
Intelligent Systems and Control 
Prof. Laxmidhar Behera 

Department of Electrical Engineering 
Indian Institute of Technology, Kanpur 

 
Module No. # 01 
Lecture No. # 08 

Weight Update Rules 
 

(Refer Slide Time: 00:29) 

 

Welcome everybody. This would be a lecture on weight update rules for neural 

networks, various possible schemes. In this course on intelligent control, we have already 

discussed a various feed forward neural networks, multilayer neural networks, radial 

basis function neural network and associated algorithms for these networks. Also it 

proposes in the last class, a very interesting algorithm for weight update that was the 

adaptive learning rate using lyapunov function. We would now, summarize the various 

schemes that are being employed to improve on the convergence property, as well as the 

global convergence criteria for minimizing a cost function given a network. 
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So, it would be a kind of a summary to let you know, what is the state of point of (( )) 

various weight update rules for specifically feed forward networks. Topics that would be 

covered today would be conventional training algorithm, gradient descent that we have 

already being talking about, which is popularly known as back propagation algorithm for 

feed forward networks, Newton’s method quasi newton method, conjugate gradient 

method. And these methods would be kind of compared with our schemes also that we 

propose last time that is our personal work. The work of our group at I I T Kanpur on 

adaptive learning rate and then we would kind of summarize everything that we have 

learnt. 
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So, introduction feed forward neural networks are used as function approximators for 

learning mappings between input and output space. A neural network is represented as Y 

equal to f W X that is, if I have a neural network here, this is some neural network then 

my output vector is Y and input vector is X neural network is characterized by weight 

vector W then my output of neural network is a non-linear function of weight vector W 

and input X, weight vector W is updated in such a way that is specific cost function is 

minimized such that network can predict for the test data. 
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So, we give some data, we generate some training examples for this network for training 

and then with another set of such examples, we taste the predictability of this network. 

Desirable features of learning algorithm: locating global minimum of the cost function; 

fast convergence; good generalization that is learning from minimum examples. So, I 

take minimum examples, and then this network is provided with minimum example and 

from that example, it can if the network in extract the map of the entire data that is there 

in input-output space for that specific domain and the prediction is pretty nice, then that 

is a good generalization, less computational complexity. So, this is an important, we do 

not want to have an algorithm that takes a long time for computation to a very fast like, 

back propagation algorithm with all its drawbacks is very fast simply a first order 

approximation of taylor series, approximation the back propagation that tries to 

minimize. So, it is very fast this algorithm is… 
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So, the traditionally that people have tried to propose various algorithms for feed forward 

neural networks including the even feedback neural networks that we have already talked 

all these things can be applied both to feedback and feed forward network for system 

identification, because we are talking about intelligent control. So, when we talk about 

neural network, we are talking in terms of either system identification or control. 



So, all these gradient descent Newton’s method, quasi newton method, conjugate 

gradient method, all these methods the variant of these methods have been applied to 

neural network to varying degree of success. 
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So, normally a cost function is a function of a weight, you see that this is… so, while 

training a neural network, the cost function is usually written as this, where this is your 

desired output, this is your actual output predicted by the neural network and then for 

and p is the stands for pattern. So, if I have N patterns. So, this total error square of the 

errors should be minimized. Normally, this is a quality cost function but not necessarily 

we will go for this function but usually researches they use this kind of function this type 

of function. 

And here, if you look at what is y p? This y p is the output of the neural network and y p 

is function of neural network weight and x p is the neural network input. So, this x p is 

input y p is output. So, in that sense you can easily see that E is actually a function of W 

because since y p d and x p are known. 
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Given a training example, given a training set, then I know what is y p d in y p also this 

function, I know what is x p; so, all that I do not know is the weight vector. So, in that 

since my cost function is simply a function of weight vector. Thus, E is a non-linear 

function of weight vector W and it will be represented as E W, you understand why we 

are writing, E W means E is a exclusively a function of W, when we train in neural 

network. 

The objective of learning is to find W star, such that E W star is optimized or minimized. 

Usually, we minimize here. So, recursive form of general learning algorithm is weight 

vector new is equal to weight vector old plus delta W with an initial condition W naught, 

we start with some initial condition. 
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Now, let us talk about gradient descent, I mean what we are trying to do in this lecture is 

that I would like to give a comprehensive picture of all these learning algorithm, that we 

are being talking about until now. So, let us talk about a gradient descent algorithm, what 

is actually a gradient descent, what it does? 

We understood in our previous discussion, it certainly does not take us to or it does not 

guarantee us to global convergence or theoretically the gradient descent cannot take us to 

to the global minimum. So, that is if we have a cost function like this E and this is W. So, 

obviously if I start from here I may reach here, if I start from here then I may reach here.  

So, it all depends on the initial condition, where I am starting and since I do not know 

where is the global minimum. So, how can I fix a initial condition that will be very near 

to the global minimum. So, this is very difficult and no theoretical theoretically gradient 

descent cannot ensure global convergence it only ensures local convergence. 

So, in that sense what gradient descent does? Let us think about the function, that we 

talked about that we are trying to minimize E W error a function. So, if I expand this 

error function around W naught some initial point. So, I do at Taylor series expansion, 

then you see that E W naught plus delta E by del W delta W first order, second order 

term that is del square E by del W square delta W square. This is whole square actually 

and plus 1. 



So, this is the series, what we are talking about and if we neglect in this expansion, 

second order and higher order terms that is if I simply consider the first order Taylor 

series expansion of the cost function, then this is my expression. So, the approximation 

first order of this is first order approximation of E W, first order Taylor series expansion 

T s, T s is Taylor series. So, this is what we have written here Taylor series. So, this 

Taylor series expansion of the cost function, the first order Taylor series looks like this 

which is given in this block. 
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Now, if I select delta W as minus eta deli upon del W transpose E is a scalar, when I 

differentiate a scalar with respect to a vector it becomes a row vector. So, transpose 

makes it a column vector and delta W is a column vector. So, we get, if I replace this 

delta W. This particular expression in the previous expression and that expression is that 

we wrote earlier E hat is E W naught plus del E upon del W in delta W. 

So, in this replace, this delta W by this minus eta del E upon del W transpose, if you do 

that than E minus E W will become this quantity because if you take this one here so you 

get minus eta deli upon del W norm square and since this is a known quantity, which is 

always a positive quantity. So, hence this particular term is always negative, what it 

implies it implies that if I start from W naught the next W the update would be always 

less than E W naught. 



So, that is again, when this W will become the initial point and you go to the next point, 

so, it will always decrease - this will be always decrease because it will always decrease 

in which sense the decrease is ensured only when in terms of the when E W is looked at 

as a first order approximation of Taylor series, but this is not true I cannot say E W is 

less than equal to E W naught, this is E hat W and E hat W is a first order Taylor series 

approximation of the cost function. 

So, the gradient descent algorithm ensures that the first order approximation E hat W 

reaches its global minimum, but it does not ensure global convergence for the original 

cost function E W. So, in that sense what a gradient descent does, it tries to optimize the 

first order Taylor series expansion of first order, Taylor series approximation of the 

original cost function. So, in that sense we only reach a local convergence. 
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So, the gradient descent algorithm as usual is given by this. So, learning rate eta 

determines the speed of convergence. Convergence depends on proper choice of initial 

condition that I have already told you. 
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So, now let us take a simple example of a gradient descent: E W is 0.5 W square minus 8 

sin W plus 7. So, this is a non-linear cost function, so it is a multimodal function with 

two local minimum and a global minimum. 
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The gradient descent update law for parameter W is obtained as this. So, delta W is 

minus eta del E by del W. So, if I differentiate this I get eta, this is 2 into 0.51. So, W 

minus 8 cos W and this is 0, so you see that this particular cost function, this is actually e 

w. So, this E W it has two local minimum and one global minimum. So, interestingly, if 



you look at the result is if I use adaptive value eta equal to 0.01, which you are seeing 

that is the rate one circle one. So, if I start from this point w not is minus eight, if I start 

from there. So, what I am seeing that this comes and comes slowly converges at this 

point and does not go from there. So, it actually converges to local minimum. So, if I 

start from here I reach here but if I change eta equal to from 0.01 to eta equal to 0.4, if I 

take, then my eta size, step size learning rate size has increased a little bit. So, you can 

easily see that is square one. So, from this point it jumps to this point and from this point 

it goes to this point and again from here, until it converges to global minimum in this 

case. 

So, changing this eta, I am able to again reach in this case to the global minimum. So, 

when eta is 0.01 W naught is minus 8, the final weight W equal to minus 4 corresponds 

to local minimum this one minus 4. When eta equal to 0.4 and W naught is minus 8, the 

local minimum can be avoided and final weight ultimately settles down at global 

minimum at this point. So, I reach the global minimum but this is simple function and 

because this is a simple function we are able to show that by changing this eta 

intelligently. 
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We can reach it, but if the function is complex, we have no idea, we have no 

comprehensive method to reach the global minimum using gradient descent; all though 

heuristically we can reach, you know like near global minimum. So, observation for 



small step size gradient descent gets stuck at local minimum for larger step size it may 

come out of local minimum and get into global minimum algorithm may not converge 

for larger step size as well. There is no comprehensive method to select initial weight W 

naught and the learning rate eta for a given problem. So, that the global convergence is 

achieved. So, that the global convergence is achieved. So, that is about gradient descent 

now, because gradient descent is very slow in its convergence it does not guarantee 

global convergence; so people thought about Newton’s algorithm where like in gradient 

descent the weight update law is such that it tries to find the global minimum of the first 

order Taylor series approximation of the cost function. 

(Refer Slide Time: 20:22) 

 



(Refer Slide Time: 20:31) 

 

Now in Newton algorithm, if we take the same cost function e w and again we expand its 

Taylor series and we take the second order of approximation here. So, if we take second 

order approximation. So, here, let us define g as del E upon del W the gradient vector 

and there is a Hessian matrix that is defined as H, which is does square E upon doe W 

doe W transpose. So, neglecting higher order terms, we have following second order 

approximation of the cost function. So, this is the second order approximation; here E W 

is the second order Taylor series approximation of actual cost function E W and that we 

write this particular form. So, the all other higher order terms from this point onwards 

has been neglected. 
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So, this is a quadratic function of delta W. The necessary condition for minimization of E 

hat W, which is the second order approximation of actual cost function is given by del E 

upon del W is 0, which gives the following update law for weight vector, which delta W 

H inverse g, so that is if I go here and if I differentiate this del E W by del W this is a 

constant term goes away. So, differentiating this I get delta W is H inverse g; this is my 

weight update law using Newton’s algorithm. 

But unfortunately, of course now once I take this, you can easily see that E hat minus e w 

not is always a negative definite quantity provided not always it is negative definite only 

when H is positive definite; so this is true provided H is positive definite means H is 

positive definite. I hope all of you understand positive definite weight, if I take any 

vector extras force H x, if H is a positive definite matrix, this quantity is always a 

positive quantity for any accept, any in all vector you take any vector x this will be a 

positive quantity so that is H is positive definite. From that sense that this algorithm is 

not a full proof algorithm, because even it does not guarantee a locally stable unless H is 

positive definite - that is the biggest drawback of a Newton algorithm, but still researches 

have used it because it is very fast, but you see that it requires this weight update 

algorithm requires H inverse; inverse of a Hessian matrix imagine a normal network has 

at least 100 of weights. So, W and the minimal order is 100. 



So, H has at least 100 by 100. The dimension of H would be at least 100 by 100, we have 

said not100 by 100, because it is a double derivative. So, it dimension is huge and 

inversion is computationally very expensive. So, in that since this algorithm all though 

we can use this algorithm to solve a simple cost function optimization, but in terms of 

neural network this is a I would say it is a infeasible algorithm, we cannot implement it 

because Hessian cannot be computed, it will take lot of time. 
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So, the Newton algorithm starting with any initial condition W naught iterate following 

equation until stopping criteria is met, which is W t plus 1 is W t minus H inverse g t. 

This is a Newton algorithm and the discussion is that the Hessian matrix H t has to be 

positive definite matrix for all t that has to be you cannot guarantee H all the time. 

Steepest descent method operates on the basis of a linear approximation of the cost 

function, while Newton’s method uses quadratic approximation of the error surface 

around the current point W t computationally intensive, whereas it requires matrix 

inverse in H inverse for non-quadratic cost function E W convergence is not guaranteed 

this makes it unsuitable for training feed forward network. 
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Now, we will take the same example that we consider earlier, E W is a scalar, we see that 

W is a scalar it’s no W is not a vector here simply a scalar. This is a very simple function 

0.5 W square minus 8 sin W plus 7 and if I use the because W is a scalar naturally del E 

upon del W is a scalar which is g and H is del E by del square E by del W square. So, 

that is also a scalar and weight update law delta W is minus eta H inverse; so H here is a 

scalar so its inverse into g that is our algorithm and where g W is f dash W, you know 

see this is not f this is E E dash W this is E double dash that is this dash represent this is 

actually del E by del W and this is del square E by del double square. 
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So, this represent this, and this represent this and using this, if you update, you see that 

for some initial condition, when W naught is minus 6 it has 0.01. The weight diverges 

that is because H is not positive definite so in this case, H is not positive definite; so H is 

a scalar here it is obviously it is not greater than 0, it is a negative quantity and when W 

naught is minus 7 and eta is 0.001. The final weight converges to local minimum here 

and when W naught equal to 0, so if you start from here you reach here, but if you start 

from here you reach here, the final weight converges to the global minimum. 

But then we really did not achieve much with respect to in compresentive gradient 

descent except, probably the gradient descent even converging to the local minimum. 

Whatever the number of steps it will take to go to the local minimum, probably using this 

Newton method, you can improve on that speed but no way the desired goal of learning 

is achieved by Newton method. 
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So, observation are as follows convergence to global minimum depends on the selection 

of proper initial condition W naught. Algorithm may diverge for unsuitable initial 

condition because H W is not a positive quantity or it is in fact in general I would not say 

H is a scalar for our example, but in general H the Hessian matrix is not positive definite 

or is not positive definite always. 


