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We will  get  back  to  solving  Laplace's  equation,  okay.  And  look  at  some  of  the  other

situations. Of course, what we have done over the past method of images was also solving

Laplace's equation, except that we did not have to solve them, because the solutions were

already  known to  us,  okay. So,  here  let  us  consider  a  couple  of  examples  of  Laplace's

equation, we will solve them in one dimension and two dimensions, okay.

Solution  of  Laplace's  equation  three  dimensions  is  not  normally  done,  one  and  two  is

common,  three dimensions  is  not very common.  And we will  get back to over favourite

parallel plate capacitor problem, okay. So, let us say, keep the capacitors over here and say, at

x equal to zero and x equal to d are the top and the bottom plates. The top plate I will keep at

a potential V0, the bottom plate is grounded, therefore the potential here is zero.

Now, I consider a close surface in the form of the cylinder, okay, which actually goes through

this one, okay. But does not really extent in to the plates,  because if they extent into the

plates,  there are charges.  And I  do not want to solve Poisson's  equation,  I  want to solve



Laplace's equation. So, I chose my surface just below the top plate, just above the bottom

plate, but I chose a closed surface, okay.

So this is a closed cylindrical surface, which also encloses certain volume if you would like.

Inside this, I want to apply Laplace's equation, right. Now, because the plates are extending

towards infinity on both y and z directions, the electric field lines will be completely uniform,

and they will be downwards, right. So the electric fields will be uniform and they would be

downwards, okay.

So, I can specify the potential on the top as V0 and the bottom plate as zero, and for the

curved surface that I have, right. The potential  is directed along x, but the normal to this

curved surface is actually directed along the radialed direction y and z, right. The normal to

the surface would be directed along the coordinates y and z, but those coordinates will be

perpendicular to x.

The simple fact is that the field is going vertically downward. There are no tangential or the

horizontal components. So the inner product of the tangential or the horizontal vector, and the

normal downward vector will  be equal to zero.  So what have done is we have specified

potential values at the top and the bottom, for the curved surface, we were actually specifying

this del V by del n, right.

So if n is along y or z, then del V by del y is equal to zero, del V by del z is equal t zero. So

these were the two conditions that we were specifying on the curved surface, okay, alright. So

let us go back and solve Laplace's equation inside. The idea being that V is the function only

of x, because the plates are extending infinitely on the y, which allows me to write down the

electric field to be uniform inside, or think about that has uniform electric field inside, okay.

(Refer Slide Time: 03:25)



And solution of this one will be very simple the Laplacian in Cartesian coordinates is del

square V by del x square plus del square V by del y square plus del square V by del z square.

But those two terms anyway cancel out, I mean anyway become equal to zero, I have only

left  with  the  first  term,  which  is  dependent  on  x,  and  partials  can  be  replaced  by  full

derivatives d, okay.

So d square V by d x square will be equal to zero, integrating this one twice, I get V of x

equals, Ax plus B, where A and B are constants. Here is where I want to put the constants,

right. I use the values of the potentials at the top and bottom surfaces and find out what are

the constants A and B, okay. Top surface, the potential is V0, the top surface is given by x

equal to zero.

So this implies V of zero equals, V0 equals A into zero plus B, so this is B. So I am actually

able to find one constant B. For the bottom plate, right, for the bottom plate where I have

potential is zero bottom plate is given by x equal to d. So V of d is equal to zero, is equal to A

times d plus value of B, B we have already seem to be equal to V0. So this gives me A as

minus V0 by d, okay, alright.

So, I have found out both the constants, so the potential V of x will be given by, A is minus

V0 by d x plus V0, okay. Now do not worry about the minus sign, that happens simply,

because I put the top plate at x equal to zero, and bottom plate at x equal to d. And I know

that the field line will start  from top plate and go on to the bottom plate,  okay. You can

actually see that one.



If you find out what is the electric field, electric field will be directed only along x axis,

because V is only function of x axis. So differentiate this one, e is minus gradient of V, so if

you do minus del V by del x, okay, you will see that differentiating this one, the constant

vanishes, and x becomes one. So, I am left with minus V0 by d, a multiplication of minus V0

by d with a minus a sign will give me V0 by d.

So the electric field is directed vertically in the x direction, and it is completely uniform,

okay. So this was the parallel plate capacitor that we wanted to look at. Now this is something

that we have already seen, so there is not much of an interest in this one, or not much of

interesting thing that happen.
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So let us ramp up the problem slightly. Let us look at parallel plate capacitor, but filled with

two dielectrics. So I have the top plate here, I have the bottom plate here. At some distance d

by two, okay, I fill this plate with material of permittivity epsilon one. And for the distance d

by two, I fill this with permittivity epsilon by two, okay. Clearly, there will be electric field,

which is still uniform, because the plates are extending towards infinity in both directions.

And there will be two fields E1 and E2. The top plate is kept V0, okay, and the bottom plate

is kept at zero, okay, or grounded. And now, because of the symmetry in the problem, let me

locate the x equal to zero line in the middle of the plates, and x equal to d by two will be on

the top,  x equal  to minus d by two will  be the bottom plate  location,  okay. Nothing has

changed.



Inside here, I have to apply the same Laplace's equation,  del square V equal to zero, del

square V equal to zero. There are of course now three boundaries involved, so you have to

consider  three boundary conditions,  right.  So there is  one boundary condition at  the top,

boundary at the middle, and boundary at the bottom, okay. And we have to also see that the

potentials  have  to  be  continuous  and  the  derivatives  of  the  potentials  also  have  to  be

continuous.

We will see that one, so if I solve the equations I am going to get V of x is equal to Ax plus B

in the region between zero to d by two, right. So in the region one, if call this as region one

and region two. So in region one the potential  is  Ax plus B, and in the region two, the

potential is some Cx plus D, where these are the constants, right. I can apply two boundary

conditions, one boundary at the top, one boundary at the bottom.

So apply the boundary condition at x equal to zero, which the top plate, sorry, at x equal to d

by two, which is the top plate, the potential is V0. So V0 must be equal to Ad by two plus B,

okay. This does not give you anything, except writing B in terms of A. So I can write B is

equal to minus Ad by two, okay. Now I can apply the boundary condition at the bottom plate,

which is at minus d by two.
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So I get zero, which is the potential of the bottom plate, equals minus Cd by two plus D.

Again, I can write D in terms of C, by taking Cd by two on to the left hand side, okay. So, I

have removed two, out of four constants, I have removed two constants. By writing, B in



terms of A, and writing D in terms of C. Now here is where I have to use the third boundary,

right. So at the third boundary, what is happening.

I know that the field is coming vertically, uniformly downwards. The plane is here, okay. The

field lines are all coming out here, okay. So if I multiply the field in region one, by epsilon

one, and multiply the field in region two by epsilon two. This epsilon one even becomes D1

and epsilon two E2 becomes D2, where D1 and D2 are flex densities, right. So these are the

flex densities.

And I know that the normal component of the flex density must be continuous across the

boundary. Thankfully, there are no horizontal components of the electric field, therefore we

do not have to consider the horizontal component. So the normal component of the D must be

continuous, and because this is a perfect dielectric, there are no free charges, right. There are

no free charges here, therefore D1 must be equal to D2.

This simply implies that E1 must be equal to epsilon two by epsilon one times E2. But what

are E1 and E2? E1 and E2 are the values of the electric field at the boundary just above and

E2 is the value of electric field just below the third boundary, which is the boundary at x

equal to 0. And I also know that electric fields are related to the corresponding potential

gradients.

So all I am saying now is that because electric field is derivative of V, not only the potential is

continuous, minus del v by del x is continuous across that x equal to 0 third boundary, okay.

So if I differentiate the potential V, I get for the top potential right, so let us go back to that V

of x, so if I differentiate this one with respect to x, I get A, differentiate the second expression

with respect to x, I get C.

Minus signs on both sides will cancel with each other out, so I do not have to worry about

that.
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And multiplying by epsilon,  I get epsilon 1 times A equals epsilon 2 times C, right. The

electric field was all uniform.  Differentiate that one with respect to x in the region 1 and

region 2 and equate the two after multiplying by epsilon 1. When I have done this thing, I can

write down C as epsilon 1 by epsilon 2 times A, good.  We have gone from four constants of

integration to three constants of integration, okay.

So let us write down V of x all in terms of the constant A. In the upper region, that is in the

region 1, the potential V of x is A into x minus d by 2, plus V0. This is in the region 1, right.

The potential is also equal to epsilon 1 by epsilon 2 A x plus d by 2, when you consider this in

the region 2. Okay, this is in the region 2. Check that these two actually satisfies the boundary

condition.

At the upper plate, x equal to d by 2, top plate of the capacitor, so this terms drops out and the

potential will be equal to V0. In the bottom plate, x is equal to minus d by 2 that is where I

have kept the bottom plate, so this term in bracket will also be equal to zero, and the potential

will be equal to zero, right. Now you can actually apply the condition for x equal to zero and

you will be able to stitch the potential to be equal. 

So if you that one, you will get minus d by 2 A plus V0 must be equal to epsilon 1 by epsilon

2 A at x equal to zero, that will be d by 2, right. Now this equation allows me to find out what

is A. If you solve this equation, you will see that A is equal to 2 epsilon 2 V0 divided by

epsilon  1 plus  epsilon 2 into  d,  okay. Now, I  have  found out  all  four  constants  and my

solution is now complete.
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So I have V of x is equal to two epsilon 2 by epsilon 1 by epsilon 2 into d, so there is V0, x

minus d by 2 plus V0 in region 1 and the solution is epsilon 1 by epsilon 2 times A. A is two

epsilon 2 by epsilon 1 by epsilon 2 d, there is a V0 here times x plus d by 2. So this is a

solution in region 2. Now let us go ahead and compute the capacitance of this structure. To

get the capacitance, I need to know what is the charge stored in the surface area, right.

So if I have a top plate here, so let me pick out a uniform surface element A and I want to find

out what is the charge stored in this region, okay and I find that one and I can actually find

out the capacitance. Because capacitance is the charge on one plate divided by the potential

difference between the two.  The charge stored is of course, the charge density times the

surface area. I have already found out the charge density.

The charge density should be epsilon 1 del v by del x evaluated at x equal to d by 2. This is

the charge density because d must be equal to rho s on the conducting plate multiplied by the

area s will give me the charge enclosed in this region A and we will see that charge per area

will be the surface charge density and that can also be used if you are really interested in that

one. This will be equal to 2S epsilon 1 epsilon 2 V0 by epsilon 1 by epsilon 2 into d.

You can show this one by differentiating this expression and then substituting x equal to d by

2. So you differentiate this top expression with respect to x, V0 cancels out and this x minus

by 2 will be equal to 1. The derivative of that one will be equal to 1 and this is what I have.



Multiply this one by the surface area S, and you will get the charge enclosed in this surface

area s, okay.

Now divide the charge enclosed in that surface area divided by V0, you are going to get the

capacitance of this parallel plate. Since this is uniform parallel plate capacitor, you can also

find out the charge over the surface s and call this as capacitance per unit surface, okay. You

will have Q by S V0 that is given by 2 epsilon 1 epsilon 2 divided by d epsilon 1 plus epsilon

2 or if you include the surface area S.

You can actually re-write this one as 2 epsilon 1 epsilon 2 S divided by epsilon 1 plus epsilon

2 into d. In fact, you can show that since this plate from the top to bottom can be considered

as  some capacitor, okay and the  bottom to other  capacitor  can be considered as  another

capacitor, so you have C1 and C2 as two capacitors. These capacitors are now in series, okay

and for the capacitance of each structure can be thought of as 2 epsilon 1 A by d.

Because epsilon 1 is the permittivity of this fellow and epsilon 2 is the permittivity of region

2 and d by 2 is the height of each of these capacitors, okay. So this will be epsilon 1 surface

area A, so surface area let us make it S, okay and d by 2 and there will be one more 2 epsilon

2 S by d and if you add them together, but capacitors in series, must add according to 1 by C

is equal to 1 by C1 plus 1 by C2, so if you add them, you will get.

To see that this is actually two capacitors in series, okay. So this is the capacitance of this

parallel plate capacitor with two dielectrics obtained by solving the Laplace’s equation and

applying  the  appropriate  boundary  conditions,  okay.  We  now  want  to  solve  Laplace’s

equation in two dimensions, okay. Before doing that one, let us look at one more solution of

Laplace’s equation in one coordinate.

Since there is nothing much we can do by putting the plates in the y or z direction, let us put

plates in a different coordinate, okay.
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Let us put plates in cylindrical coordinates, okay. For coaxial cable, we have already looked

at capacitance. Therefore, I do not want to put the coaxial cable here, consider an interesting

example, okay. I have a conductor horizontally and I have a conductor at an angle phi with

respect to the x axis, at an angle phi with respect to the x axis, let us ground the potential,

horizontal potential and apply a constant potential of V0 at phi equal to phi0, okay.

Now I want to find out what is the capacitance of this structure. Of course, there must be an

insulating gap here, okay. Otherwise, they will all be at the same potential, so I have put an

insulating gap, very small one over here. Now, clearly I have to use cylindrical coordinates

and the capacitance will be functioning only of phi, right. So the potential will be functioning

only of phi and for cylindrical coordinates.

The corresponding term for phi is, the Laplacian for phi is 1 by r square, del square v by del

phi square, okay. This must be equal to zero and for a finite value of r that we are considering

that cannot be, 1 by r square cannot be zero, therefore I have del square V by del phi square

equal to zero leading me to V as a function of the angle phi, okay. So for example, I am

considering this particular point, which is given by radius r and point phi.

This is where I am calculating the potential and this potential will be equal to A phi plus B. I

have two boundary conditions to apply. I can use that and try to find out the potentials A and

B.



If I apply the boundary condition at phi equal to zero, which is the horizontal plate, this is

equal to zero, which implies that B must be equal to zero. Because in this expression, if I put

phi equal to zero, this A phi will be zero and left hand side is also zero. B must be equal to

zero and on to the angled plate, if I put at phi equal to phi 0, the potential is equal to V0. This

implies that A must be equal to V0 by phi 0 and the potential V of phi equals V0 by phi zero

into phi, okay.

There is no direction associated with the potential, of course this is scalar. What about the

electric field? Yes, electric field has a certain direction, which is given by the gradient of V,

minus gradient of V and if you look at cylindrical coordinates, this gradient for a function that

is depending on phi is given by 1 by r del V by del phi hat and this will be equal to minus V0.

If you differentiate this one with respect to phi, you will get V0 by phi 0.

So you get V0 by r into phi 0. It is interesting that the electric field is actually a function of r

whereas the potential is completely independent of r, right. So electric field is a function of r,

of course this must be directed along the phi axis, right. Why should it be? Well, if you try to

plot the equipotential for this capacitor, you will see that the equipotentials all pass through or

directed at constant values of phi, correct.

And the electric field must be perpendicular to this angle phi and therefore they will be going

curved like  this.  These  are  the  electric  fields  and the  value  of  the  electric  field  actually

decreases  and  therefore  I  am  moving  them  away  as  I  draw  them.  So  the  electric  field

magnitude decreases as you go radially outward, as 1 by r, okay. And you can also see that

the electric fields are directed clockwise.

Because the increasing value of phi is along counter clockwise, which is what the positive

reference direction for phi is considered whereas for the electric field must be clockwise and

therefore they will originate from the top plate and they will terminate on the bottom plate,

okay. So this is how we solve Laplace equation for cylindrical coordinates. I have considered

only one coordinate.

Now I want to look at Laplace’s equation in two dimensions and I want solve one problem in

Poisson's equation, but I do not have enough time, therefore, let me stop this lecture here and

continue  solution  of  Laplace’s equation  in  the  next  class.  After  we  consider  solution  of



Laplace equation in two dimensions and one example of Poisson's equation, we will close

with electrostatics and take up the subject of magnetostatics, okay. So that is where we will

start from the next class.


