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So in the previous class we started discussing capacitors,  we calculated the capacitance of a

spherical capacitor of concentric spherical capacitor by using two methods. First method was Q-

method, in which we assume a certain charge distribution, a reasonable charge distribution on the

conductors that constitute the capacitor. And in the second method, we called as V-method, we

solve the Laplace's equation and find the electric field.

Find the total charge that is contained on the conductor and the ratio of those will give us the

capacitor value, the capacitance of the capacitor.
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Here we will continue to find capacitance of some practical structures. The capacitance that we

are going to consider now is, that is something very familiar to you guys this is called parallel

plate capacitor. Parallel plate capacitor is something that you are familiar with whenever you talk

of capacitor even those who don't necessarily do this course or will never do this course in their

lifetime will still proudly have an idea of what parallel plate capacitance would be.



The formula for that is fairly simple that you can remember it, it is Epsilon A / d, where A is the

area of the plate of the capacitor and d is the separation between the two plates. So let us see

where this famous formula comes from and also see whether this is actually valid or not valid or

if it is valid, how much is this valid? So parallel plate capacitor simply consists of two parallel

plates. 

So,  it  consists  of two parallel  plates  of same area and make both of them of the plates  are

composed of conductors which conductivity Sigma, which can be thought of to be infinity and

then you apply a  potential  by a  battery  by connecting  the  two plates.  Now because  of  this

potential that is applied we know that there will be charges induced on the top and bottom plates.

The charges are induced from the top and bottom plates.

And there will be an electric field from the top plate to the bottom plate. So, if we start looking

the expression for capacitor, the capacitance of this structure, let us first consider the Q-method.

In the Q-method, we will have to assume a certain charge distribution. So reasonable charge

distribution that we can assume is that of a surface charge density Rho S. So we assume a surface

charge density of Rho S Coulombs per metre square on the upper as well as the lower plates of

the capacitor. 

Now, from boundary condition that you have seen,  we know that there will  only be normal

component of the electric field from the top surface or the top plate. So, if you recall what the

boundary condition was you have a conductor and you have free space or dielectric, of course we

will assume that there is a dielectric Epsilon sitting in between these two. So conductor and

dielectric we have already seen from the boundary condition that there will only be the normal d

component. 

And this normal d component will actually be equal to the surface charge density on the surface

of the conductor. So, we have seen this from the boundary condition. Now, we also know that D

n will be related to the electric field, normal electric field. D n is equal to Epsilon E n. So this

will be equal to Rho S which gives me a uniform electric field, which is all normal to the plate

and this is given by Rho S / Epsilon volt per metre. 



Now, what  is  the  potential  difference  between  the  top  and  the  bottom  plate?  So  potential

difference between, say the top and the bottom plate is obtained by the line integral and this line

integral is that of the electric field Rho S / Epsilon times some dx. If you call this as x is equal to

zero and this as some x is equal to d, then the line integral, which you are taking will be dx and

an appropriate path is what you are considering so say from d to zero.

And the potential difference will turn out to be as Rho s / Epsilon * d. I am not distinguishing

between whether this is zero to d or d to zero, because simply I am interested in the potential

difference not in the exact potential of the top and the bottom plate. So, for the configuration that

we have written in this way, the potential difference will be from the top to bottom plate will be

equal to Rho S d / Epsilon. 

So, if you are connected the positive supply to the upper potential, then the upper plate will be at

the potential  of Rho S d /  Epsilon with respect to the bottom plate.  So, this is the potential

difference. Now, you already know what is the charge density? Right? 
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The ratio of these two capacitors can now be obtained by Q / Delta V, where Q is the charge that

is contained. So, how much charge is actually contained? If the plate has an area of A, the total

charge contained will be equal to Rho S * A. So, if there is a uniform surface charge density, here



on the upper plate as well as on the lower plate, the total charge contained will be equal to the

surface charge density multiplied by the area. 

So, this will be equal to the Rho S into A. Now divide this one by the potential difference that

exists between the plates which Rho S d / Epsilon. Rho S clearly cancels on both numerator and

denominator and you will be left with Epsilon A / d. This is the formula for the capacitors that we

were looking for. Unfortunately, this formula is wrong. Now, we actually don't really say that it is

wrong. 

It is a very good approximation. This is very very good approximation and something that is very

handy to use to the actual capacitance of a parallel plate capacitor. To see why this is not exact

but this is approximate; you have to see what is happening at the edges of the plate. For reference

I am showing you what is happening at the edges of one of the top plate and the other edge of the

bottom plate. 

But you have to remember that these edges are, there are 4 edges. So at all edges this is precisely

what is happening? So the field is uniform in the centre. No doubt, the field line start from the

top plate and they would drop down to the bottom plate. This is perfectly alright. However, the

charges that are there at the edge, they are accumulated. So these charges not only give you the

electric field in the direction downwards.

But there would also be the electric field in the tangential or in the horizontal direction. So the

electric field lines would also start looking to have some non-zero tangential component and

there would sort of – You know, go from the upper plate to the lower plate by following a curved

path in addition to the uniform downwards path that we have shown earlier, which is valid in the

centre of the capacitor. Now at the edges of the capacitor you have this curved path. 

These  curved  paths  or  these  curved  electric  fields  are  called  as  fringing  fields.  And  any

capacitance or any capacitor which has this finite area or you know edges, wherever there are

edges there would always be this fringing fields. It is important that there is fringing fields are

there  only in  the  edges.  So,  if  there  are  capacitors  which  have  edges  there  would  be these



fringing fields. And fringing fields also contribute to the capacitance. 

So,  the  one capacitance  that  you have  seen is  the capacitance  in  which you have  place  the

uniform dielectric down here. But, there would also be a capacitor that would exist  between

these top and bottom places because of the fringing field. So, the capacitor is actually because of

the  uniform electric  field  plus  the  fringing  fields  that  exists  because  of  the  edges,  charges

associated with the edges. 
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And in calculating the capacitance of the parallel plate capacitor we have completely neglected

this fringing field. We are able to neglect this fringing field only when the area of the plate is

very large compared to the plate separation. So, only when A is much higher compared to the

plate separation d, then we can say that the capacitance is Epsilon A / d and that actually forms

the very good approximation. 

Otherwise this is not really true because fringing fields have been neglected. It turns out that to

include fringing fields in a close form expression is very difficult. Therefore, what we normally

do is, we actually use a numerical method such as method of moments, a popular method to find

the  fringing  fields.  We calculate  the  actual  charge  distribution  that  happens  by  taking  into

account the edges. 



And from there calculate the charge enclosed, calculate the potential difference and calculate the

capacitance. And it can be shown that those calculations that we do actually much more, I mean,

correspond much more closely to the experimental values. This Epsilon A / d is valid as long as

A is much larger than d.  Say A is about 10 times the separation, then this expression is very

good. Ok, this was for the Q- method. 

How do we actually use another method which was the V- method to calculate the capacitance?

To  obtain  V-  method  we  need  to  solve  Laplace's  equation.  So,  again  going  back  to  the

assumption of neglecting fringing fields and assuming everything to be uniform the Laplace's

equation solution, in we can look at the solution in Cartesian co-ordinate system you know the

plates  are  assumed to be in  the Cartesian co-ordinate  system described by the Cartesian co-

ordinate system. 

And since the field’s lines are all uniform and going only in a particular direction, I can take this

as with only one variable. So, I have d square V / dx square is equal to zero. And that is only one

variable that is necessary for me. How do I solve this? Well integrate this one twice, so V of x

will be equal to first integral will give you some constant K 1. So that will be dV /dx is equal to

K 1. Second time you integrate; you will get K 1 x + K 2. 

Again you have V at the top, which is valid at X = 0, at the top plate is the applied potential

difference or the assumed potential of V 0. So, V 0 will be equal to K 2 and V and at the bottom,

since K2 is equal to V 0, then it becomes K 1 x + V 0. And at the bottom surface x is equal to d.

So the potential is zero there and this would be dK 1 + V 0 which implies that K 1 is equal to -V

0 / d. Is that correct? 

So dK 1 + V 0 is equal to zero. So, dK 1 into d is equal to -V 0. So, therefore K 1 is equal to -V 0

by d. 
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So if you can put these two into the solution, so you will get V of x as V 0 - x V 0 / d. So, at x

equal to 0 these are the potential V 0 at x equal to d, these are the potential of 0. So, this is the

potential function between the two parallel plates and you can see that the potential is linear. You

will see the linear potential whenever there is uniform electric field, whenever electric field is not

uniform only then you will see some different potential that is not a linear potential. 

In this case the electric filed assume to be uniform therefore potential is linear and it is given V 0

- x V 0 / d. What is the electric field?

(Refer Slide Time: 12:17)

Electric field, you did not have to do anything. It is actually uniform. And what is the electric



field? Electric field is – Del V of x that is gradient of x. Gradient will give you - Del / Del x of V

of x along X direction. And if you differentiate this quantity with respect to x you will get - V 0 /

d, there is already another minus because of this minus condition, so it actually becomes V 0 / d

into x hat. 

So, this is a uniform electric field directed downwards along the X axis and that is given by V 0

by d. Next what we should do? In order to compute the potential, I need to know the charge

distribution. So, to obtain the charge distribution I can consider the plate of the area A. I know

what the electric field that is coming down here is, so I also know what is D field is now. D field

will also be along X direction.

And it would be given by Epsilon V 0 / d, because d is equal to Epsilon E. So, this will be D

equals Epsilon V 0 / d along X direction itself. The total charge enclosed will be given by the

magnitude of D into A, because D field is everywhere perpendicular to the surface area of the top

or the bottom plates. So this will be equal to Epsilon 0 V 0 A / d. This is the total charge that is

enclosed. 
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Now capacitance is given by, charge divided by the potential. The potential applied is V 0. So,

clearly this will be equal to Epsilon 0 V 0 A / d divided by V 0. V 0 cancels on both sides and

you are left with Epsilon A / d. So, this is the capacitance that we have looking for earlier in the



Q-method and we actually obtain the same result using V-method. Now it is interesting that when

you look at the ratings of a capacitor, capacitors are given a certain rating, in terms of a voltage. 

That is a maximum voltage that you can apply across a capacitor. If you apply more than the

voltage that is rated, then there will be arcing between the capacitor and the capacitor simply gets

damaged. Why is the capacitor getting damaged? What happens is that, for every dielectric that

you consider there is a certain breakdown electric field. 

A breakdown electric field is one if you apply more than this electric field, which is more than

the breakdown electric field what happens is that the electric field becomes so strong, that it

actually rips apart the molecules of the dielectric. In the sense that it ionises the dielectric and

dielectric will not be a dielectric anymore. So, it becomes into a different kind of a matter. So,

there  is  always  a  certain  maximum electric  field  that  you will  have  to  apply  to  any  given

dielectric. 

And this maximum electric field is called as the dielectric breakdown. Because beyond this, the

dielectric simply breaks down. So, there is a dielectric breakdown strength. And since electric

field is related to the voltage you can either quote the breakdown strength in terms of the electric

field E or in terms of the maximum voltage that you can apply. So, what is that got to do with

this parallel plate capacitor? Well, there is a certain maximum voltage that you can apply. 

So  let  us  call  this  is  as  the  maximum voltage.  The  maximum voltage  will  be  reached  and

assuming that you want to fabricate a capacitor with a small value of d.  Why do I want to have a

small  value  of  d?  So  that,  I  can  fabricate  larger  values  of  capacitance.  See  capacitance  is

universally  proportional  to  d  for  a  parallel  plate  capacitor.  So  as  d  becomes  smaller  the

capacitance increases. 

So, I can make it smaller but I cannot keep making it smaller because as d becomes smaller V 0 /

d which is the electric field that becomes larger. So, if d is at its minimum value then the electric

field associated with that which will be the maximum is given by whatever the applied field, let

us say the applied is also at its maximum and this is given by V max / d min. And this quantity



has to be less than that breakdown electric field. 

This actually puts down the limit and how much d min you can use. The d min should be equal

to V max / E break. Indicating that d, the separation should always be greater than this minimum

value. For example, consider the breakdown strength of a given dielectric as about 30,000 volt

per centimetre. And let us say that the capacitor is rated to work at 300 volts. So the capacitor is

rated to work at 300 volts.

And  it  actually  has  a  breakdown  electric  strength  whatever  the  material  that  fills  has  a

breakdown electric strength of 30000 Volt per centimetre. Then, what should be the minimum

value  of  the  separation.  The  minimum separation  should  be  the  maximum voltage  that  the

capacitor can withstand which is 300 Volt divided by the breakdown electric field strength of that

dielectric, which is 30, 000 Volt per centimetre giving you 10 to the power -2 centimetre. 
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So your separation d must be greater than 10 to the power -2 centimetre so, as to avoid breaking

down the dielectric and damaging your capacitor. Let us look at third and one of the most widely

used transmission line or a transmission cable called coaxial transmission line or a coaxial cable.

This is very important because for up to say few hundreds of megahertz one can actually use

coaxial tables. 



There are axial  cables  which can be used up to a few hundreds of megahertz  and these are

ubiquitous, you can see them in every lab whether you are connecting a signal generator to your

circuit board, you are connecting 2 signal generators, you are connecting an oscilloscope to your

circuit board, you would normally use a coaxial cable. At least at one end it would be a coaxial

cable. 

So, how do we calculate the capacitance of a coaxial cable? First let us look at the, what is the

structure of a coaxial cable. A coaxial cable is composed of two cylinders one having a radius a

and the other having a radius b. So, it is composed of two cylinders one having a radius a and the

other having a radius b and the material in between is filled with a dielectric of permittivity

Epsilon. 

So, this is the coaxial cable as you can see, the cable is uniform along the length that we are

going to consider and our objective would be to calculate the electric field, when I hold the inner

potential at some value be zero and take the outer potential as the reference. So, outer is zero

potential and the inner one is at certain applied potential. If you recall our discussion on electric

field of a line charge, you would see that we actually solved this problem. 

But we will not do that one. We will derive the capacitance fresh by calculating it using the Q-

method or the V-method. The reason why we have, I wanted you to remind you of that we have

already solved this problem is because when you consider a uniform line charge of some line

charge density Rho L we found that the field at any point because of this line charge would be

going as 1 / r, it would be proportional to 1/r. 

And when you calculate the potential, you found that you could not choose infinity as the point

of reference. For a point charge, we could choose infinity as the point of reference and calculate

the absolute  potential.  For this  line charge of certain  line charge density, you could not  use

infinity as the point of reference. So if you remember the exact calculations that we did, we

actually took the ratios of this some r1 to r2, we said, okay at 16.5cms I have a potential of zero

potential.



And then at 10cms I have a potential of 5volts and then gradually I looked at all the equipotential

surfaces.  You know, if  you remember  that  you would remember  that,  that  was essentially  a

coaxial cable that we discussed. And the point that I am trying to remind you is that, I have to

take one of those potential points from a certain distance from the inner charged cylinder as the

point of zero potential.

And calculate all the potentials with respect to that point, not the infinity point as the point of

reference. 
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With that remembering thing in your mind, let us use the Q method to calculate the capacitance.

So, we don’t completely forget the fields of a line charge. We will assume that the inner cylinder

is now induced by a line charge Rho L Coulomb per meter. A similar minus Rho L Coulomb per

meter would appear on the outer cylinder as well. So, with this Rho L Coulomb per meter, what

could be the electric field?

I am not going to derive this, the electric field will be Rho L/2pi epsilon r, hopefully you know

how this electric field is obtained, this is radial electric field that we just described. What could

be the potential V? The potential V between the two points is also given by, let us say since I

want the potential difference between the two points, delta V is given by integrating this Er from

outer surface to inner surface with a minus.



So what you get here is Rho L/2pi epsilon log of b/a. This also we saw in the last few classes

ago. So, I seem to have everything. Now consider a length L of the cylinder. In this length L of

the cylinder, what is the total charge that is enclosed by the cylinder? This could be Rho L into L.

I made a small mistake, the limit of the integrally from b to a, I wanted to put the b negative sign

in front of the integral, but I by mistake put the negative sign in the limit itself. 

So, this is integral b2a and you can calculate this and you will see that this could be Rho L/2 pi

Epsilon log of b/a. Now coming back to this length L of cylinder, how much charge is contained

in the length L of cylinder, it would be Rho L into L. This is the line charge density Rho L. At

times Rho L will be the total charge that is contained. So the capacitance will be equal to Rho L

into L of length L. 

So capacitance of length L will be equal to Rho L into L divided by Rho L/2pi epsilon log of b/a.

So, 2pi epsilon goes to the numerator, Rho L cancels with both numerator and denominator, Rho

L cancels there. And we get 2pi epsilon L/log of b/a. 
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However, in such structures, which are mainly used for transmission lines, you are not interested

in that capacitance of a given length, you are interested in capacitance per unit length. Because

these capacitances  per unit  length,  inductance  per  unit  length,  resistance per unit  length and



conductance per unit length are the parameters that we used to describe a transmission line. So,

capacitance per unit length is capacitance divided by L that is capacitance of length L divided by

L and this is given by 2pi epsilon/ log of b/a farads. 

A fairly simple formula again to remember. Of course, here again the formula is not completely

correct  because  we assume that  all  of  the  charge distribution  what  essentially  a  line  charge

distribution of zero extent and it was all sitting nicely in the center of the cylinder. And that the

cylinder was going all the way from zero to infinity or from minus infinity to infinity. 

And that is how we say the capacitance per unit length is constant and it is independent of the

length of the coaxial cable, which is again strictly speaking not true, because you do have to

terminate the coaxial cable at some end. However as long as the length L is large and you are not

looking at the edges of the terminating ends, then this capacitance per unit length expression is

quite accurate. If not, well you will always have to use a numerical method to solve this problem.

So we will not look at the V method for this. You will get the same condition and it will turn out

to be solving Laplace’s equation in cylindrical coordinates. I will leave that as an exercise to you

guys. Okay? Now, we will consider a situation that is slightly more difficult than what we have

been discussing, but at the same that is very, very important practically.
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This is that of a two parallel wires. 


