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Let  us close up conductors  by discussing an important  aspect  of  them called  enclosures,

okay? This is something that you would find in various situations. You have some electric

fields that are coming from various sources. It could be the power line electric field, it could

be the electric  field from your cell  phone. It  could be the electric  field from some other

electromagnetic component that you are using and you want to shield this electric field in

reaching a certain apparatus.

Well, you have an apparatus which let us say is a medical equipment and you want to shield

this medical equipment from any external electric field. How would you do this? Well, you

must have also heard about enclosures. So you take a piece of metal, preferably a copper or

aluminium and then you surround the apparatus  that  you want  to  protect  by placing  the

apparatus in the enclosure formed by a metal.

So if you consider an arbitrary metal enclosure of an arbitrary shape that I have drawn and

you can put any apparatus that you want,  so there is some apparatus here that I want to

protect, now this gets protected because there will not be any electric field inside. Why is



there no electric field inside? Obviously if you take, if you now remove the apparatus for a

minute, then take the interior surface si because this surface does not enclose any charge, of

course, you do not want to place a charge inside assuming that you are not placing a charge

inside there are no charges here and consequently there are no Di fields.

Now  you  imagine  what  happens  when  this  arbitrary  metallic  shell  is  exposed  to  some

charges. It could either be by inducing a charge. So when I induce a charge, these charges

would start accumulating on the surface of the conductor. They would accumulate on the

surface of the conductor and still there will not be any electric field inside the interior.

It is interesting why that is so, we will discuss that in a moment but going by Gauss’s law

definitely there will not be any electric field or there won’t be any charges enclosed, right? So

Gauss’s law for this would still tell you that if Di stands for the internal D field then integral

of Di dot d s will be equal to zero on the internal surface Si. Suppose you consider the same

metallic shell and then expose it to an electric field, an external electric field, call this as E

external what would happen?

The  external  field  would  simply  go  or  transmit  through  this  enclosure  or  seem  to  be

transmitted through the enclosure but because of this electric fields there would be charges

induced much in the same way as the charges that  are induced in the previous charging

process. The charges induced are however, that was supposed to be a charge induced, let us

write  down this,  the charge  induced is  a  negative  charge here just  on the  surface of  the

electric field, on the outer surface, not on the inner surface.

Similarly, there will be charges here which would be induced on the surface they would all be

positive charges. So in a way what has happened is, the charges are induced on the outer

surface and not on the inner surface. So there is no electric field inside. Now you might ask,

all that we have said from Gauss’s law was that, if you apply Gauss’s law to the case where

this was exposed to an external field or some charges were induced is that you can say Di is

equal to zero.

But I know that a closed surface integration of a flux density can still give you zero if there

are equal amount of D lines coming in and equal amount of D lines coming out. So there

must be no divergence, which we understand if there is divergence there must be source of



charge, but it could very well happen that they would form continuous tubes or lines of field,

circulating or closing up on themselves such that there is no divergence, but how can you say

that there is no Di, in other words, what we are claiming is that if I take this arbitrary metallic

shell.

Then what we are claiming is, there could be some charges induced on the inside metal or

there could be charges on the inside surface of the conductor and there would be an electric

field because of this charges on the inner conductor, it could probably happen there. So if

there are this situation where our charges are induced on the inside then there will be an

electric field coming from positive to negative charge.

So there would be some electric fields that are coming from positive to negative charge. Now

if you were to take a Gaussian surface, so let us say this is my Gaussian surface, clearly there

would be, the integral of D dot ds will be zero, but there is an electric field or there is a D

field inside here. Can this happen? Turns out that this cannot happen, okay? Consider the

same scenario that we have shown here.

There are reasons why this will not happen, we will do that. Now, instead of considering the

Gaussian surface lying entirely in the interior let me consider a Gaussian surface that lies

partially in the interior and partially in the metal. The red color surface that I have shown

indicates that the contour is actually lying partially in the interior and partially in the metal.

Let us also assume that all this normal parts of the path will not really contribute much and

now if  you apply Gauss’s law to this  one, what you will  see is that,  or if  you apply the

integral of E dot dl to this part,  you expect that integral of E dot dl to be equal to zero,

because this is the potential difference of a point and this is an electrostatic case that we are

considering.

So this is equal to zero because metal is suppose to be an equipotential surface. Sorry, what

we mean is that this line integral must be equal to zero and metal is equipotential surface. So

we take these two facts as our starting points. And now if you apply this line integral equal to

the red colored contour that I have shown which is like partly in the interior and partly in the

method, you can approximate this integral as E interior times delta w where delta w is the

length of the path plus E metal or E conductor into delta w what must be equal to zero.



So clearly delta w is not zero, the path is not zero, the path length. However, E metal is

certainly equal to zero. This is because this is the property of a conductor. The property of the

conductor is that E metal is equal to zero. Since E metal is zero, it will lead to a conclusion

that E int is also equal to zero. If you are not satisfied with this explanation, you think of this

in other way. Now if you did not have this zero and internal field was not zero but metal field

was definitely zero because metal cannot be having any electric field.
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Suppose this happened and E metal was zero but E internal was not zero. That means there is

some potential difference between the metal surfaces, but we have just said metal is an equi

potential surface. At all points on the metal the potential difference must be zero, that is metal

itself must be at a particular potential with respect to some reference or the origin point.

So if the fact that internal electric field is not zero, it simply tells you that the metal itself is

not  an  equipotential  surface,  now  that  cannot  happen  because  metal  is  an  equipotential

surface, right? So both ways the discussion would show that the condition for internal electric

field must be zero. If it is not zero, it will mean that the metal surface is not equipotential and

if there is non equipotential then charges would flow from one point to another point, from

the higher potential to lower potential.

They essentially  move towards each other and neutralize that.  So you can start  with that

condition. But once the charges are neutralized there will not be any electric field inside. So

you can have momentarily that is 10 to the power minus 19 seconds of rearrangement time,



but for all practical surfaces, that time is so short that we can confidently say that internal

electric fields must be zero in that of metallic enclosure.

Now if you deliberately place some charges inside an empty metal shell, what happens is that,

suppose this is a charge that I have placed, there will be electric fields. These electric fields

will induce charges on the surface and there would be other charges induced on the outer

surface as well, such that the electric fields would be because of the internal charge that we

have placed.

So we will not discuss this too much here but this condition seems, this condition is not the

same condition that we talked about in the last few minutes, right? In the last few minutes we

had an empty enclosure. There was nothing of charge that was placed inside, but now we

have charges that are deliberately placed inside. Then clearly if you are placing charges then

the electric fields cannot be zero inside that of metal enclosure.

So  the  charges  cannot  be  there,  I  mean  fields  cannot  be  zero  inside  that  of  a  metallic

enclosure when you place a charge inside, okay. This brings us to the end of conductors. We

will move on to a next important task of finding what we call as capacitances.
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So before that we need to start by defining what a capacitor is and how we go about finding

that one. Now amongst many many many applications for electrostatic that we have been

studying  so  far,  electrostatic  fields,  one  of  the  most  significant  application  is  to  find



capacitors. Capacitors pop at various places. You take a solid state device such as a MOSFET

or a BJT, you see that there are capacitors associated.

Whenever you have two conductors or two charge layers separated by an insulator there is a

capacitor. So capacitors are present in every place where there are two charges or opposite

polarities,  separated  by  a  insulating  layer  in  between.  Of  course  in  many  practical

transmission systems such as the transmission line or a coaxial cable or a micro strip line the

capacitors are quite natural because they are transmission lines.

We will  see when we discuss transmission lines that they are modern in terms of circuit

quantities of resistance, conductance, inductance and capacitance, so in that case capacitance

comes up naturally and we want to establish methods to calculate capacitances. It turns out

that although the problem is so fundamental, there is no closed form solution for different

kinds of geometries.

There are certain geometries, as simple as a parallel plate capacitor that cannot be solved

using any of the techniques that we have developed. In fact, we have to go for numerical

technique to kind of find out what the actual capacitance of a structure is. So we will of

course  not  be  looking at  numerical  methods  in  this  and the  next  class.  We will  discuss

numerical methods shortly afterwards.

Our idea would be to consider situations or geometries of the capacitors and make certain

approximations so that we may be able to obtain some closed form expressions. But please

note  that  these closed form expressions  are  obtained for  simple  cases  only, not  for  very

practical cases. However, the differences will be so small in most cases that one can neglect

that,  that if you want to get numerically accurate answers you have to employ numerical

methods.

Okay, we have given enough introduction about capacitors and we require capacitors. The

point about capacitors is that, although we are used to thinking of capacitor as some sort of a

parallel  plate  capacitor  or  a  different  kind  of  capacitor,  capacitors  are  simple  geometric

functions, in the sense that the geometry of the arrangement of the conductors determine the

capacitors In fact capacitor or capacitance of capacitor is nothing but geometric arrangement.



It  is  actually  an  arrangement  of  a  geometric  arrangement  and  different  geometric

arrangements  can  give  you different  capacitance  values.  So  we start  with  two arbitrarily

conducting bodies and we charge them with opposite charges, so for example this conducting

phase two is charged with all negative charges here and then the conducting body one here is

charged with all positive charges.

The charge  polarity  on  both  these  bodies  are  different  and they  are  charged to  opposite

polarity. So this is essentially two bodies that we have. We know that if you take these two

charged bodies and place them at some distance apart, you will see that electric field lines are

going  to  be  generated  from the  positive  charge  and they  will  terminate  on  the  negative

charge.

So there would be seeing lot of electric field lines going from one body to another body. So

these are the field lines you would see from one body to another body. Now to generate these

charges, you can take the two charges initially uncharged but then apply a battery that will

induce  charges.  Okay,  so  if  you  apply  a  battery  that  would  induce  charges.  And  this

application of the battery would cause a potential  difference between the two conducting

bodies.

However, these are conductors and we have just discussed that conductors are equipotential

surface. So keep that in mind. We define capacitance as the amount of charge stored in one of

the conductors, because we assume that they both are storing equal amount of charges. So C

is  equal  to  the  charge  Q divided  by the  potential  difference  that  exist  between  the  two

conductors or if you are considering the battery and apply voltage of V how much charge gets

stored for every volt that you apply defines the capacitor.

Capacitor is measured in farads. Sometimes we will be looking at capacitor per unit length a

concept that is quite popular in transmission lines. In that case you are measuring this as farad

per meter, okay? And sometimes especially in VLSI systems you will see that you are looking

at capacitance per square.  Similarly, we will  be looking at  resistance per square. So here

capacitance per square and this  would be farad per meter  square or centimeter  square or

millimeter square depending on the geometry that you are considering.
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Now the definition of capacitor we have seen. C is equal to Q by V and the amount of charge

that gets stored on a given conductor for a given potential difference is the function of how

the charges are induced, right? So they must be related to the electric fields that they are

going to produce.

So how are charges related to electric fields. Charge stored we know is given by the volume

charge density, that is there on the conductor, one of the conductor that you are considering

and volume charge density that is integrated throughout the volume of a given conductor. So

if it is conductor one, then it would be the charge stored on the conductor one and how do we

define the potential difference between the two conductors?

Well, we have already seen that this must be the line integral of the electric field. So you have

the line integral of the electric field from conductor 2 to conductor 1, assuming that conductor

is at a lower potential and conductor one is at a higher potential. Now here is an important

question. What path should I take? The answer to this is that, conductors are equipotential

surfaces.

So it does not really matter which path you take and most importantly it does not matter

which point you take on the conductor, right? You could for example have two conductor and

your path could be this or you can have a path that would be along this way, so some directed

path. You could also have a path in the middle. You could have a path that would do all these

things and come back and you could have this kind of a path.



Of  course,  the  reason  why  all  these  paths  work  is  because  at  all  points  in  one  of  the

conductors the potential difference is zero. The potential is actually constant. Difference is

zero but potential is constant. On all points on the second conductor the same thing, potential

is constant. Okay, so the difference in the potential if you want to calculate you can start at

any of these points that we have talked about and you can follow any path because in the

electrostatic condition the potential difference is independent of the path that you follow.

How do we calculate capacitance or how do we compute capacitance? If you are looking at

numerical methods, that would be the questions that you would ask. How do we calculate

capacitance? There are two methods to calculate capacitance, at least that we will discuss.

(Refer Slide Time: 18:39)

The first method I would call this as Q method or the charge method. In this charge method

the idea is that, you start with or you assume given or assume reasonable charge distribution

on the conductor. This assumption would mostly be guided by the situation that we have

already seen. It could be either a lined charge distribution or it could be a surface charge

distribution or it could be a volume charge distribution.

But you have to assume or if the charge distribution is given to you, then no problem you

take that particular charge distribution, okay? So from the given charge distribution in general

that  of  the  volume  charge,  let  us  say  rho  v, you  can  evaluate  the  denominator  by  first

calculating the electric field from given charge distribution rho v and then evaluating the line

integral.



So you first calculate the electric field from given charge distribution rho v and then evaluate

the line integral, integral of E dot dl between the two conducting parts and you will be able to

obtain  both  the  numerator  and  denominator.  And  as  I  said  you  can  either  calculate

capacitance,  capacitance  per  unit  length,  or  capacitance  per  unit  square.  So  this  step  of

calculating electric field from the charge distribution requires you to use either Gauss’s law or

Coulomb’s law. 

The second method is what we call  as the V method. In the V method, you assume that

potential are specified, V is specified, say one conductor is held at a particular potential and

the other conductor is held at another potential with respect to the origin or a reference or the

potential difference is specified. From this, calculate V of r between the regions. Calculate

potential between all the points v of r by solving Laplace’s equation.

So we know Laplace’s equation gives you the potential at all points or all points in the space.

You can use that to calculate the potential difference, or the potential function.
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From this calculate electric field. From electric field you relate this to charge distribution and

then charge to voltage ratio will give you the capacitance. Okay, we will see both examples in

the following. Some of the examples will be simple because we use Gauss’s law and where

Gauss’s  law  cannot  be  used,  this  turns  out  to  be  a  pretty  hard  exercise  of  computing

capacitance, if you don’t use numerical methods.



Let us start with simple capacitor called spherical capacitor. Here all you have to do is to take

a shell of conductor, typically two shells of conductor, let us say, the inner shell has a radius

a, the outer shell has a radius b. We assume that b is greater than a. And I will take the inner

shell and keep that as positive and take the outer shell and keep that as the negative. That is I

take a battery and connect the positive lead to the inner shell and negative lead to the outer

shell.

So because of this there will be charges that will be developed because these are conductors

and conductors when they are held at different potentials will induce charges. So there are

charges  that  are  produced  and  this  charges  would  form  a  surface  layer  of  charge  of

appropriate  density. Now if  you use Q method, the charge density can be assumed to be

spherical.

You know, spherical is symmetric charge density that you can assume. From there, you can

calculate what is the electric field. Because of the symmetry it is easy to use Gauss’s law. So

to any radius r which lies between a and b, any radius r, I can apply Gauss’s law. What does

Gauss’s law tell you? Dr multiplied by 4 pi r square which is the surface area of the sphere of

radius r multiplied by the radial component of D because of symmetry there will be only the

radial component of D.

This must be equal to the total charge enclosed. Now, total charge enclosed is on the surface

of the charge. So what is the total charge enclosed? That is let us call that as some Q, does not

really matter how much charge is enclosed on the surface a, so let us call that as Q. From here

I know what is the electric  field Er. Er is  given by Q by 4 pi epsilon r  square.  What  is

epsilon?

Epsilon  is  the  material  that  fills  this  particular  thing.  So material  that  is  filling  this  two

medium. So I calculate what is the electric field here. This electric field will be valid from a

to b, that is in the region between the two concentric shells that will be valid. What would be

the potential difference?

The potential difference would actually be, the potential difference between the inner and the

outer conductor call this as some delta v and we know that this is obtained as the line integral,

E dot dl from two to… sorry, not two to one, two here is b and this one is a with a minus sign



up here. Or we could reverse the integral limits as well. Now I know that I can choose any

path.

Let me choose the path which is convenient to me, the electric field is radially decaying. So I

will choose the radial path. So I come from r to a. This is the path that I will choose. Radially,

I will come from sphere of radius r to sphere of radius a. Radius a is the one where we have

kept one metal shell, okay? So if you evaluate this, you are going to see that delta v is equal

to minus integral b to a, electric field is q by 4 pi epsilon r square and the line integral along

dr r hat therefore this would essentially be dr.

So if you integrate this and substitute the appropriate integral limits you will see that this will

be q y 4 pi epsilon, 1 by a minus 1 by b. This kind of makes sense because the inner shell was

kept at higher potential and 1 by a is greater than 1 by b. So this is the potential difference

that exists between the two shells.

(Refer Slide Time: 25:35)

Now I know charge, I know the potential difference, the ratio of these two should give me the

capacitance. So C is equal to Q by potential difference delta v. So delta v is equal to Q by 4 pi

epsilon times 1 by a minus 1 by b. So you bring this 4 pi epsilon guy to the numerator and

what you see is the capacitor given by 4 pi epsilon divided by 1 by a minus 1 by b, okay?

You can simplify this by multiplying by a b, so you get 4 pi epsilon a b by b minus a. This

makes sense because b is greater than a, so minus a is a positive quantity. What happens if b



goes towards infinity. That is if I take the second shell and start moving the shell away from

the shell of the inner shell of radius a.

If I start moving the value of b towards infinity, what happens is that b minus a becomes

almost b, b cancels on the numerator and denominator and you get capacitance as 4 pi epsilon

a. This is the capacitance of an isolated conductor of radius a, okay? So this is the Q method

for finding the capacitance of this spherical capacitor.
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Now let us try to apply V method here. We will discuss rigorous solutions of Poiseuille’s and

Laplace’s equations later, so what we are going to discuss is a very much that is required for

finding the capacitances in these simplified structures. So for the V method, I need to solve

del square v equal to zero.

Of course, I need to solve this in spherical co-ordinate system and since v is a function of r

only, it is reasonable to expect that we can only use the terms corresponding to v of r. So if I

do that one and looking at the Laplacian in spherical co-ordinates from textbook or from

mathematical handbooks, I get that this is 1 by r square, del del r of r square del v by del r.

The terms corresponding to theta and phi are removed because they do not really help me in

finding this one because v is only function of r. So if you solve this equation and convert all

the partials to total differential because v is a function of only r, we will see that v of r will be

equal to minus some constant, minus k1 by r plus k2, okay? Now you can evaluate this k1

and k2 constants by applying the appropriate boundary condition.



I know that at boundary b the potential is kept zero, that is the potential difference between

the two is v and the inner shell is at a potential v with respect to the other shell. So v of b is

zero,  v  of  a  is  some  applied  potential  v0,  okay?  So  if  you  apply  these  two  boundary

conditions to this v of r, you can show that v of r can be written as v 1 by r minus 1 by v in

the numerator divided by or v0, 1 by a minus 1 by b, okay?

Now the next step would be to actually find the electric field and we know that electric field

is given by minus gradient of the potential, again going to the gradient expression for the

spherical  terms  you  will  see  that  this  would  be  1  by  r  times  del  by  del  r,  and  if  you

differentiate this potential v of r with respect to r and solve for the gradient, you will see that

this is given by v0 by 1 by a minus 1 by b, times 1 by r square, r hat. So the electric field is

radial and it is going as r square. It is going as 1 by r square and it is entirely in the radial

direction.
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What  is  the  total  charge  enclosed  by  the  inner  shell?  The  total  charge  enclosed  can  be

obtained by epsilon E dot ds of the closed surface of the inner conductor, of the inner shell, if

you evaluate d dot ds you are going to get the total charge enclosed. So you can see that what

it would be, the surface element will be a square sin theta d theta d phi and you can see that

the total charge Q will be equal to 4 pi epsilon v0 by 1 by a minus 1 by b giving you the

capacitance C as Q by v0 as 4 pi epsilon by 1 by a minus 1 by b, the same as the earlier

method.


