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Lecture - 16
Gauss’s law and its application-III

We saw in last class the point form of Gauss’s law. If you recall the point form of Gauss’s law

introduced as to a new operator called divergence.
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This is a point form of Gauss’s law, which was given by del dot D equals rho, rho being the

charge that is enclosed or that is charged, that is present at a particular point, D is the electric

flux density and this del dot D expresses the vector operation of divergence. So let us look at

couple of examples of this divergence or how to calculate divergence and then we will move

onto interesting things.

Consider for example that I have vector field D, which is the flux density D given by some

constant times z hat indicating that this electric field is constant and it is in the direction of z

hat,  it  is completely independent of x, y and z positions.  So if I ask you to evaluate the

divergence for this particular vector field how would you proceed, you would recognise that

this is in Cartesian coordinates, simple to recognise that one.

And then you can use the formula for del dot D that we developed in the last class, which is

given by del by del x of Dx plus del by del y Dy plus del by del z Dz and then substitute for



the corresponding components Dx, Dy and Dz. In this case you do not have Dx component,

you do not have Dy component, the only component that is present that is non-zero is Dz

component and what is the value of Dz, Dz is equal to K where K is the constant. 

K  is  a  constant  okay. So  you  now  take  del  dot  D,  which  is  essentially  evaluating  this

particular partial derivatives del by del z of Dz and if you do that one, you are going to see

that  since Dz is constant,  its  derivatives  will  also be equal  to zero with respect  to z and

therefore you get del dot D is equal to zero. If for example this particular field, D field would

have represented field because of a certain charge distribution. 

What is the meaning of this del dot D being equal to zero. For that you try to sketch how the

D field itself would like. Now the D field is along the z direction, so let us mark the x, y and z

directions on this paper. So you have y, x and z and at all points x, y and z, the vector field D

is directed along z axis and has a constant value of K. So it could be return by giving constant

K values okay, at all points. 

So you have at all points, the vector field D being given by the constant value of K and

headed in the direction of z axis. So as you can clearly see if I take any volume over here and

then evaluate what is the flux lines that are coming out of the surface, the surface is bounding

this particular volume that I am showing here. So there is a D field coming out of the surface.

If you try to evaluate what is that integral D dot Ds over the set of surfaces, which correspond

to a particular volume and then take or divide the corresponding value by delta V.

This is a close surface and then delta V go to zero, you will see that this particular quantity

will be equal to zero simply because the numerator is equal to zero. There are as much flux

lines that are entering this surface as those flux lines that are leaving the surface. If you want,

you could have try this one in cylindrical coordinates and you would recognise that,  that

statement is true regardless of your working in Cartesian or cylindrical coordinate systems

right.

So you could see that, in this surface which I have taken here, the corresponding value of this

integral D dot D will be D equal zero because on the top surface, you have some flux lines

coming out whereas from the bottom surface there is as much flux that is going in. So there is

balance of the flux going in and flux coming out, which makes the numerator zero and then



when you take this ratio of this, when this essentially becomes equal to zero.

In other words, the fact that del dot D is equal to zero indicates that the corresponding point

where  you are  evaluating  the  divergence  okay or  you can  imagine  a  very  small  volume

around this particular point, it contains no sources. Here the source for D field is charges,

therefore it contains no charges. So at any point where the divergence vanishes, it simply

means that there is no charge enclosed in that volume okay. 

So you can take that small volume and see that there will be no charge enclosed. Now that is

the meaning of del dot D equal to zero.
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Let us get a little more adventurous and try to evaluate the divergence for a point charge. We

know that for the point charge, the D fields would all be in radial direction correct. Let us say

the point charge has a value of q, so the D field will all be in the radial direction and this

value of the flux density Dr at any particular point r or at any distance r from the origin will

be given by q by 4 pi r square right.

It is varying as 1 by r square. Now you imagine that I am going to put a small volume, let us

actually try to put a small sphere at any point okay, not at the origin. See, the charge is placed

at the origin, but my Gaussian surface that I am placing which enclose as a volume which is

essentially a sphere, I am going to place this one at some other point okay. And then you can

see this I am not going to derive this one.



But you can see that on this surface the D field will be perpendicular to the surface right. So

perpendicular to these two points and at these two points there is as much flux that is going in

as much flux that is coming out. Of course, you do not want to take a large sphere that would

be like this right, because the D field over here will be different from the D field over there.

Yet you would still show that if you start shrinking the volume of this sphere by letting its

radius go to zero.

The corresponding point that is at this point del dot D will be equal to zero okay. So del dot D

is equal to zero at any point okay, that is not at origin. So this is the statement that we just

made that if your volume does not enclose any point charge, then value of divergence will be

equal to zero. Now you might ask what if I do not consider this at any point not from the

origin.

What happens if I take this sphere around the origin where I know that there is some sphere

around the origin where I know that there is some charge enclosed okay. Let us also call this

radius of the small sphere a small r. I hope that there will not be too much of confusion here.

So I am taking the sphere r, which is now centred at origin and has a radius of r. Eventually, I

am going to consider this radius r go to zero, so that I can obtain del dot D at the origin. 

So I want to find out del dot D at origin okay by placing a sphere of radius r around that

origin okay and then letting the radius r go to zero, so that I can approach del dot D. Now you

could do this problem by looking at textbook and then finding out what is the corresponding

formula for del dot D. There are formulas for divergence in spherical as well as cylindrical

coordinate system that is typically given in textbook, you can do that. 

However, let us go back to the definition of divergence and see what would this del dot D

turn  up  to  okay.  Remember  the  definition  of  del  dot  D  at  any  point,  the  definition  of

divergence at any point was the closed surface integral D dot s where the surface s encloses

that  particular  volume divided by the volume element  itself  and then letting that  volume

element go to zero okay.

Now I know that D field for point charge goes as 1 by r square right, the D field decreases as

1 by r 2, therefore at the surface of the sphere which is at a distance r or this at a radius r has

measured from the origin will be q by 4 pi r square okay. This needs to be multiplied by the



surface area of the sphere because the D field will be everywhere perpendicular to the surface

and therefore that integral of D dot ds simply becomes multiplying the value of D with the

surface area of the sphere.

So when I do that one and I know that the surface area of the sphere of radius r is 4 pi r

square, I see that D dot ds that is this integral of D dot ds over the sphere, which is having a

radius r will actually be equal to some constant and this constant value is q okay. Now this is

not the end of del dot D, this is just a numerator part of del dot D that we have obtained. Now

if you look at what is the volume element or what is the volume of the sphere of radius r that

we have, the volume is given by 4 by 3 pi r cube. 

I hope that these formulas are familiar to you. If they are not familiar, you can consider this

as exercises in evaluating the surface and volume integrals in spherical coordinate system and

you can find this out. So coming back to this the volume that is occupied by the sphere of

radius r is given by 4 by 3 pi r cube okay. Now del dot D will be over the sphere now, see I

am not looking at del dot D at the point as of now.

Because I have considered sphere of radius r and I have not yet let r go to zero okay. Now to

obtain the divergence at a point at origin, I am going to let the volume element go to zero,

which is equivalent of letting r go to zero okay. If I do that this is equivalent of the same

thing. So if I do that one then numerator is constant q, denominator has some 4 by 3 pi r cube

and as r tends to zero what happens to this quantity in brackets, this quantity just shoots up to

infinity right.

So the conclusion is that del dot D goes to infinity. Now this is mathematically alright, but

physically this is not correct okay. The reason why this is happening is because we assumed

the charge q has no spatial extension and essentially what we were trying to do was to give

that value of r which is in this particular denominator for the flux density equal to zero. 

So if you try to set r equal to zero, the field of the point charge at the point charge location

itself blows up to infinity right. See in earlier cases, we never went so close to the point

charge, but now we are trying to find the field at the location of the point charge, which

simply means that this D field essentially goes to infinity just blows up to infinity. So this is

clearly unphysical result and to deal with such unphysical results.



Mathematicians have introduced and physicists have extensively utilised this tool called delta

functions okay. A delta function is something that shoots up to infinity at a particular point;

however, the area of that function under if you integrate that one that would be equal to some

finite value. Formally, you define delta function at any point say x as this quantity. So when

you integrate from minus infinity to plus infinity and then delta of x, Dx is equal to 1. 

In practice, you can approximate this delta function by considering pulses okay, of any shape

that  you  want,  but  their  amplitude  keeps  on  increasing.  So  you  can  actually  you  can

approximate this delta function by considering a sequence of pulses whose amplitude keeps

on increasing while its width keeps on decreasing. So that the area under this pulse or this

curve would always be equal to some finite value.

This is called a delta function and in terms of this delta function,  you can show that the

divergence of D field at the origin will be given by q by 4 pi r square. If you just leave it like

this, obviously, this is going to go to infinity at r equal to zero, which is the origin where the

charge is kept. Therefore, you multiply that one by delta of r okay and you will interpret this

result as saying that if you integrate this del dot D over the volume that fellow will be equal

to zero.

That  is  if  you  take  that  integral  of  del  dot  D  over  the  volume,  which  is  equivalent  of

considering integral of D dot ds over the sphere of radius r that will not be equal to zero and

that will actually be equal to the amount of charge q okay. So if you integrate this del dot D

over the volume okay or equivalently integrate this D dot ds of the point charge with this

divergence given up here.

This will be equal to the total charge enclosed, which happens to be the point charge q. At

any other points if you try to evaluate the divergence that divergence value will be equal to

zero. Please note that divergence is related to the corresponding volume or the surface that

you are choosing okay. It is possible to choose a different type of surface okay. However, the

evaluation of the D field in any orbitally chosen surfaces is going to be difficult and not

usually recommended. 

So let us just review back what we said. We started with a point form of Gauss’s law okay



and we considered two examples of calculating the gradient.  In the first example,  D was

equal to some constant directed along z axis at every point in space. So if you try doing the

divergence at any point, this would be equal to zero because the volume or the surface would

not enclose the volume, actually would not enclose any charge. 

There is as much flow of flux lines into the volume as there is an outflow of the flux that was

the first example. In the second example that we considered, we had a point charge placed at

the origin whose field decreases as 1 by r square. So if you try to consider sphere, which is at

any other location than the origin. Then the corresponding del dot D value evaluated at that

point will be equal to zero. 

So at any points not at the charge itself the divergence will be equal to zero. However, the

value of the divergence at the point goes up to infinity, we accommodate that infinity by

defining a function called delta function okay. Let us consider one additional example of

divergence and we will wrap this divergence up to introduce you to another vector quantity.
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So let us try to calculate or let us try to evaluate this D dot ds over the surface that I am going

to give you now. So I want you to evaluate the total flux that is coming out integral of D dot

ds  over  a  cylindrical  surface  okay  of  radius  a  and  the  height  h  okay.  So  I  consider  a

cylindrical surface of radius a and the height h where the D field okay, the flux density is

given by r. What is r, r is the position vector.

So if you take this as the origin, r is the position vector. So at the surface of the cylinder,



which is at this point the corresponding value of D will be equal to a, this will be a times r

hat, r hat is the unit vector in the radial direction. So this is the vector that I am going to

consider. So a times r hat plus z hat where z is this height z okay. And on this surface you

need to find out what is D field?

Of course, D field would also come out of the top and bottom surfaces and you would need to

find that also. So if you just sketch how the D field would look like, this is how the D field

would look okay. At each point, it is going to be a vector okay. Although I am showing you

vectors of different magnitudes, they are not actually different magnitudes. They would all be

of the same magnitude up here okay. 

So this is how the D field would look if you try to find this one on the surface okay. At each

point on the cylindrical surface, you have to breakup that vector r into two vectors, one vector

along the radical direction and the other vector along the z direction okay. One vector along

radial direction and one vector along z direction. So you have break this vectors all up oaky.

At the top surface, this particular line will always be along the z axis.

This line will be along minus z axis okay. So to evaluate this integral of D dot ds over the

cylindrical surface, close cylindrical surface that I am considering. I need to first express the

electric field at the surface. So now this cylindrical surface has three surfaces in itself right.

There is a curved surface, there is a top surface and then there is a bottom surface. On the

curved surface, the surface element Ds is directed along the radial direction.

So Dsr is equal to ad5dz because r is equal to a, the radius. On the top surface, the surfaces

are directed along the z axis that will be given by drd5a. At the bottom surface, the surface

element would be directed along minus z direction and that is given by minus adrd5 with

appropriate integration limits that you need to consider okay. So on the curved surface, we

have the value of D field being given by ar plus zz hat.

So the integral of D dot ds on the curved surface becomes integral of only the r component

will  be there,  because on the curved surface the surface element  is  directed along radial

direction;  therefore,  only be the r component  that would be non-zero here on the curved

surface and what is the r component of the D field, it is a right. You will have a square d5dz

and the integral is over 5 is from 0 to 2 pi.



And integral of z is whatever the height of this D field h okay. So you could consider for

example this to be from minus h by 2 to plus h by 2, so that a total height of a cylinder is h

and if you look at what is this, this could be 2 pi a square h okay. So this is one partial result

that you can keep. The other results are the top and bottom results. For the top, the D field is

directed along z axis, right.

I mean the D field has z components along positive z direction and the integral of D dot ds on

the top surface is given by h into a d r d5 right, where 5 goes from 0 to 2 pi and r goes from

zero to a. So if you evaluate this integral, you are going to see that this integral will be pi a

square h. Similarly, for the bottom integral, you have integral from zero to a, 0 to 2 pi okay, h

will be h.

However,  the  value  of  D  component  on  the  bottom  surface  is  directed  along  minus  z

direction, therefore this will not be h, this would be minus h, but the surface element is also

directed along minus z; therefore, I have minus adrd5, there are two minus signs, which can

be eliminated because it becomes 1 and if you evaluate this integral, this integral is the same

as the integral of the top surface.

And you are going to get a flux of pi a square h leaving the bottom surface okay. So the total

contribution to the integral D dot ds from all the three surfaces can be added up and for this

cylindrical surface, that we have considered the integral of D dot ds will be equal to 3 pi a

square h okay. Now let us find this value by a different method okay.
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We have already discussed that integral over the closed surface D dot ds can also be written

in terms of its divergence that is del dot d over the volume enclosed by that particular surface

right. So let us try to evaluate what is del dot d and in this case, you need to evaluate del dot d

for  cylindrical  coordinates  okay  and if  you  try  to  evaluate  del  dot  d  for  the  cylindrical

coordinates, you are going to get a constant value of 3 okay.

Now this if you multiple by the volume of the cylindrical element that we have considered,

the volume will  be pi a square h,  therefore the right hand side of this  fellow, this  is the

volume okay, the right hand side of this quantity is actually given by 3 pi a square h. This is

rather simple version of finding out this integral of D dot ds instead of trying to use the

surface integrals.

This integral which is a very simple because the divergence would be constant and it can be

taken out of the volume integral. So that the integral can be simplified gives you the same

result as that you would have obtained from the left hand side. In fact, this particular relation

we discussed had a name called Gauss’s divergence theorem. Gauss’s divergence theorem is

important.

Because this will allow you to replace the closed surface integral of D okay by a volume

integral over the divergence of d inside the entire volume okay. So please keep this theorem

in mind, because you are going to discuss next the topic of dialect in the next class then you

will  be requiring to recall  this  divergences  theorem okay. You can solve some additional

problems and show that this divergence theorem always holds, we will not do that one. 



Let  me  go  to  one  additional  problem okay  in  the  electric  fields  and  we  will  then  stop

discussing the electrostatic fields okay. We will stop electrostatic fields and then discuss some

of the other things that we want to discuss okay. Here I want to consider calculating the

electric field of a finite length charge okay. I want to consider calculating the electric field of

a finite length charge, which has uniform charge density of rho l column per metre okay. 

So the problem here is the charge is lying along the z axis assume that it is lying around the z

axis and between the points or the planes z1 and z2 okay. This is the length of the charge, so

let me mark that one separately. Over this the charge has a uniform charge density, the line

charge of the uniform charge density of rho l column per metre and I want to find the field at

point p okay away from this charge. 

I want to find the field at this point p away from this charge, which is defined by r5 and z.

How do I do that, first question would be since we have been discussing Gauss’s law, can I

actually use Gauss law okay. Well  unfortunately, Gauss’s law cannot be used in this case

because there is no symmetry along z axis. If you recall for an infinite line charge, there was

symmetry about the azimuthal angle 5 as well as there was symmetry about z. 

You could go up and down along the direction of the charge, but you would not see any

difference in the line charge density. However, for a finite length charge there is obviously no

symmetry along z because you can imagine moving from a lower portion z1 and then you

keep moving up to the point z2 right and beyond that if you try to move, there will not be any

charge that is visible to you, there is no charge extending beyond z2.

Similarly, if you try to move below z1, there will not be any charge. So the symmetry in z

axis is broken, which is another way of saying that the corresponding electric field will be a

function of z. However, if you go around the charge inside at any point you will see that the

charge would be independent  of 5  okay. For  a infinite  line charge,  the charge would be

independent of 5.

But in this case the symmetry around the line charge element will be visible only if you are

going around the circle on this axis okay, because at this axis if you keep going around the

fields corresponding from the top portion as well as the bottom portion would cancel each



other out and there will be a symmetry along 5. However, in this case, if you go at any other

point right, there will not be such symmetry. 

For example, you can imagine this point p located somewhere up here and in this case you

can keep moving around and then will not be a symmetrify that you can easily verify, I mean

that you cannot easily see that there will be symmetry up there okay. Finally, symmetry along

r because the field will be dependent on r okay, so let us try to evaluate this one. If you try

Gauss’s law, we  cannot  really  use  Gauss’s  law as  I  have  said,  but  instead  we  can  use

Coulomb’s law okay. 

So you Coulomb’s law in order to calculate the electric field okay. So let us use that one, I am

going to use Coulomb’s law to calculate d and then I am going to relate d and e okay. Strictly

speaking, Coulomb’s law gives you the electric field e okay; however, in the medium that we

are considering d and e  are  related  just  by a  constant  epsilon  zero.  Therefore,  I  can use

Coulomb’s law to calculate this electric field okay.

If I consider any point okay, a small length dz prime and then find the electric field at this

point, I can label the angle here as some alpha okay. Alpha will be the line; I mean alpha will

be the angle that this line from the charge element dz prime makes on to the point p okay.

There will be this line alpha, there will be this angle alpha measured from the z axis. So you

can now write down what is the D field at point p okay. 

The D field at point p is given by integral from z1 to z2 because you will have to go up and

down the charge covering from z1 to z2. At any point, you have the charge rho l dz prime

okay divided by 4 pi epsilon 0 r square or other magnitude of r cube times the unit vector

times, the vector at point p right. So if you recall Coulomb’s law, this would be rho l dz prime

r divided by or other r hat divided by 4 pi epsilon 0 r square where r is the distance from the

charge location to the field location. 

This is Coulomb’s law, so if you apply the Coulomb’s law to this one, you are going to

evaluate the vector distance from dz prime to point p okay. This is the point at any z that I am

considering whereas the location of dz prime is at some z prime okay. So this would be z

minus z prime along z axis divided by the magnitude of this vector. So we are going to get r

square plus z minus z prime square to the power 3 by 2 okay.



There is no epsilon here because I was looking for Coulomb’s law. So this D is actually

epsilon e, so you can actually relate the two as we have said. So how do I integrate this

particular  integral,  well  in turns out that I  cannot really  integrate  this  to give you a nice

analytical expression that I have gave you in the case of infinite line charge or an infinite

plane of charge or a sheet of charge.

So this is the brute force method that you need to employ, you can solve this integral or you

can evaluate this integral by a certain substitution method, so you can try z minus z prime is

equal to r cotangent of alpha r cot alpha, so which implies that dz prime will be equal to

minus r cosecant square alpha. You remember that cot is one by tan and cosecant is cos by sin

right, so I hope that you remember these two formulas from trigonometry.

So you can substitute for this, what you have to see is that, at the ends where you go, there

will be two extreme angles alpha 2 and alpha 1. Alpha 1 will be the angle from the bottom

portion of the line charge okay, at the below of the line charge to the field point p and alpha 2

will be the angle that the line from z2 to p makes with respect to the z axis. So the limits of

integral from z1 to z2 will be converted into the limits from alpha 1 to alpha 2. 

You can evaluate this integral and find that D field is given by rho l by 4 pi r okay. So there is

a 1 by r at least that is somewhat a good thing for us because in the infinite line charge also

we had a field going as 1 by r. So there is a 1 by r dependence, which is nice multiplied by

some cause alpha 1 minus alpha two okay. You will get this when if you evaluate the integral

by making these substitutions you can evaluate the integral.

And after changing the limits you will get this one plus sin alpha 2 minus sin alpha 1 along z

axis okay. So there is a dependency on both r as well as z in the electric field D as we have

return in this particular thing. Alpha 1 and alpha 2 themselves depend on the point p okay. If

you are going to go around the point p these values of alpha 1 and alpha 2 will also change.
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If you want to sketch the field pattern for this assume that the charge is lying along here okay.

If you sketch the field patterns, you will actually see that the field starts to become very thin

as you go to the top or bottom okay. So the field actually becomes very thin as you go here

okay. However, the field is stronger at the centre of the charge and it progressively goes to

lower values as you move away from the charge okay.

So you can see that the field is actually very weak over here okay and the field is actually

quite going as 1 by r in the middle of the charge okay. Again at the bottom also the field will

be very week as you go away from the charge okay. So the field is actually very weak at these

points. The field is strong only here. Such line charges are not uncommon okay. If you are

familiar with precipitation, you will see that, later we will discuss precipitator.

In precipitators, you will see that there is a finite length of wire, which is getting charged

okay. Actually it is getting electrified by passing a current, but in the simplified version we

can consider this to be a uniform line charge of charge density that is given by electrification

process how much charge density we are imposing, but the field around this lined charge

would look like this okay.

Alright  so  we  are  sort  of  closing  up  on  electrostatics  now,  there  is  lot  to  discuss  in

electrostatics we will come back to that, but before that we will have to introduce you to one

more  vector  operation  and  then  we  will  review  electrostatics,  that  is  we  will  close

electrostatics and then we look at applications of electrostatics okay. What is that I want to

introduce you to, we have seen two vector operations.



One vector  operations  is  called  the  gradient  operation,  which  allows  you to  express  the

electric field as gradient of a potential function, the potential was a scalar field and therefore

this was very interesting to us because measurements on the potential are were easy to make

compared to the electric field measurements. So you could make measurements or you could

specify the potentials in a region of space.

And from there evaluate the electric field, potentials are scalar’s whereas electric field is a

vector and you could do that one by two operations, one an integral in order to evaluate the

potential and from the potential you need to take the gradient, which is differential operation

or derivatives that you have to take in order to get the electric field okay. The other vector

operation that we introduced due to worse divergence.

And divergence tells you how much flux is emanating from a particular point. So if the flux is

outgoing at a particular point, then it is called, then the point actually has a source, otherwise

if the flux lines are closing in on a particular point, then at that point we have a think. So you

could think of a positive charge as a source because the field lines would all emanate from

that and you could think of the negative charge as a thing.

Because all the field lines would converge on to that particular point okay. So we have seen

two  vector  operations  and  there  is  actually  a  link  between  gradient  and the  next  vector

operation that we are going to discuss.


