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In the last class we started discussing conductors and conductors are mainly used to conduct

electricity because conductors as opposed to dielectrics have a lot of free electrons as we

discussed in the last  class,  conductors  have an abundance of free electrons  because their

conduction band overlaps with that of the valence band.

Most conductors such as aluminium, copper, silver they have so much of free electrons, free

electrons in the sense that they are very loosely attached to the lattice, a small amount of

electric field that we could apply would then enough force or it would accelerate the charges

enough such that these charges would start moving and constitute a current.
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The force on each electron inside that of a conductor is given by the electric field acting on

that conductor at that point and it is given by minus q E where E is the electric field and Q us

the charge on the electron and this minus sign indicates that the electrons would actually

move opposite to the electric field. So while the electric field for example is along the x axis

then the movement of the electrons to that electric field would be opposite to that of the x

axis.



However,  a  positive  charge  such  as  a  hole  in  a  semi  conductor  would  move  along  the

direction of the electric field. So conventionally the direction of the electric field lines would

represent the actual direction of a positively charged particle,  since electrons are negative

they will move opposite. It turns out that the velocity with which these electrons move is

called as a drift velocity is actually proportional to the electric field.

So the drift velocity is related to the electric field by a quantity called mobility. Mobility tells

us how mobile a charge is, in the sense that how easy is that charge would start to move when

an electric field is applied. Compared to holes which you would read in the semi-conductor

device physics courses.

The mobility of electrons is much higher. In fact, the difference between the mobilities of

holes and electrons is what makes the speed of the devices such as MOSFETs be capped off,

in other words there is a limit in the speed because the holes moves at a much slower speed

compared to the electrons. And one can actually use this drift velocity, substitute this in the

expression for the current density. 

We know that the current density is related to the electric field as the velocity, charge density

rho v times electric field and you can see that this charge density at any point will be given by

n q mu. I am writing this for the case of an electron and I am not really using the minus sign.

You just have to remember that electron move against the field, however their current would

actually be considered in the direction opposite to the electron movement. 

So the conventional current flows from left to right as the electrons would move from right to

left. So I am not writing the minus sign, but you have to mentally understand that quantities

would be negative wherever appropriate.  So when you are considering electron flow you

have to use the appropriate minus signs here. So the current density J is related to the electric

field by this expression, okay? 

Where the charge density is given by, this is rho multiplied by v, so this is rho v, so n is the

number of electrons per unit volume, q is the charge. Therefore, this corresponds to charge

per unit volume and mu being the mobility of electron would tell how quickly or how fast

this electron is moving, okay?



In common language, this n q mu is given by a quantity or is represented by a quantity called

sigma and sigma stands for conductivity. And in olden days it was measured in 1 by ohms or

sometimes  called  as mos.  The modern units  of  measurement  of conductivity  is  that  of a

Siemens,  okay?  So  conductivity  is  measured  in  Siemens  but  these  are  sometimes  also

measured in terms of Siemens per meter.

So  conductivity  or  conductance  is  measured  in  Siemens  and  sometimes  they  are  also

measured in Siemens per meter when you are considering the appropriate quantities over here

or Siemens let us just say and S stands for Siemens. If you look at typical values of the

conductivity  of say copper, copper has conductivity  of about 5.8 multiplied by 10 to the

power 7 and that of the silver is around 6.17 multiplied by 10 to the power 7.

Note that these conductivities although they are quite high, they are not really infinite, right?

So if you consider a metal or a perfect conductor as that having a value of sigma going to

infinity, these are not perfect conductors, there is some amount of resistivity amongst these

conductors.  Resistivity  is  roughly  inversely  proportional  to  the  conductivity.  So  because

sigma is not infinity, there is some amount of resistance.

So if you were to take a capacitor which we will be discussing very shortly and you know the

capacitor plates are made up of this conductors or finite conductivity what would happen if

the voltage is applied because the resistivity is not zero, there would be some amount of

current flow that is happening inside the conductor itself leading to loses. These conductive

loses become very important especially at high frequencies as we will see when we discuss

transmission lines.

More over the conductivity that we have represented over here or given the values over here

are not really constants. They are dependent on temperature and for every one-degree Kelvin

or one Kelvin rise in the temperature for every one Kelvin rise in temperature you will see

that the conductivities would change by about 0.4 percent. In fact, this can be used as one of

the temperature measurement, a very sensitive temperature measurement instruments.

Now let us develop one very important relationship between the voltage and the current of a

conductor. Before we go further let me remind you that J is equal to sigma E is a relationship

that holds in most materials although calculation of sigma is not really done by just giving n q



mu but requires quantum mechanics to properly give you the values. This equation or the

result J equals sigma E looks so much like V equals I R or I equal G V that we call this J

equals sigma E as Ohms law, okay?

The proper or the more popular form of Ohm’s law is that of the relation between voltage and

current. We already know what is voltage, how do we represent voltage or how do we relate

voltage to electric field. We remember that voltage was the potential difference between any

two points and this potential difference was the line integral of the electric field along any

path.

In the electrostatic case that we are considering, this line integral and hence the potential

difference was independent  of the path.  But V was related to the line integral  of electric

fields. So it is given by some point 1 of the conductor to point 2 of the conductor and electric

field. So this is how the voltage or the potential difference between two points is related. We

also know how to relate current to J because current is J multiplied by S, I am not writing the

integral relationship.

But the essential idea is that you take a surface which has to be opened, not closed. So you

take a surface and how are the J field lines coming out of the surface and integrate those J

over the surface because it could happen that the surface you are considering will be at an

angle with respect to the J field lines. So in that case what will happen is I will be equal to

integral of J dot ds.

However, if J and S are aligned perpendicularly in the sense that surface is perpendicular to

the J field lines, then the current through that open surface will be equal to J multiplied by S.

(Refer Slide Time: 08:57)



Consider the scenario in which I am considering a piece of conductor of certain length L, of

course this must be a uniform conductor but the drawing might not really represent this. So I

can say this is bad diagram but represents uniform conductor, conductor of uniform cross

section. So how do we calculate the voltage difference between the two. 

So if you label these points as some point b and point a, the voltage difference between the

points  a  and  b  is  simply  the  line  integral  of  the  electric  fields,  that  is  there  inside  this

conducting material, okay? From point b to point a, so integrate the electric field inside this

one assuming dl points long this line from b to a and whatever you do, you are going to get

the corresponding potential difference. 

So if the electric field and the dl are aligned properly and if the electric happens to be uniform

over the piece of length we have considered then you can simply replace this by E multiplied

by l.  Whether  b  is  at  higher  potential  or  a  is  at  higher  potential  you have  to  determine

appropriately. For example, if this is a situation in which b has a higher potential then the

potential difference from b to a would be called as potential drop or voltage drop.

Otherwise a to be would be called, or b to a if b is smaller and a is larger we will call it as

potential rise. In a typical circuit element of a resistor that we consider, we assume a potential

drop and a current that is flowing in. So if you assume that the current I is flowing in and the

potential drop is V, the relationship between V and I is the resistance or the ratio of V by I is

the resistance. 



So the potential difference or the potential drop let us assume is given by E multiplied by L

and the current I will be J multiplied by S, where S is the cross section of this open surface

that you are looking at. So if the J field lines are there, then the current through this piece of

material will be J multiplied by S.

Let  us  also  assume  that  these  quantities  are  uniform.  Now  resistance  as  we  have  just

described is given by the potential difference which is E L divided by the current through the

conductor. The current through the conductor is J S. However, I also know that J is related to

electric field, what is it? J is Sigma times E from the field Ohm’s law. So from the field ohm’s

law we have J equals sigma E.

I can substitute that inside here to get sigma E multiplied by S in the denominator, cancelling

the  electric  field  from  numerator  and  denominator  gives  me  L  by  sigma  S.  This  is  a

relationship that you must have seen quite earlier. This is the expression for the resistance of a

wire which has a surface area of S, is made up of conductivity sigma, that is made up of

conductor with a conductivity sigma and has a total length of L, a uniform wire of cross

section is conductivity sigma having a length L will have a resistance of L by sigma S.

Now sigma is one by rho and rho is called resistivity. So you can rewrite this equation as rho

L by S and this will give you the resistance r. Of course this is the resistance for a piece of

conductor that we considered where everything was uniform. However, if you want to go to

the general relationship between electric field and the current density and the resistance, you

have to consider the potential difference between the two parts.

So line integral of the electric field between the two parts,  divided by the current that is

coming out of the surface. So this is the definition of resistance. One can actually think of this

as the definition of resistance and what is the important point about this definition is that the

electric field could be non uniform as well as J could be non uniform and in fact one can

actually develop a point form of resistance.

So instead of calling a resistance as of a piece, one can also say resistance at every point, that

leads to the concept of non uniform and specially varying resistances, for in order to get this

non uniform and specially varying resistances, you need the electric field and the J fields to

be varying or they be non uniform as well.
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So let us close the discussion on conductors by looking at the boundary conditions. For now,

let us look at the boundary condition for D field and E field. We will not touch the boundary

condition for the J field because I want to keep the boundary condition for current when we

have also  discussed the  magnetic  fields,  okay? So right  now I  don’t  want  to  clutter  our

boundary conditions by taking about J fields.

Although for a very simplified case, you can see that J field has to be continuous across the

surface. Now before we talk about boundary conditions here is something we want to ask. Let

us take a piece of metal or a piece of conductor, metal of course being a conductor and let us

place some charges inside. Let us place some charges in the body of the conductor. What do

you expect to happen?

Now what happens is that, these charges which are placed inside the conducting body would

rearrange themselves or migrate in such a way that the charges would actually appear on the

surface. Of course as we have already discussed, it is not necessary that these are the same

charges that would appear on the surface. So we discussed this fact that when you take the

current and the electrons are flowing.

It is not necessarily that the first electron would be the one that is actually coming out of a

particular piece of conductor that you are considering, right? What would happen is electrons

would go to the next lattice, occupy the next available position, from that position it would



kick out an electron and this process would happen. Something that we talked about in the

analogy of traffic car, cars moving in a traffic. 

So similarly here what would happen is when we say that the charges get distributed it is not

necessarily that the original charges get distributed. The charges would go inside the lattice

into the conductor but they would essentially come out in the sense that they would actually

be appearing on the surface, not necessarily the original ones, but the rearranged charges.

From the point of view of an observer standing outside the conductor what it simply means is

that, you take some charges, put it inside a metal.

You might probably want to dig a small hole through a drill and then place some charges

inside and seal the whole. But what you would find is that these charges would not stay inside

but rather distribute amongst, I mean distribute themselves in such a way that they would

appear on the surface and contribute to the surface charge density. So no charge which is

placed inside the conductor body would remain there.

And all the charges would appear on the surface, okay? In such a way that these charges don’t

just appear randomly, these charges would appear in such a way that there is no electric field

inside the conductor. This is a very very crucial result that you need to remember. Even a

moderately  conducting  material  would  have  very  negligible  amount  of  electric  field.  So

electric field inside this is a property of the conductor. 

One  cannot  really  define  this  or  derive  this  condition.  It  is  essentially  the  nature  of  a

conducting material. You might of course ask, how much time would it take for these charges

which are placed inside to come or be visible on the surface or they get distributed on to the

surface. And this time is what is called as relaxation time and relaxation time for charges is

around 10 to the power minus 19 to 10 the power minus 18 seconds. 

This relaxation time is so short that in a matter of less than attoseconds that is 10 to the power

minus 18 seconds, the charges would all be moved and would be placed on the surface, again

remember it is not the original charges which are moving because you can calculate and see

that the velocity required will be very high.



It is the effective charge that appears on the outside. Now when such a thing happens, if you

go back to the metal, there are certain charges available on the surface. I am indicating only a

few charges, but you should imagine that there is actually a layer of charges here. So there is

a surface charge layer that is surrounding in the center, they are just below the conducting

surface. Of course they cannot just leave the conductor.

There is a very interesting reason why they cannot leave but something that we will not be

talking about it.  Suffice to say that the conductors are,  although we are drawing them as

attaching on the outside of the surface they are not leaving the surface. They are just below

the conducting surface, but they are essentially surface charges. They are occupying very

small distances but they are just below the conducting surfaces.

Now if you ask what is the electric field inside, obviously the electric field inside is zero.

What is the D field inside? D field inside is also zero. Why? Consider this interior surface

that I have drawn. Obviously this surface does not enclose any charge. So if you want to ask

for what is the internal D field from Gauss’s law you see that D i dot ds over the interior

surface S i will be equal to zero and this implies that D i will also be equal to zero. 

We also have seen that the E field is zero, okay?

(Refer Slide Time: 19:14)

Now we are good to go with boundary condition. Consider free space or a dielectric and then

consider one conductor here. We know that charges if at all they are placed, they would be

available on the surface of the conductor forming a surface layer of charges. Now to obtain a



boundary condition for D and E we follow the procedure that we adopted in the last class for

dielectrics.

So you first imagine that there is a path here which has a certain width and a certain height.

The path is traverse in a particular direction, direction satisfying the right hand rule. The path

has a height delta h and a width delta w. Now apply the electric field the line integral around

this path. So if you apply the line integral around this path, what you find is integral of E dot

dl which must be equal to zero.

The line integral for this path that we have shown here would be E tangential in the conductor

times delta  w minus E tangential  outside the conductor. So let  us call  this  as free space

tangential electric field, times delta w plus some terms that would be multiplied by delta h,

that is the normal components of electric field multiplied by delta h, this entire thing will be

equal to zero. As before take the limit of delta h going to zero. 

If you take the limit of delta h going to zero, then this terms with delta h cancel and you are

left with tangential electric field inside the conductor, delta w minus tangential electric field

with  a  free  space  delta  w, that  should  be  equal  to  zero.  Of  course  there  cannot  be  any

tangential electric field inside the material. Inside the conductor, why because, if there was

any tangential electric field then it would start to move the charges. 

So charges movement is  not considered electrostatic  and there will  not be any tangential

electric field. Or this tangential field would move the charges in such a way that after a very

short while, that is relaxation time, the charges are there in the equilibrium. So the tangential

electric field inside the conductor will be equal to zero which simply means that tangential

electric field just outside would also be equal to zero. 

So the electric field tangential component both inside the conductor as well as on off side the

conductor will be equal to zero and this is the continuity for the tangential electric field. Now

to obtain the continuity condition for the normal D field, we imagine writing a box. So you

can think of this  as a kind of shape that we normally take.  So I  still  have some surface

charges and now what happens? 



Now I have two surfaces. The top surface and the bottom surface. The bottom surface is in

the direction opposite to the top surface, that is the normals are not in the same direction, they

are in the opposite direction. Outside let us call this D field as D normal because that is the

only component that is necessary to consider in this particular scenario of the Pepsi can thing.

So D normal and in the free space, so D normal free space and the D field in the conductor

will be D normal in the conductor. However, we have just shown that D field inside metal

will actually be equal to zero or a conductor will be equal to zero, this means that the normal

D component inside the conductor will be equal to zero. So this is actually equal to zero.

So if you leave this component out, what you have is, D normal free space, multiplied by

whatever the surface area of this top surface that is there, that is let us say delta S, this must

be equal to the total charge that I have here, so that must be equal to volume charge density

rho v delta s delta h that would be the total charge that is contained and of course, as delta h

goes to zero this becomes rho s and delta s on both side will cancel with each other.

This implies that the normal component in the free space and since this is the only component

that would be available because the normal component inside the conductor is zero that can

dispense of with all the free space ideas and said dn2 where two stands for free space, one

stands for conductor, so dn2 will be equal to rho s. So this is the relationship for the normal

component of the D field and the tangential component of the D field is simply zero.

So E tangential is equal to zero. So from this you can also find out what would be the normal

component of the electric field. The normal component of the electric field will be rho s times

whatever the epsilon of the free spaces. If it is not free space dielectric, if it is a different

dielectric, then you need to replace that rho s by epsilon because d is epsilon times electric

field.

So the normal component d will be equal to rho s and normal component of the electric field

En2 will be rho s by epsilon. So this simply implies that En2 is equal to rho s by epsilon,

where epsilon is that of the dielectric that surrounds the conductors, okay? Alright, now we

summarize what we have learned about the conductor.
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For a conductor let me write down these 3 points, conductors have no internal feeds, that is

no electric fields inside. E is equal to zero. They also don’t have D field. So essentially they

do not have any field inside that of the material. The fields that is D fields or the electric

fields are always normal to conductor. The fields are always normal to the conductor. If there

is any external field that is applied to the metal.

It will induce charges on the conductor surface, constituting a surface layer of charges rho s.

Most importantly, because there is no electric  field it  means that the potential  of a given

conductor  is  actually  constant  and  we  call  this  as  equipotential  surface.  We say  that  a

conductor of an arbitrary shape is actually an example of an equipotential surface. So please

note that these conductors that we have considered have not electric fields or D fields.

There are no fields inside. We also have seen that the fields are normal to the conductor. They

also induce charges, or charges are induced on the conductor surface when they are immersed

in external electric field and these conductors are equipotential surfaces.


