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Inductor and calculation of inductance for different shapes

In this module, we will  discuss inductance.  This is one of the other circuit  element that you

would encounter apart  from resistance and resistor and capacitor. We have already discussed

capacitors and resistors earlier. Now we are going to discuss inductance and inductance of an

inductor. Now, unlike a  capacitor  or  capacitance  calculation,  you know inductance  normally

comes in two flavours. 

One is Fells inductance and the other is mutual inductance. Now, there is Fells capacitance as

well,  but that concept is not widely used compared to the capacitance between two or more

conductors.  In  contrast,  inductance  of  a  single  circuit  or  a  single  conductor  is  as  much  as

important as that of inductance between two conductors. To properly understand inductance, you

need to understand Faraday’s law, but that is something that we are going to cover in the next

module. 

So for now, we will not introduce complications because of Faraday’s law. We will simply look

at  the  definition  of  inductance  and  then  we  try  to  find  out  inductance  of  several  practical

geometries and leave the kind of theoretical justification behind that for a different module. So

that said, let us begin by defining inductance. 
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Inductance is just like capacitance. Inductance is also a function of geometry. The way the wires

are arranged, the way the wires are moving that defines the inductance.  And in that respect,

inductance and capacitance are essentially the same. If you recall capacitance was basically how

much flux or electric flux that was contained between two conductors.

And similarly, inductance actually tells us how much flux or magnetic flux is contained between

a certain conductor and a certain surface that we are going to discuss. Now, we did not really talk

about electric flux containing between two surfaces in the capacitance, although one can actually

take that approach, rather there we talked about how much charge was stored on a conductor, to

what is the potential difference that we applied. 

Now, for inductance, we actually talk of flux that is linking particular circuit. So, if you have to

understand that the capacitance and inductance are essentially dual elements and one can actually

talk about aspects of capacitance in a manner that would be exactly same for the inductance and

vice versa.  But  traditionally  it  has been the way the discussion has been that  capacitance  is

discussed by talking about the charge storage to the voltage that is applied. 

And inductance is talked about in terms of how much flux a particular circuit gets linked for a

certain current that is flowing in the circuit. So, inductance actually is defined as ratio of flux

linking to the circuit to the current that is flowing. Now, what do we mean by flux linking or flux



linkage. This turns out to be notoriously difficult concept to state in its generality. Because there

are cases, where the flux linkage is not so obvious, it is very ambiguous kind of a thing. 

For simple geometries,  one can actually  define,  what is the amount of flux that is linking a

particular circuit? But for geometries that are contrived, it is a kind of difficult to speak very

clearly in terms of flux linking. For us flux linking would simply mean that the magnetic flux

that is linking to particular circuit. To appreciate that, consider a certain circuit. So this is my

circuit and there is some current that is flowing through the circuit. 

Obviously, when there is current flowing in this particular circuit, the circuit in the form of a

wire that we have considered, there will be magnetic fields. So there will be magnetic fields that

would be circulating around this current carrying wire. However, not all the B lines that I am

drawing over here, these are the magnetic field lines. And magnetic field lines, not all of them

will actually be linking the circuit C here. 

See, you can see that the flux that is at the center would not really link, but the flux that would be

here, field lines at the edge would actually be linking. So, this is qualitatively the flux that is

getting linked. In other words, if lambda denotes the amount of flux that is getting linked, then

this is given by integral of B dot ds, which is essentially the magnetic flux. In this simple loop

example that we have chosen, even the central field lines would actually link to the circuit or

would contribute to the flux linkage. 

There are certain situations, where only partial B fields would actually linked the circuit and in

that case, we call it as partial flux linkage. So in this loop case that we have shown, that we have

shown here,  the entire  B field  would actually  link.  So what  is  the surface area that  we are

considering? This is the surface that the circuit contour actually encloses. So in, for our example,

this would be the surface area that we are looking at. 

So this is the amount of flux that is linking. In fact, this is the amount of magnetic flux. So if you

divide this one by the current that is carried by the circuit, you will get the inductance. So, this is

essentially  the  definition  of  inductance  and  we  will  study  some  simple  examples  first  to



understand and appreciate how to go about calculating inductance and then later return to some

of the difficult aspects of inductance. 
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To do that, let us consider as first example, a coaxial cable. We will later consider a different

version  of  the  coaxial  cable.  For  now, let  us  assume  that  this  coaxial  cable  has  a  central

conductor of certain radius ‘a’ and there is an outer conductor of radius ‘b’. The inner conductor

carries a current ‘I’, whereas the outer conductor carries a current of minus ‘I’ because this forms

the return path to the conductor.

The outer conductor actually forms the return path to the current. So inner conductor carries a

current ‘I’ and outer conductor carries a current minus of ‘I’, that is ‘I’ in the reverse region. We

already  know  how  to  calculate  the  magnetic  field  for  this.  And  we  will  be  interested  in

calculating the flux that is linking to this coaxial cable. So the approach that we are going to

follow would be to start by assuming a certain current ‘I’. 

And then finding out the magnetic field ‘H’ and if the medium is different, then you need to find

the relationship between ‘H’ and ‘B’ to find out ‘B’. From ‘B’, you have to find out what is the

flux that is linking. And divide by ‘I’ to get the inductance. This is the path that we are going to

take to calculate inductance. This should remind you of the path that we used for capacitance. 



We assumed a certain charge, from there we assumed, we obtained the electric field, then we

obtained the potential difference and then took the ratio of charge to potential difference, to get

the capacitance. So similarly here we are going to start with the current and hopefully end up

with inductance. We already know the result for current and ‘H’. So here we are considering a

coaxial cable. 

So if you assume an amperian loop, if you assume an amperian loop of some radius ‘r’, such that

‘r’ is between ‘a’ and ‘b’. Then you know that the total current will be ‘I’. And then the magnetic

field will actually be along the phi direction. So ‘H’ is along the phi direction and it is given by

I/2pi r, where ‘r’ is less than ‘b’. That is in between the inner and outer conductor, the magnetic

field is along phi direction. And this is the magnetic field that you are getting. 

Now, what do we make of this flux linkage? To get the flux linkage, I need to find out what

circuit I am really considering. And this circuit must have conductor to conductor. So the circuit

that I am actually interested is, if you actually look at this way for the conductor so there is an

inner conductor of radius ‘a’ and an outer conductor of radius ‘b’. Now around this will be the

magnetic field lines. 

The magnetic field lines are all around this way. If you focus your attention on to these two

conductors,  that  is  conductor  this  one  and this  conductor,  you will  see  that  there  are  some

magnetic field lines that are going through this region. Now, if you take this particular area,

which I have shown here, this area has a certain length dz, along the ‘z’ direction in which the

current is being carried. 

And it has a certain width dr. So where will this incremental surface area point to. It would point

along phi direction. So, the surface area that is pointed by this one will be along the phi direction.

And this value will be dr into dz. Now, I can actually take this surface area and keep moving

around the ‘z’ axis. So imagine now, this is your coaxial cable, this is the inner conductor that we

are talking about this is essentially carrying current. 



Now I am going to consider a surface area that would look like this. So you have this top surface,

right, bottom and left surface. Now to this side is my outer conductor, so you have to imagine, I

am not properly showing this one, but you have to imagine that there is an inner conductor and

there is an outer conductor over here and I am considering the circuits between these points. So

between this and this point, in this region there will be magnetic field and the magnetic field is

are all going around phi direction. 

So for this conductor, the magnetic field lines are all crossing around or curling around and then

if you actually cut open that coaxial cable you will see that in this region the magnetic field will

be, so let me redraw that region for you. So in this region which is around dz and dr the magnetic

field lines will all be going in, so this would be the magnetic field lines. So, these magnetic fields

will all be along phi direction. 

And therefore they are sort of cutting through this surface. They are all at perpendicular to the

surface and therefore they are sort of cutting through the surface. Now, I can actually take this

piece of cross section (()) (11:24) and actually move it around ‘z’ direction and if this coaxial

cable is infinitely long or at least very very long, then no matter where I place the surface, I am

actually going to end up with same amount of flux that is cutting through this surface.

So, if you actually let ‘z’ go completely to infinity then it’ll not really be okay because now you

are considering an infinite surface area and the amount of magnetic flux that is linking to an

infinite surface area will be infinity and you will not get any meaningful results. Rather than that

we take the integration over say 1m along the z axis and whatever the ‘r’ values that needs to be

there and then the result will actually be the inductance.

And if you divide that by 1m you are going to get inductance per unit length. This was precisely

the thing that we did for capacitance per unit  length.  See,  when we had a coaxial  cable we

assumed  a  certain  charge  distribution,  this  charge  distribution  was  the  line  charge  rho  L

coulombs per meter that is what we assumed and when you take charge per unit  length and

divide that one by the potential  difference then you would end up with capacitance per unit

length. 



So,  similar  to  that  we  are  going  to  talk  about  inductance  per  unit  length  by  removing  the

integration over ‘z’ and then taking the integration over only ‘r’.  So with that in mind, what

would be the flux that is linking per unit length? The flux linkage per unit length, may be you

can call this as some gamma prime or lambda prime, that would be ‘a’ to ‘b’ because your dr can

go at the most from ‘a’ to ‘b’. So, ‘a’ to ‘b’, I by 2pi r.

And then what would be the surface area? This is dr. The integration with respect to dz has gone.

So this integral can be evaluated and this integration is given by I by 2pi and log of r between a

to b. 
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So clearly the flux linkage per unit length lambda prime is given by I/2pi log (b/a). Now if I

divide lambda prime by ‘I’ then I end up with inductance of this coaxial cable, which is 1/2pi log

(b/a). Is that alright? In between we forgot to put mu 0 because this flux is not related to h but

related to b. So, the flux lambda prime is actually b dot ds and b will have the mu 0 factor and h

is I/2pi r, whereas b is mu 0 I/2pi r. 

So inserting mu 0 everywhere which I forgot to insert earlier, I’ll get the inductance per unit

length as mu 0 log(b/a) divided by 2 pi. If you recall what was the capacitance per unit length,

capacitance per unit length was 2pi epsilon 0 divided by log of b/a for the same coaxial cable



with outer conductor radius of ‘b’ the capacitance was 2pi epsilon 0 divided by log b/a. Now, we

are ready to actually calculate a very interesting circuit property called as distributed impedance. 

Distributed impedance is completely opposite to that of the localized impedance that you have

seen. What is localized impedance? Localized impedance is one in which I am considering a

particular L and a particular capacitance, let us say, and then I am calculating the impedance of

this  particular  circuit.  In  this  localized  impedance  as  the  name  localize  suggest,  the  circuit

dimensions, the inductance and capacitance circuit dimensions, are taken to be very very small,

whereas for a coaxial cable, the coaxial cable is not a small quantity. 

It is actually this long cavity; I mean long cable. And therefore if you want to actually calculate

you have to calculate  things in terms of capacitance per unit  length and inductance per unit

length. These quantities which are measured in per unit length are called as distributed quantities.

They are not associated at a particular point in a coaxial cable. It would be completely foolish to

ask, what is the capacitance at 10m for this particular cable? 

Because at that particular point, the capacitance actually will not exist. However, you have to ask

what is the capacitance per unit length for these structures? So, because of that these impedances

are, I mean if you can say what is capacitance per unit length and inductance per unit length, you

can also talk about their ratios or their combinations in terms of the general impedance and this

impedance will also be a quantity that would be per unit length. 

And we will later see that in transmission lines, which are very important for applications this

distributed impedance Z0 for lossless transmission line, for a lossless coaxial cable for example

is given by L/C, where L is inductance per unit length and C is capacitance per unit length and

the value for this coaxial cable would be square root of mu 0 by epsilon 0. We can say that the

log b/a factors cancel out and 2 pi factors also cancel out.

And in the numerator you are left with mu 0 and in the denominator you are left with epsilon 0.

This  value  of  mu  0/  epsilon  0  actually  has  a  special  denotion.  I  mean  we  denote  this  one

specifically with some quantity eta 0 or eta and we call this as free space impedance. So, we call



this as free space impedance and this turns out to be approximately 120pi ohms or 377 ohms.

You can actually see this one by plugging in the values of mu 0 and epsilon 0. 

Mu 0 is 4pi*10 to the power -7 Henry per meter and epsilon 0 is 8.85*10 to the power -12 farad

per meter. So if you plug in those values, you will see that this free space impedance is around

120pi ohms or 377 ohms. Associated with this coaxial cable, there is another quantity which will

become very important. This quantity is called as the phase velocity. Phase velocity, you will

later see that.

It is given by for this lossless coaxial cable as 1 by square root and C and plugging in the values

of L and C, we will see that this is actually equal to 1 by square root of mu 0 epsilon 0. And this

quantity will actually be equal to the value of c, which is speed of light. Hopefully this might

come as a surprise to you because you started out with some circuit,  we were talking about

capacitance and we talked about inductance. 

Capacitance had some electric field and inductance was defined in terms of magnetic field, but

somehow we have formed a quantity, which is actually giving me the value of speed of light. So

does this actually mean that there is some relationship between light and electromagnetic fields?

Yes, there is and that is what we are going to discuss after we have completed Faraday’s law. So,

this was for one simple geometry that we calculated the inductance,  more precisely what we

calculated was self-inductance.
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Consider a second example.  This example is of a solenoid. If you consider a long long long

solenoid you know that the magnetic field is actually, entirely along the axis and completely

confined within the solenoid. And because the solenoid can also be thought of as consisting of

circles of certain cross sections say A. These solenoids actually are wires which are wound on a

rod. 

So, if you take a cylindrical rod then that cylindrical rod has a cross section A and each of these

turns is actually carrying a current ‘I’. So the magnetic field can be thought of as linking this

entire infinite number of circular loops that we have taken because from one loop to another loop

there is a magnetic field that is getting linked. So you can actually define inductance for this one

by first finding out what is the magnetic flux that is linking. 

Magnetic flux turns out to be NBA, B is the magnetic field of the solenoid, A is the cross section

of the solenoid and N is the number of turns. For example, if you go to a solenoid which has

about 100 turns with certain turns per meter ratio, then this magnetic flux through that solenoid

will be NB*A. This is of course an approximation because if you have a finite length solenoid,

then the fields are exactly not confined and there is some amount of leakage fields outside. 

But for us this would be alright. I also know what is a magnetic field? Magnetic field is simply

NI/l that is if I am considering ‘l’ as the length of the solenoid then NI/l will be the magnetic



field multiplied by mu 0. So, I can actually rewrite this as mu 0 N square by l I*A. You can say

that A is pi ‘a’ square assuming that this circles or the wires actually have a radius of ‘a’. So the

cross sectional area is pi a square and then, lambda over I, which gives you the inductance is

given by mu 0 N square A / l. 

As a simple example take a case of solenoid, which has N of 1000 and it has a length of about

50cm.  Clearly  this  50cm  solenoid  for  which  we  are  talking  about  the  inductance  will  be

completely different from the inductance that you find in practice or maybe the better way of

saying this one is  to actually  talk about the capacitance of this  solenoid or capacitance of a

coaxial cable, which can easily run into 50cm and then capacitance of this small structure that

you would have used in our laboratory. 

Those  two  concepts  would  indicate  the  difference  between  the  localized  impedances  and

localized capacitances, inductances versus distributed capacitances and inductances. So, with N

equals 1000 turns and ‘l’ as 50cm and assuming ‘a’ as 2cm and that the solenoid is filled with air

that is there is no ferrite rod kept in between. So, mu 0 is 4pi* 10 to the power -7 Henry per

meter. If you plug in these values and calculate what would be the inductance of the solenoid? 

You will get that this is would be around 3.1 milli Henry. So, this is clearly not a very good way

of forming an inductor. 
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If you want to form an inductor with the larger value of L you need to somehow introduce a

magnetic material,  so that the inductance basically becomes inductance without any magnetic

material, which we can call as L0. In this case it would be 3.1mH multiplied by mu r which

would be the permeability of the magnetic rod that you are going to insert.


