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Two parallel wires, as their name suggests, are two parallel wires, which are of certain radius

separated by a certain distance. So, let us say that the center to center conductor, these are 2

conductors, the center to center conductor is spaced at 2 h. And you want to find, so let’s also call

this as the x axis and this is the y axis and you want to find out the potential. Now, this case is

slightly interesting because if you apply a potential difference between these 2 cylinders. 

What happens is that the charges get concentrated heavily towards the sides that are facing to

each other. There would be a heavier concentration or a denser concentration of charges near the

surfaces which are facing with each other and there will be a weaker charge distribution at the

faraway ends. The faraway ends of the cylinders have a weaker charge distribution. In net what

happens is that the charge distribution is not symmetric or uniform. 

However, I can restore some semblance of uniformity by considering a line charge not exactly at

the center  to center spacing but slightly  off set  from this.  Slightly off set from this  we will



consider them to be the charge distributions. So, if you do that one, sorry this x must be the

charge must be kept closer to the, this thing. This center to center and this is the charge. The

distributions are at or the line charge distribution is at 2s separation compared to 2s separation of

the conductor to conductor spacing. 

So, 2h is conductor to conductor spacing, whereas 2s is the charge equivalent charge density to

density spacing. The line charge density is still  the line charge density. So, we can assume a

uniform line charge density Rho L. However, they are not located at the center of the conductors.

How do we now proceed?
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Well to proceed, I need to use the potential. I need to find the potential at any point on the xy

plane. Now, there are 2 cylinders. The potential would obviously be because of the superposition

of the potentials. Considering only one cylinder at a time, so let’s say + Rho L cylinder we will

consider at a time, the potential of this with respect to certain reference point or the origin point

will actually depend on this distance r + from the point s where the line charge is located to the

point P (x, y).

And this potential we already know because of the cylindrical thing, Rho L by 2 phi Epsilon r.

We can already calculate this one. This would be equal to rho L by 2 phi epsilon log of r + by r 0.

Now, this P stands for potential at point P. Now, there is another potential because of the, so let



us call  this  as V op +,  okay, similarly there will  be V op -  which would be because of the

negative line charge density rho L which is at a distance of r – from the point P. 

So, this V op – is given by – rho L by 2 phi epsilon log of r - by r 0. The total potential is the sum

of these 2. The potential at point P is the sum of these 2 and it is given by rho L by 2 phi epsilon,

so when you take log of r + by r 0 – log of r- by r 0 from the log rules, I know that this can be

written as r + by r 0 divided by r – by r 0 and this becomes log of r - by r +. So, the potential

becomes, the potential here is +, the potential here is -, this is because of the one by r L.

(Refer Slide Time: 04:27)

So, the potential due to the P + is actually rho L by 2 phi epsilon log of r 0 by r +, whereas the

potential because of the minus charge density is rho L by 2 phi epsilon log of r - by r 0. So, only

then when you do this V op the sum of these 2 potential that would be log of r – by r +. Now,

what is important to note here apart from my small blunder of – and + confusion is that the

potential would be exactly equal to 0, when the ratio r – to r + is equal to 1. 

When can r – by r + be equal to 1? It means that all the points, which are equally distant from the

positive charge density and the negative charge density, when they are equal, then this ratio will

be equal to 1 and the potential V op, the potential at the points, which satisfy this condition will

be equal to 0.
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 In other words, this happens on the y axis, because all points on the y axis for this case that you

can see they would all be there equally distant from minus as well as the, from the negative as

well as the positive charge densities. So, because of this when the ratio is equal to 1 the potential

will be equal to 0 and y axis plays the 0 potential that we are considering. The right r - will be

greater than the r + therefore the potentials will be positive. 

To the left – will be small compared to r + and therefore the potential will be negative. So you

can see that r - is larger here in the right hand side compared to r + and therefore these potentials

will all be positive. So, this potential surface would all be positive. These are the equipotential

surfaces that I am drawing. To the left these would all be negative. And you can see that these

equipotential surfaces are centers but their centers are not exactly concentric. 

They are slightly different, right? So, this is the equipotential surfaces and you can see that if you

want to calculate the potential you need to actually calculate the potential to take any point P(x,

y) and corresponding mirror image point. So if you calculate the potential at the mirror image

point that will required for calculating the capacitance. We will come to that in a minute. So y

axis is the zero potential point and the potential is log of r – by r + dependant. 
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First we will find the equipotential surfaces. To find the equipotential surfaces, I need to look at

cases, where this potential is constant, at all points on that particular surface the potential must be

constant. Let us denote this r – by r + as some k, where k is a constant and if I start giving

different values to k, then I will get different constant potentials or equipotentials, right? 

So, this if it is equal to k what it means is, in terms of x and y is that, r –, I already know is given

by x + s whole square + y square, r + square that is the distance from the positive line charges is

x – s whole square + y square. Therefore, the ratio r – square by r + square which is equal to k

square is given by x + s square + y square divided by x - s square + y square. So, you can

rearrange this equation, after rearranging you will see that this would be x square + y square + s

square – 2 s x (k square + 1 by k square – 1). 

Remember k can be both greater than 1 as well as less than 1. So, if it  is greater than 1 the

potentials are positive; if it is less than 1 the potentials are all negative. So this equation that

would be equal to 0 is the equation that relates r – and r + to the constant value k. I can rearrange

this equation or sorry, I can complete the square for this equation and to complete the square I

need to add and subtract or add to both sides this s square * (k square + 1 by k square – 1)

square.



Why because this is looking like x square + s square – 2sx multiplied by some quantity. So, if I

take this quantity square times s square, I will actually be able to simplify this equation.
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So, if I add to both sides this quantity and simplify the resulting equation, you can see that this

would be equal to (x – s (k square + 1 divided by k square – 1)) whole square + y square is equal

to (2ks by k square – 1) whole square. You can show that this is valid, so show this. I will leave

this as an exercise to you, you can show that this is the case and what you see is that we have

obtained the equipotential surfaces.

And those equipotential surfaces have turned out to be circles of center located at s * (k square +

1 by k square – 1) on the x axis and y is equal to 0. This is the center of the circles and their

radius is given by 2 k s divided by k square – 1. 
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We denote this s * (k square + 1 by k square – 1) as some h. That would be the center of the

circles that we are going to consider and the radius a, we will denote this by the radius a as 2ks

by k square – 1. Let us look at what happens as k changes. So first consider what happens when

k goes to infinity. As k goes to infinity, h goes to s. So, h goes to s why because on the numerator

k square + 1 becomes k square, denominator it becomes k square – 1. 

Therefore, k square and k square cancel each other; h becomes equal to s, so h turns to s. So, the

line charge can be thought of s centering at the origin for k going off to infinity. What happens to

the  radius?  Denominator  becomes  k  square;  the  numerator  is  k,  so  one  k  gets  cancelled.

However, radius is going as one by k now so as k goes to infinity, radius goes to 0. So the circle

radius keeps on getting smaller and smaller, while the equipotential point or the center of the

circle moves towards s. 

So this is very important for you to remember that. Consider what happens as k tends to 1 or

when k is equal to 1. When k is equal to 1, we immediately find that h will be equal to infinity

that is (()) (11:48). So, a is the radius of the circle and we will look at the 2 cases k tends to

infinity, h tends to s, a tends to 0. The circle radius goes to 0; the circle radius becomes smaller

and smaller and goes to 0, while the center of the circle moves from h to s. 



When k is equal to 1, this is an interesting case, when k is equal to 1; h goes to infinity because k

square – 1 is going towards 0. So, at k is equal to 1 the denominator is 0, so h becomes infinity

and a also becomes infinity. Now, what would be the relationship between h and a? Whether h

approaches a faster or approaches infinity faster. In other words, what happens to the ratio of h

by a? Whether it would be greater than 1 or it would be less than 1? 

You can show that when you actually do this h by a, you can calculate this; this is equal to k

square + 1 by 2ks and at k is equal to 1 you can see that the ratio h by a, would actually be

greater than 1. So, the ratio of h by a will be greater than 1. What it means to us is that the center

of the circle keeps going towards infinity. The center of the circle goes towards infinity, whereas

the radius of the circle.

So that is the center and from there the radius of the circle you are looking at and the radius of

the circle would be less than the distance from the origin to the center. So, since this distance

from the origin to the center is less than the radius of the circle, the circle would never cross the

y axis. That is important. So circle of infinite radius at infinity will not cross y axis. 

So, the potential to the entire region of the space towards the right side of the y axis would

always be at a positive potential and similar argument for the other case, when k goes to, when

you consider the negative potential that is 1 by k, you will see that the potential would always be

in  such  a  way that  the  circle  of  infinite  radius  would  not  cross  the  y  axis.  So  there  is  no

overlapping of the positive and negative equipotential circles.

(Refer Slide Time: 14:16)



So, with this we are now ready to consider the capacitance structure. So let’s summarize that. k

greater than 1 implies r – greater than r + and circles will be on the right giving you positive

potentials, positive equipotentials and when k is less than 1, this implies that r - is less than r +,

the radial distance r – is less than r + and all circles are on to the left and they give you negative

equipotentials. 

And V op goes to infinity, implies k has gone up to infinity, in that case h is equal to s, a is equal

to zero. The center of the circle h has moved to s and the radius of that has become equal to zero.

V op equal to zero, which is really the y axis in our picture implies k is equal to one, h is equal to

infinity, the center of the circle is towards infinity and the radius of this is also infinity. Now, a

circle with an infinite radius is essentially a straight line. 

We will  see  this  infinite  radius  circles  later  when  we  discuss  bit  chart,  when  we  discuss

transmission lines. So, however in this last example, h by a will always be greater than one,

indicating that the circles would not actually crossover between the two. Now our problem is

very simple. Let us begin just by writing the equipotential  surfaces. So, I have equipotential

surfaces, which are on this axis, x and y axis, located in this way. 

I  have two equipotential  surfaces,  one for positive and one for negative.  Not two, there are

multiple. But one to the right side of the y axis could be all positive equipotentials, to the left



could all be negative equipotentials. So, I am going to draw some and beware that my drawing is

not very accurate and I am slightly exaggerating all these results to show you the zero potentials

and everything. 

So, these are the constant equipotential surfaces that we are considering. They are all circles. We

can see that the center is moving towards infinity, whereas the radius is moving towards zero.

And then I have and you can clearly see why symmetry was not helping us, Gauss law could not

be  used  here,  because  the  equipotential  surfaces  are  not  really  symmetric.  They  are  not

concentric circles. They are all changing their centers depending on what value of k you have. 

So,  this  is  the  k is  equal  to  zero  circle  and potential  progressively  increases  over  here  and

potential progressively decreases to the left. Now, what do I do? All I have to do is consider to

any of this constant potentials, I can replace those potentials by conducting surfaces. I can do that

because  conductors  are  equipotential  surfaces.  All  I  have to  do is  find  two conductors,  one

conductor I put it at whatever potential I want and I will take the conductor and put it at the

mirror potential that I want. 

So, I take the conductor here, let us say, this is the conductor I want, of a certain radius a and I

will consider the equip, you know, equal mirror potential on the right hand side and consider

another potential and I get these two conductors now. Now, this becomes my transmission line.

This  is  my two wire,  parallel  wire transmission line.  All  I  have done is,  I  have taken these

conductors and inserted them in the equipotential surfaces. 

And by doing so, I have not changed the electric field. This is very important. A metal can be

introduced at an equipotential surface without changing the electric field. That is very critical

thing that you have to remember, even later when we discuss transmission lines. So I have taken

two circles, which are, I mean I have taken two metals and I have placed them at appropriate

radiuses. For example,  if the radius is given as a, you take the two equipotential  surfaces of

radius a, and place the two metal surfaces. 



Having done that, I need to still find out what is the potential difference between the two and

from there calculate  what  is  the capacitance?  Let  us say I  pick point  P over  here,  which is

unfortunately at a very short distance r +, I will also pick a corresponding mirror point, call this

as P prime, which would be at r -. This would be at r -. 
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And if I now ask, what is the potential difference between the point P and P minus, as P and P

prime, that potential difference will be V pp prime, given by V op, which is the potential of the

point P with respect to a certain origin minus potential of point P prime with respect to the origin.

Because of symmetry, both P and P prime are at equal, but opposite potentials. Therefore, this

must be equal to two times the potential of the point P. 

This  is  at  hundred  volts  and this  is  at  minus  hundred  volts,  the  potential  difference  is  two

hundred volts, which is two times the potential of one of the conductors. So this is, V pp prime is

equal to two times potential V op. But what is this V op? V op, we have already seen, is equal to

rho L/ two pi epsilon, log of k. This is something that we have already seen. And two in the

numerator cancels with the two in the denominator to give you rho L/pi epsilon, log of k. 

But what is k, in terms of s and h. So, express k in terms of the parameters h, a and s. These are

important for us because these are the ones, which are determining where we have to place. So, it

is good to know what is the value of k in terms of h, a and s. And you can do that very easily, if



you recall a, the radius of the equipotential surface as 2ks / k square - 1 and h as s into k square +

1 / k square - 1. You can solve for these two, by finding h/a. h/a is k square + 1 divided by 2k. 
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And then, invert this relationship, we will get a quadratic equation in k. So, you get k square -

2h/a * k + 1 is equal to zero. So, this quadratic equation that you obtain will relate k to h and a.

The solution of this quadratic equation is, it has two solutions, and it is given by h / a plus or

minus square root of h / a square minus 1. This is the solution of this one. And if you choose

positive cases, if you choose positive root of the quadratic equation, you get k given by h/a +

square root of h/a square - 1. 

And this corresponds to the equipotentials on the right side. If you choose negative root, your k

will be equal to h/a minus square root of h/a square minus 1. This will give the equipotentials on

to the left. So, that will give you the equipotentials on to the left and let us call this as the k and k

prime, just to indicate that this a positive root and this a negative root. 
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And you can show that k into k prime will  actually  be equal to one.  So, going back to the

potential difference V pp prime, the potential difference between the point p on the conductor

with a positive charge density and the conductor on the negative charge density point p prime,

you see that V pp prime is equal to rho L/2pi epsilon log of k - rho L/2pi epsilon log of k prime.

Because for the point p, we have a potential equipotential on to the right that you are calculating

and you have to choose the positive potential. 

For  the  left,  you  have  to  choose  k  prime.  But,  because  k  and  k  prime  are  related  in  this

expression, k is equal to 1/k prime, you can substitute for each other and you will see that this is

equal to rho L/pi epsilon log of k, something that we have seen already earlier. Now what is k. k

is equal to h/a, because it is a positive root, plus h/a square minus 1 under root. So this is the

value of k. 

And you get p to the potential difference V pp prime is equal to rho L/pi epsilon ln of or log of

h/a plus square root of this quantity. And capacitance per unit length of these two parallel wires is

given by the charge density  rho L divided by the potential  difference V pp prime.  And this

potential difference is given by so this is rho L, pi epsilon goes to the numerator and I get pi

epsilon divided by log of h/a + h/a square -  1 under root.  So,  this  is the expression for the

capacitance per unit length. 
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This expression for capacitance per unit length can actually be simplified considerably provided

h is much larger than a. It happens that if h/a ratio is around 10 or more, greater than or 10, then

the quantity h/a square can be considered, I mean will become very much larger than this one

and the  root  can be cancelled  out  on that  one,  root  can  be  cancelled  out  on the  square,  so

capacitance per unit length can be approximately written as pi epsilon divided by log of 2h/a. 

And if you compare this expression for capacitance per unit length with that of the capacitance

per unit length of the coaxial cable, for the coaxial cable we had 2pi epsilon divided by log of

b/a. If I recall correctly, let us actually go to the top and find out that it is actually the correct

expression. So the expression for this one was 2pi epsilon log of b/a, where b was the radius of

the outer cylinder and a, was the radius of the inner cylinder. 

So, this is the coaxial cable and this is the two wire transmission line and you will see that the

capacitance  per  unit  length  of  the  two  wire  transmission  line  is  approximately  half  the

capacitance per unit length of the coaxial cable, provided you take this 2h as b. So, if you assume

that the two wire can be equivalently represented as a coaxial cable of radius a, inner radius a,

and an outer radius of 2h. 

Then,  you can see that  the capacitance  of the  two wire line is  approximately  half  the,  it  is

actually equal to half the capacitance of coaxial line, provided that h/a is much larger than 1. So,



this  completes  our  introduction  to  capacitance  and  calculation  of  capacitances.  More

sophisticated capacitances, which involve multiple dielectrics, we will calculate them, but after

we  have  formally  introduced  to  how  to  calculate  or  how  to  solve  Laplace’s  and  Poisson’s

equation. 

So, the next topic that we will be considering in the class will be how to solve Laplace’s equation

and Poisson’s equation.  There we will revisit some of the capacitance calculations. However, the

primary goal there would be to show you that in the electrostatic case, you can actually solve the

Laplace’s equation  and Poisson’s equation and the solutions  that  you will  obtain will  all  be

unique. 

And the other thing that I would like to convince you is that the analytical form of the solutions

that  you will  be  able  to  obtain  is  actually  limited  to  a  very  small  class  of  problem.  So far

whatever  we have  done,  we have  used  lot  of  closed  form expressions,  but  there  is  strictly

speaking  not  valid  for  a  large  class  of  electromagnetic  problems  and  solving  Laplace’s  or

Poisson’s equation also falls in the same category. 

However, it would be, it is comforting to note that if you solve Laplace’s and Poisson’s equation

by whatever means, it could be numerical means, it  could be graphical means or it could be

analytical means, the moment you obtain the solution, which satisfies the boundary conditions

and the other considerations of the problem, then that solution will be unique. So you do not

have to worry, if you have used a numerical method that whether the solution I obtain will be

unique or not, whether there is another solution that I have missed. 

It  tells  out that  we will  prove theorem called as uniqueness theorem. It  will  tell  us that  the

solution of Laplace’s and Poisson’s equation once you have obtained by any means will actually

be  unique.  Of  course  that  unique  solution  must  be  satisfying  the  appropriate  boundary

conditions. 


