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Inductor and calculation of Inductance for different shapes (contd)

So, one can also find similar examples of inductance calculations for toroid. We are not going to

do that one. 

(Refer Slide Time: 00:23) 

Instead  go  to  a  different  example,  which  is  very  interesting  because  this  was  one  of  the

commonly  used transmission  line or a  cable  that  about  15,  20 years ago people  were using

everywhere to connect their television sets to the antenna and this called a two-wire line. This

was around 300 Ohm line that was normally used. With two-wire line we actually have two

wires, long wires which are carrying certain currents. 

So, you have a current ‘I’ and then you have a current ‘-I’. That is current in one path and the

return current in the other path. Now I want to find out the magnetic flux linking. So, I take this

current which is along positive ‘I’ to calculate the magnetic field because of that and then I will

do the appropriate integration to find out what is the flux. First let us write down the magnetic

field, magnetic field is of course along the Phi direction. 



But for this plane that I am considering I do not really have to talk about Phi. Because this

distance is r and then the magnetic field at this particular point is given by H is I / 2 Pi r where r

is this plane. Although we know that, these are actually along the Phi direction. But for this plane

that I have cut away, this is enough for me I / 2 Pi r. If you really want to talk about the magnetic

field you actually have to insert this Phi direction everywhere. 

So,  the  magnetic  field  would  be  around at  all  points  coming  out  of  this  particular  page  or

particular screen. So magnetic field is I / 2 Pi r and I can find out what is B field. B is Mu 0 I / 2

Pi r, assuming that the Two - wire line is actually kept in air. So, this B will be Mu 0 I / 2 Pi r and

the magnetic flux will be integral of B along this radial direction. I need to again consider the

similar thing. 

So, I have to consider one meter around the Z axis if I am considering the current to be along the

Z axis and then whatever the value of r that can go from here. So, if I take this as the origin, then

this would be zero and let us say the separation here is d. So my r would seem to indicate to go

from 0 to d. So, (()) (02.44) those values B dr. This would be again the flux linkage per unit

length. I am removing the integration with respect to Z here. 

So,  this will  be given by Mu 0 I /  2 Pi is constant,  so let  me pull  this outside and put the

integration limits of 0 to d 1 / r and dr. Now clearly we run into this problem. See, we will run

into a problem here because if I integrate this, I know that integration of 1 / R is log r and if I try

to apply the limit of log to 0. Try to find out what is log 0 that is undefined. So, it turns out that I

am actually running into problem if I take r is equal to 0. 

So what is actually happening? Is the mathematics incorrect? Did we actually set up the problem

wrongly or mathematics is correct? It is giving you what it is supposed to give except that we

have forgotten a very important characteristic of wires. No wire will have a zero cross section.

Wires actually have a finite cross section. So, because of that the proper way to have written

down this two - wire line would have to be like this. 



With let us say a cross sectional area of ‘a’ and this line will also have an equal cross section let

us assume that and therefore my integration should have begun from this inner conductor to this

inner conductor. Between that two conductors is what I am supposed to find the flux through. So,

the integration limits must be changed from 0 to ‘a’ and from d to d - a. And if I do that I will get

the exact expression. 

So, and if I also take this current ‘I’ and divide it on to the left hand side I get the inductance per

unit length as Mu 0 / 2 Pi log of (d - a / a). And in case ‘d’ happens to be much larger than ‘a’,

the separation happens to be much larger than the cross section, which is almost what happens in

a practical two - wire line. This can be approximately written as Mu 0 / 2 Pi into log of d / a. A

slightly better result can be obtained if I replace this (d – a) by the geometric mean of these two

distances. 

So, I can do that but I will get a small improvement not really worth for it. Now you might have

for the coaxial cable that we consider, we did not actually talk about finite cross-section at all.

There was a finite cross section for the inner conductor. The inner conductor was having a radius

‘a’ and that was the finite conductor that we actually had to take into account. Similarly, the outer

conductor of the coaxial cables will also not be at 0. 

It will also zero cross section, but it will also have a certain finite cross section. Then why have

we neglected those effects in the coaxial cables. Strictly speaking whatever we derived for the

coaxial cable is wrong, because we have neglected the cross section. And I should not have been

neglecting those cross sections. However, there is a very good reason why we have done so.

When you look at this coaxial cable, this is normally operated although at low frequencies it is

operated. 

At high frequencies you know a few megahertz or few hundreds of megahertz when you are

operating,  current  does  not  flow  in  the  entire  conducting  surface.  Current  actually  gets

concentrated or pushed to the walls. And a very very thin layer called as skin depth. This skin

depth actually starts to become very small as the frequency increases and if you know operate



this  coaxial  cable  at  around 100 or  200 megahertz  you will  see  that  the  current  is  actually

confined to a thin walled area around the inner conductor. 

And similarly the current will be confined to outer conductor on a very thin layer. This layer is

around few micro meters and therefore there is not much that this result can be affected. So for

coaxial cable we did not really include that term. But strictly speaking one has to include, but

when you try to include that you will run into a problem of partial fluxes, just as you have run in

to a problem of partial fluxes here. But we have not really talked about it. 

There will be partial flux problem and that would be mathematically slightly tricky to take up

into account. And that is the reason why we neglected for a coaxial cable. What happens for that

one? Whereas a two wire line is normally not used at those high frequencies. Alright, so we have

talked about finite cross sections and partial flux has been mentioned. But we have not really

talked about what a partial flux is. 

It is perhaps interesting for us to take that partial flux and discuss it a little bit more in the context

of two-wire line. So, we are going to do that now. So, we will discuss partial flux now. To do that

one we need to go back and understand that filaments that we have assumed or conductors that

we have assumed which had zero cross section cannot really be true. And we have to take into

account this finite cross section of the conductors. How do we do that one? 
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Well, if you take open one of the filaments over here. So, let me try an isolate filament over here.

So, if  I  try to take the filament  over  here and then look at  it  in a microscope or in a  very

exaggerated way what I would actually see is that this filament actually has a finite cross section.

So, this is what from the top view for example. This is the top view of the conductor that we are

looking at and I am assuming square cross section just for simplicity. 

Although this is actually a circular cross section that I should have assumed. But nevertheless if

you zoom in on to a circle with a very large zooming factor it would essentially resemble a

square. And that is what I am looking at. Now within this, one can actually imagine this entire

thing is a conductor. //ok//. This is not hollow space. This entire thing is a conductor. But I can

actually //kind of// imagine this to be composed of multiple filaments. 

And over a particularly  small  segment  that  I  am interested in,  the amount  of current  that  is

carried by this would be just a small amount of the current compared to the overall current ‘I’.

See if the entire cross section ‘s’, a small ‘s’ carries the current then the current carried by this

differential element will be dI. It could be only carrying a fraction of the total current. And this

small section within this cross-section ‘s’ has a cross-sectional area of ds. 

And then if you want to obtain the total current and the total cross-section and to do that one you

want to simply sum all the contributions or essentially integrate the contributions. So, if you can



find a way to take into account the fact that conductor has a finite cross section ‘s’ and this finite

cross-section ‘s’ can be composed of multiple smaller, smaller segments of cross section ds, each

carrying a current dI then we will be able to talk about partial flux or flux that is linking with

conductors of finite cross-section. 

To do that one, let us actually review what magnetic flux linkage was, the magnetic flux linkage

was integral  of B.ds. The magnetic  flux integrated over ds. Now B can be related to A, the

magnetic vector potential and I can replace B with Del cross A and replace this Del cross A. ds,

the surface integral with a line integral over vector potential A. 

This is one of the places, where vector potential is really helpful in dealing with calculations

rather than the direct magnetic field itself. So this A dot dl is what I have, but where is this A. dl

getting integrated into it. It is actually getting integrated over the entire circuit. So, if for example

I have this circuit. So, in between I have to make some space. If I have a circuit with very small

segment here, call this as dl and there will be a magnetic vector potential A. 

And this is the filament that I have actually considered and expanded over here. So for this loop,

this loop actually forms a certain surface as well. So, the B field that would be linking has to be

found over this surface. This gaps being very small I can neglect them. So, I can also define this

entire surface as capital S. This is the region over which I have to integrate the magnetic field or

this would be the periphery over, which I have to integrate the line integral of magnetic vector

potential A. 

So, why have I written like this? So let us say there is some current flowing then this current

would actually be linking the second circuit. So, this would be the current that would be linking.

There could be some magnetic field that would be linking; there would be some magnetic field

that could be linking over here. And this is this magnetic field that we are actually interested in.

So, if we want to calculate the inductance of this loop, the square loop or the rectangular loop I

have to find out how many flux lines are actually linking to this loop. 



So for that reason, I have to consider this big surface S and I have to consider the corresponding

contour C. So, this is the integration that I am actually performing. Now this integration that we

have, which I have shown is actually applicable to only one filament. So you imagine that the

filament actually has a cross section that is not 0. And there are a lot of filaments inside. Each

filament there will be a line integral A dot dl which is going over the entire closed circuit C. 

And then you are now summing up those over the cross section ‘s’. So there are two integrations

going to happen. One integration will be integration over the big surface S or equivalently over

the big contour  C. And then there  will  be a  second integration  over  the cross-section itself.

Because  you have  to  sum all  the  contributions  of  the  filaments  inside  there.  Therefore,  the

magnetic flux properly for wires with finite cross section will involve two integrations. 

One integration over the smaller ‘s’, which is the cross section of the wire and then the integral

of A dot dl. Now instead of writing this over the contour C, I am going to write this one over the

big surface S just to indicate that this surface S is the Periphery surface. The surface bounded by

the  peripheries  of  the  wire  that  I  am considering.  Remember  that  this  capital  S  is  actually

bounded by this capital C (()) (14:06). 

And I can write this as A L. Where A L is the component of the vector potential along the line

integral dl. So I can write this as A L and there is dl and there will be cross sectional area also.

So, the cross-sectional area actually carries a current of dI, a fractional current of dI / I. Now I

can write down what is L here. The inductance, inductance will be Lambda / I. So, I multiply by

‘I’ here. 

And then I get two integrations smaller integration over cross section, larger integration over the

loop and then A L dl dI / I square. So, it could be dI / I square. So, this is the expression for

inductance that we are looking for. 
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However, this expression can be simplified slightly, if you assume that the current density ‘J’ and

the current ‘I’ as well as the cross section are all constants. J of course is the one that is coming

out of this particular conductor and J is given by I / s. The current density is given by I / s.

Therefore, dI by, the fractional current that is carried by the element of cross section ds will be dI

which is I / s the current density times the cross section ds. 

Therefore, I can rewrite dI / I as ds /s. And substitute that into this expression. Into the expression

for L. And when you do that you are going to get L is equal to integral of s integral of the capital

S A L dl and ds / s into I. This is the expression that we are looking for the inductance. And we

can use this expression for the two-wire line. 
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We will do that one. But before that I need to consider the vector potential for a line carrying a

current ‘I’ of finite cross section. And if I know that one I can use that value for the vector

potential and calculate the inductance of a two-wire line. So, the first job would be to try and find

the vector potential. This vector potential clearly will have two components. Because this would

be the conducting wire that we are considering of cross section are of radius ‘a’. 

There will be magnetic vector potential inside and magnetic vector potential outside. So, outside

the current enclosed is ‘I’ and you can actually write down the expression for magnetic vector

potential  A 0 or you can start with the magnetic field B and then calculate what is A 0. So,

outside B is actually given by Mu 0 I / 2 Pi r. If you are at a particular distance r over here or let

us say I want to use r for a different reason, so I am going to write this as Mu I / 2 Pi Rho. 

So, I am actually at a distance of Rho here. And I am actually considering the current distribution

at this particular point. Sorry, the line element at this particular point at a height Z above the

horizontal plane. And the distance between the current elements to this field point will be small

‘r’.  This  is  my notation  for  this  particular  problem.  So,  the  magnetic  field  around this  will

actually be along Phi direction and this would be given by Mu 0 I / 2 Pi Rho. 

From this you can actually calculate what is curl A. Curl A should obviously have only the Phi

component. So, it does not have any other component and you will actually see that the Phi



component is - Del A z / Del Rho along Phi. So, from this you can actually integrate for z and

you get A z of Mu 0 I / 2 Pi C 0 some constant - Mu 0 I / 2 Pi log of Rho. 

So let me not show the derivation over here, because as such we want to finish the calculation for

the inductance but I will leave this as an exercise and I guide you how to do this step by step in

the exercise. You can actually show that the magnetic vector potential outside is actually given

by this Mu 0 I / 2 Pi some constant C 0 - Mu 0 I / 2 Pi log of R. So, clearly this constant C 0 one

has to choose carefully, so that there is a proper zero reference for the potential. 

And you cannot choose infinity as the potential because, if you choose infinity as the potential,

potential  everywhere will  also become infinity. That  is  infinity  point  cannot  be chosen as a

reference for zero potential  here. So, this is one result you keep in mind. Similarly, you can

actually find out what is the internal A i that is the vector potential inside the region and this

turns out to be some constant C i - Mu 0 I / 4 Pi Rho / a whole square. 

So, if you are considering inside then this would be Rho / a whole square. The reason why you

get a Rho / a square is because the current density inside the conductor is actually proportional to

Rho square / a square. Again this will be developed during the exercises, so do not worry if you

are not able to get this one at this point. You will have the opportunity to derive this expression

for yourself.

All we need to do is to select an appropriate value for reference potential and you can choose any

circle value or any value of rho as reference potential. And if you choose rho equals to A, that

would give you the one possible solution, that is a simplified solution, where I am setting the

reference for A to zero. So if I said rho equal to A and take that as a reference for A is equal to

zero, I have to choose C zero is equal to C I, so that I actually maintain the continuity of vector

potential. 
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So if I do that one, then if I remove this one, you will see that the magnetic vector potential can

be written as minus mu zero I/2pi log of rho/a, for rho outside a. So this is the side potential. And

for inside, you have mu zero I/4pi, sorry not 2pi this is 4pi, one minus rho by ‘a’ square. This

would be for ‘a’ less, sorry zero less than ‘a’, that is inside. So, inside the vector potential is

positive and then goes to zero at rho equal to ‘a’ and then goes to negative value. 

Now with these expressions, we are ready to calculate the inductance of a two-wire line. For

simplicity, let us assume that their center to center spacing 2b, is much larger than their radius

‘a’. Each of them have a same radius ‘a’. And now I want to calculate, and this left cylinder

carries a current + I and the other current carries - I because one current is going and other

current is returning. 

Now, the flux that is linking to this left one, which we call as C 1 and the right one, which we

call as C 2, actually has two components. One because there is an internal ‘a’ field internal vector

potential A I and there is an external potential A 0 because of the circuit C 2. So the contribution

at any point or any cross sectional area of this one that you consider, will have two components,

one internal A field and an external A field. 

So this fellow letters located at a distance of rho two. But, because we have assumed that center

to center spacing is much larger than ‘a’, rho two is approximately 2b. And to find out what is the



vector potential that is appearing at this point, where we call this as point Q. So at this point Q,

rho two is 2b and you can actually obtain this by substituting for 2b in this expression for rho.

For the vector potential A, if you see there is factor of rho there and you substitute rho is equal to

2b and take I to minus I. 

So, that will give you the vector potential  A acting at this particular point. Now, what is the

direction for line element? Line element direction is along dz. Again in the previous for that two-

wire line case, where we assumed that integration along the z axis is one meters, we will do the

same thing here and therefore we do not really have to integrate over the surface ‘s’ the larger

surface ‘s’, because I am considering flux linkage per meter. 
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So therefore, the integral that I have to evaluate for L will be small integral only. Because you

can imagine that this is one filament, one filament, one filament, one filament and these are all

different filaments that I can imagine each having a cross section of ds, kept at these different

points. Then integrate this one A L dL, d small s/Is is what I have. So this is the integral that I am

going to evaluate.  

So as I said, I have removed the outer integral because that would be only integration along z

axis and we are going to consider integration for one meters. So, if I do that one and then push

this, when I remove that integral, the dL will also go, so only I am left with AL ds/Is. And this



inductance will be in henry/meter. So this is the induction that I need to calculate. If I substitute

for AL,  this  integral  splits  into two parts.  For the second term that  is  contribution  from the

external, from the circuit C 2, the contribution will be mu zero I/2pi log of 2b/a and this would

essentially be constant. 

Multiplied by the cross sectional area ‘s’ will be the value for this second term. As whereas the

first term is concerned, I have to consider A internal that would be given by this expression mu

zero I/4pi, one minus rho/a square and then integrate over that cross section. And for that, the

cross sectional is actually proportional or given by, so this is for the cross section ds, is given by

2pi rho 1 d rho 1. Because this is the inside integration that I am going to do. 

And this, here I cannot neglect by taking rho one is equal to A. So I carry out this integration

over the first term, so that I obtain the total integral. I take this small ‘s’ to the left hand side and

multiply  by  that  one.  So  I  am  left  out  by  just  integrating  AL ds/I.  And  since  there  is  a

denominator ‘I’ and numerator ‘I’ in both the terms that I will cancel out each other. So I actually,

I am left with zero to A, there is 2pi rho 1 d rho 1. 

What is the field inside? Field is mu zero/4pi minus rho 1/a square, plus the second term. The

second term is  simply  mu zero/2pi,  ‘I’ cancels  out,  log of  2b/a  * s.  That  is  the  area,  cross

sectional area that I have already integrated. So, if you evaluate this left hand integral, you will

actually see that, this will be equal to one by four mu zero/2pi. From mu zero/4pi, it becomes mu

zero/2pi.

And  then  there  is  one  by  four,  plus  the  second  term,  which  is  mu  zero/2pi  log  of  2b/a,

henry/meter. This is the inductance of this parallel two-wire line with finite cross sectional areas.
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So there are two terms, one term because of the internal A field and the other term because of the

external field. And in the two-wire line that we actually calculated, we took 2b is equal to‘d’ and

then this is essentially the expression that we obtained. So you actually had, if you go back and

check, the expression that we obtained for the inductance/unit length was actually mu zero/2pi

log of d/a, where d was 2b. 

So this is how we obtained the inductance for a two-wire line, which is a simpler case than that

of  the  inductance  that  you can  obtain  from a  slightly  more  sophisticated  value.  If,  this  has

actually  given  you  an  idea  that  the  analytical  expressions  are  sufficient  for  us  to  calculate

inductance for all these different geometries. You should be sadly mistaken because if I change

the problem from circular conductor to a square conductor or may be a slightly different sized

conductor.

You will be stumped, because no amount of analytical calculations can be applied to these weird

cross sections, although it may not seem to be so weird. Because, when you fabricate a two-wire

line, you would expect a nice circular cross section. But what you would actually get is some sort

of a deformed cross section. And if you want to calculate exactly an analytical expression, then

you would not be able to do that and people have not been able to do that. 



Because that requires a lot of complexity, that is lot of complexity and there is no guarantee that

if I change the cross section slightly, that result will hold. So there is no general formula for a

general cross section. That is what I am trying to tell you. And secondly, this also is the reason

why one has to go to numerical method. We have been talking about numerical methods, but we

will introduce numerical methods in different module. 

There you will calculate magnetic field numerically, from there calculate inductance numerically.

So however,  you have  to  understand  where  one  can  put  in  some approximations,  to  obtain

quickly a value for inductance.  And then, if you want to obtain qualitatively better  answers,

quantitatively better answers, then you have to imply numerical methods or solve the complete

electromagnetic problem. 


