therefore, let me be slightly more explicit in saying that this is the y component constant. So

this is E0y e to the power minus jkz.



This is again for the wave, which is propagating along positive z direction, okay. And then

the electric field ey phasor is given by the amplitude E0y e power minus jkz. As before, you

can actually obtain the proper electric field component by multiplying it by e to the power j

omega t and then taking the real time and also appending the vector notation. Because this

electric field is pointing in the y direction, so I have to write down the y component for this

one.

So I have to write down the y component for this one, so I have y E0y, which is the constant

cos omega t minus Kz. Now what will happen to the magnetic field h, well, we will not have

to rederive the wave equation for this, but we can simply use the fact that there is Maxwell’s

equation available to us and that ey is a function only of z component.

So if you actually look at the expression for the phasor electric field, you will see that this

particular  thing  will  only  have  the  x  component.  Why would  it  have  the  x  component,

because you have ey component varying as a function of z. ey component is a function of z

and the x component of this is actually given by minus del ey by del z, okay. So this is the

component, which must be equal to minus j omega mu h, right.

Since electric field is along y direction, the magnetic field will obviously be a phasor along x

direction, so let me write down this as minus j omega mu h x. From this, I can actually write

down what is hx, hx is nothing but 1 by j omega mu del ey by del z and you can see that with

this del ey by del z as ey is given by the constant E0y e power minus jkz, all I am going to get

here is hx phasor given by 1 by j omega mu minus jk E0y e power minus jkz, right.

So, this is given by minus k by omega mu E0y e power minus jkz. Therefore, the magnetic

field  component  h  can  be  written  as  x  directed  component  or  rather  minus  x  directed

component. Amplitude is reduced by a factor of eta, so you have E0y by eta cos omega t

minus kz. So you can clearly see that if the electric field is along y direction, right as we have

seen in this case, the magnetic field for the wave, which is propagating along plus z direction

must be along minus x direction.

Now you already see a pattern emerging from all these. So you had electric field along x,

magnetic field along y. These two are perpendicular to each other and furthermore these two



are perpendicular to z axis itself, so they are perpendicular to the direction of propagation as

well.  Moreover, the direction  of electric  field times,  you know, when you take the cross

product, the direction of electric field when you curl towards the magnetic field must point in

the z direction, okay.

So the electric field times or cross times the magnetic field, the cross product of this must

point in the z direction. So based on this, it is very easy to see that if e is actually along y

direction, so you have y cross ex, sorry ey, right. So the cross product of term something must

point in the plus z direction. What should that be, that should minus x, right, because if you

just have plus x, then it would be y cross x and that would be along minus z.

But what you want is a plus z wave propagating, therefore you write down this as minus x

hat, right. So we have phasor ratio E0x or ex by hy phasor is equal to minus ey by hx phasor

is equal to eta. Eta being the medium of impedance, right. Now there is another thing that you

might ask at this point, well Maxwell’s equation and wave equation is a linear equation.

Now for a linear equation, if I have one solution and if I have another solution, any linear

combination of these two solutions must also be a solution. Why is not this case? Actually it

is true. In this particular case, you have electric field along x component, magnetic field along

y component, that forms one pair of solution. We have electric field on the y component and

magnetic field along minus x component, these two again form one pair of solutions.

So you actually have two pairs of solutions and the linear combination of these pairs are also

solutions of Helmholtz wave equation, right, Helmholtz equation.
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Thus, if your electric field can be written as component for x, right as well as component of y,

then both terms can be non-zero at any given point of time, okay. So both can actually be

non-zero and the sum of these two in any proportional factor also, you can put in, but that is

not really important.  The sum or the linear combination of these two will also be a wave,

okay. In that case, we actually end up having an interesting concept appearing to us.

To see that one, let us write down the x phasor, so let us write down initially not in the phasor,

let us write down the complete solutions up here. So electric field can be written as x hat, just

for the purposes that electric field along x and y can have different component amplitudes, I

am going to write this as E0x and E0y, okay. so I have E0x cos omega t minus kz. Please note

that these two components must be of the same frequency. 

You cannot have one at 1 Hz and the other at 2 Hz, and then you say that these two sum are

the solution, although they are, but in the concept that we are going to introduce now, we

assume that they both have to be the same frequency, okay. So in this case they are same

frequency except that they might actually have some amount of phase difference between the

two, so there can be some relative phase between x and y components.

To introduce that relative phase, what we will do is, we will replace this omega t minus kz by

adding a certain phase phi. This would be the electric field that I am looking for, which is the

function of both z as well as t. This is electric field z as well as t and you can see that this as

two components x as well as y component. Now, it is interesting. I can actually write down

the phasor form of this, right. What would be the phasor form of this.



I have to take this drop this cos, and drop this omega t and then replace this cos omega t

minus kz by e to the power minus jkz, so I will actually have x hat E0x plus y hat, E0y e to

the power j phi times e power minus jkz. This would be the corresponding phasor form. This

is the time domain form and then this is the phasor form. You can actually verify. I think that

you should definitely verify that  you are comfortable  going from time domain to phasor

domain like this.

And now, we ask this question, suppose I am fixing myself in a particular plane, so say we fix

plane such that kz is equal to 0, okay and then we look at the tip of the electric field, right, the

wave actually has electric field and magnetic field, so we look at the tip of the electric field as

a  function  of  time.  In  which  way  would  this  change  as  time  progresses,  right  and  that

progression of the tip of the electric field as a function of time is called polarization.

Now we have already used the term polarization to mean something else. When we discussed

electrostatics, we said that polarization is the net dipole moment per unit volume, right or that

was a dipole density that we were considering. This polarization has nothing to do with that

polarization and unfortunately the two terms are used, which are the same, but they do mean

two different things.

Usually from the context, it is clear, which polarization I am talking about, okay. This is an

unfortunate  thing  that  you  have  to  keep  in  mind,  polarization  means  two  things  in

electromagnetic fields. One, it actually means dipole density and other means the tip of the

electric field, okay. Usually the context will be unambiguous and the context will tell you

whether you are talking of polarization in the matter or you are talking of polarization of

electromagnetic wave, okay.

So  with  that  small  caution  that  I  wanted  to  given,  let  us  get  back  to  what  is  called  as

polarization.


