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Adaptive Learning Rate 

This is the lecture on adaptive learning rate. We have already discussed various types of feed-

forward networks and the training that we have used is based on gradient descent technique, 

where the learning rate eta is a fixed quantity. In this class, we will talk about what is the purpose 

of making this learning rate adaptive and how we can achieve it.  

(Refer Slide Time: 01:05) 

 

The subjects to be covered in this class are motivation for adaptive learning rate, Lyapunov 

stability theory. We have already discussed about stability theory. This is just to familiarize you 

in this class so that you can appreciate how to derive this adaptive learning rate using Lyapunov 

function. Then, some simulations and discussions. 
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This is a feed-forward network. This feed-forward network can be a multilayer network or 

RBFN network. There are various architectures of feed-forward networks. It can be a multilayer 

network or it can be a radial basis function network. Once you have this kind of structure, the 

goal is to identify this W, which is the weight vector. What we have done is that we have taken 

all these weights in the first layer, second layer and as many layers we have in the network, and 

put them in a vector format, which is W. That means the total number of weights in this network 

is capital N.  

The training data consists of, say, N patterns x p and y p. x p is the vector here, that is, the input 

vector and y p is the output vector. It is not necessary that we have only a single output or two 

inputs. This is simply a schematic diagram. The network can have as many inputs as and as 

many outputs and of course, as many hidden units. The update law for such a multilayer 

network, radial basis function network has this structure (Refer Slide Time: 03:12), where W t 

plus 1 is W t minus eta del E upon del W, where eta is the learning rate. This is a gradient 

descent, del E by del W is the gradient descent, that is, E is the error cost function and that is 

minimized by this update rule. Let us look at the motivation for adaptive learning rate.  
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In general, if I am looking at a function f x…. Let us say y is equal to f x. This is my f x and this 

is x. When f is nonlinear, then the usual curve can look like this. This is just a representative, this 

need not be exact. In principle, what this curve says is that this curve has many …. This is one 

minimum (Refer Slide Time: 04:29), this is another minimum and this is another minimum. In 

this curve, there are three minimums out of which two are local minimum and this is global 

minimum, but there can be another function f x for which there can be so many local minimum 

and many global minimum. So, many local minima and many global minima. 

These are the normal characteristics of a nonlinear function f x if I plot with respect to x. The 

objective is find x such that y is minimum. The objective is how I reach here (Refer slide Time: 

05:10), not here, starting from any initial condition. If you see, I use a gradient descent rule and 

if I start from this point, this red circle and then from here, I glide down and come here at this 

point (Refer Slide Time: 05:26). 



(Refer Slide Time: 05:32) 

 

But if I can change this initial position to this point (Refer Slide Time: 05:39), then I can come 

here by using the rule x new is x old minus eta del y by del x. This is my normal principle of 

gradient descent that I can come to the local minimum that is nearest to the starting initial point. 

But such a weight update does not guarantee that I can reach here. Of course, in this case, you 

can easily see that if I am starting from here, if I increase my learning rate step eta, then this 

initial position may go to this position (Refer Slide Time: 06:20) by simply changing this eta, a 

bigger value and then by lowering eta, I can easily reach this. We have discussed these in 

previous classes. With adaptive learning rate, one can employ a higher learning rate when the 

error is far from global minimum and a smaller learning rate when it is near it, but how do you 

do it? There are certain heuristics methods that people have tried. 



(Refer Slide Time: 06:47) 

 

But today, we would like to give a comprehensive approach on how to compute this adaptive eta 

such that even if I start from the initial weight (Refer Slide Time: 07:00), which is nearer to a 

local minimum, I can still reach the global minimum – that is the objective. The objective is to 

achieve global convergence for a non-quadratic, non-convex, nonlinear function without 

increasing the computational complexity. In gradient descent, the learning rate is fixed. If one 

can have a larger learning rate for a point far away from a global minimum and a smaller 

learning rate for a point closer to the global minimum, then it would be possible to avoid local 

minima and ensure global convergence. This necessitates the need for adaptive learning rate. 

Today, in this class, we will derive how to comprehensively compute eta, the adaptive learning 

rate such that we reach…. Of course, our algorithm does not guarantee that we will have a global 

convergence, but it is better than gradient descent. We will be using a Lyapunov function. What 

is a Lyapunov function? 
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For a system that is defined in the state space x t, V x is a Lyapunov function if it is positive 

definite and it grows, that is, V x t increases as x t increases. Once we have selected such a 

Lyapunov function and if I compute the rate derivative of that Lyapunov function V dot x, if it is 

negative definite, then the system is asymptotically stable. This is the Lyapunov function. 

Another condition is that if V dot becomes 0, then x t also converges to 0.  

(Refer Slide Time: 09:01) 

 



Weight update law using Lyapunov based approach. Normally, given a network that is 

characterized by W…. We have already discussed all these things. The network is characterized 

by the weight vector W and the input vector is x p, then the network output is y p hat. This is 

network prediction and p stands for pattern. I have N such patterns. The usual quadratic function 

E given for this kind of network for training the weight vector W is y p, which is desired, and y 

hat p is the actual one.  

y p is desired and y hat p is predicted by the network. You can see that this is the usual quadratic 

function that we have already discussed. This is for N patterns and if I have also multiple 

outputs, then I can put another index here and make a sum there. For such a network, let us 

choose a Lyapunov function candidate for the system as below. V is half y tilde transpose. It 

implies that here, I have this y tilde is actually the error for the pattern 1; y tilde is a vector of 

error function – the error that occurs when a network predicts given some input x p with specific 

W. This is the error for the pattern 1 (Refer Slide Time: 11:03), this is the error for pattern p and 

error for pattern N.  

We have capital N sets of patterns and for each pattern, we compute the error and each error is an 

element of y vector y tilde. Obviously, V is…. You can easily see that whatever I am writing 

here and this E are the same. In this case, V is the same as E – we have just written in a vector 

format. This expression has been written in a vector format in V and we say let this be a 

Lyapunov function. Then I try to differentiate V dot.  



(Refer Slide Time: 11:54) 

 

You check here.  

(Refer Slide Time: 11:57) 

 

This is my Lyapunov function and in this, there is a term called y hat p (Refer Slide Time: 12:03) 

and this y hat p is at W. The objective is how can I find out W dot? The objective is to find W 

dot such that V dot is negative definite – this is the objective. Find W dot such that if I 

differentiate V, V dot is negative definite. That is how we deal with a nonlinear function. You 



can easily see this is a nonlinear dynamics, because V is a nonlinear function and y hat p is a 

function of W, nonlinear function and I am now saying W dot, that is, the evaluation of W 

follows certain dynamic law. Then, this becomes a (Refer Slide Time: 13:18) dynamic equation 

and if V dot can be negative definite, then I can say that the W dot that is given to me is the 

weight update law that (Refer Slide Time: 13:30) stability. 
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The time derivative of the Lyapunov function V is given now – V dot is…. You see that V was 

half y tilde transpose y. This is a scalar function and y is a vector, where y tilde is the vector of 

all the errors for each pattern. V dot is minus y tilde del y hat by del W dot. You can easily see 

here that if I differentiate this V dot, y tilde and then differentiation of this quantity with respect 

to W and then, W dot. I can write this equation as minus y tilde transpose J W dot. You can 

easily see that this…. I hope this expression is clear to you (Refer Slide Time: 14:57), where I 

simply differentiate this V. The negative sign comes because y tilde is y actual minus y hat. 

When I differentiate that, I get minus del y hat by del W and W dot.  

The relation that I have added is dV by dt is dV by dW into dW by dt. What is this? W dot is dW 

by dt and this particular expression, this part, you can easily see that this is a vector (Refer Slide 

Time: 15:50) and this is another vector, but this is a row vector. Of course, we can always say 

that y is a vector, W is another vector, so obviously this is actually a matrix, which is this. I 



define this quantity as J and J is equal to del y upon del W – this quantity. The dimension of this 

matrix is N into M because W has dimension capital M and y has dimension N. I hope now you 

understood what V dot is. V dot is this quantity (Refer Slide Time: 16:52).  

Now, the theorem is if W is updated by this equation, the W t dash is W 0 plus 0 to t dash W dot 

dt. At every time t, I compute this relationship, where this W dot is given by this expression, 

which you are probably not so familiar with, but y tilde is norm square. Norm square means y 

tilde is a vector. So you take each element, square it, add them and take the root of that – that is 

the norm. If you do not take a root, norm square, so W dot is this norm square. J transpose y tilde 

is another vector, again norm square, plus this epsilon is a small positive constant and then J 

transpose y tilde. If this is the case, this is W dot, then, y tilde converges to 0 under the condition 

that W dot exists along the convergence trajectory. That is what we need. We need that this y 

tilde, the vector y tilde should converge to a zero vector under the condition that W dot exists 

along the convergence trajectory. This is the theorem. Once we have a theorem, we must prove 

that theorem. How do you prove it? 

(Refer Slide Time: 18:34) 

 



 

We will talk of this theorem as Lyapunov function I (Refer Slide Time: 18:41), because we 

prove it using the Lyapunov theory, Lyapunov function concept. What we do is we take this 

equation 6 and you replace this in 4 and compute V dot. If we do that, we get V dot to be y tilde 

square and this quantity (Refer Slide Time: 19:09). You can easily see that this quantity is 

always either positive…. you take the negative the other quantity. This is a positive quantity, this 

is another positive quantity and this is also another positive quantity. Hence, this quantity is 

always either negative, because negative sign is there or 0. That assures us if V1 dot goes to 0, 

then this quantity also will go to 0. 

If V1 dot is uniformly continuous and bounded, then as t tends to infinity, V1 dot tends to 0. If 

V1 dot tends to 0, you can easily see that y tilde will go to 0. That is the proof. The objective was 

that our error cost function, which is simply half y tilde transpose y tilde…. If y tilde goes to 0, 

then the cost function becomes 0, that is, the function is minimized.  
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The weight update law is a batch update law that we discussed now. The instantaneous LF-I 

learning algorithm can be derived as…. For instantaneous, what we do is we do not take the 

vector y tilde, we simply take a scalar. y tilde is simply y minus y p. This is no more a vector. 

This is for instantaneous quantity. W dot is this quantity. If I consider what should be the weight 

update law for instantaneous update…. We have already discussed earlier that there is batch 

update, there is instantaneous update. For batch update, we consider all the patterns and for 

instantaneous update, we consider the recent pattern, current pattern. This becomes the update 

law using the same Lyapunov function approach. 

If I look at this W dot, how will I update this? If I take a discrete equivalent of this equation, then 

this is the discrete equivalent (Refer Slide Time: 21:36) – the difference equation form of the 

continuous update law, which is W hat t plus 1 is W hat t plus mu W dot t. This is how the 

weight update is done, where mu is a suitable small constant such that this equation 

approximates equation 8. 
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We derived the weight update law W dot. That would ensure that y tilde converges to 0 if W dot 

exists along the convergence trajectory. That was our theorem and we proved it. Let us go in 

depth of this algorithm. If you look at the BP algorithm, back propagation algorithm, delta W is 

minus eta del E upon del W. What is delta W? I always write W t plus 1 is W t plus delta W. You 

can see that this is the gradient descent law, gradient descent method (Refer Slide Time: 22:57) 

and this gradient descent method can be written as eta Ji transpose y tilde where this Ji is the 

same as the Ji is del yi by del W.  

You can easily that this is Ji (Refer Slide Time: 23:23) Ji is del y by del W. This is a row vector 

because y is a scalar. There is no i there (Refer Slide Time: 23:37), so del y hat by del W is here. 

If I write the equation, this equation is the same as this equation. This eta Ji transpose y tilde is 

the same as minus eta del E upon del W. Then, I write this equation and using the recent 

algorithm which I call LF-I, we got an equation which is Wt plus 1 is Wt plus mu y tilde norm 

square by Ji transpose y tilde norm square into Ji transpose y tilde.  

You can easily see that this back propagation algorithm was very popular and the algorithm we 

have derived is remarkable (Refer Slide Time: 24:33) same identity, except that eta is replaced. 

In back propagation, this eta is a fixed quantity and in this Lyapunov function based weight 

update law that we just now derived is this quantity, whereas this quantity is a time-dependent 



quantity. That gives us a notion that using the Lyapunov function, we can actually derive an 

adaptive learning rate, which is eta. Comparing the above two equations, we find that the fixed 

learning rate eta in BP algorithm is replaced by its adaptive version, which is eta adaptive. This 

is the first time (actually, this is our own work) we derived an adaptive learning rate using…. 

Comprehensively, we found this an expression for adaptive learning rate using Lyapunov 

function method.  

(Refer Slide Time: 25:53) 

 

The convergence of LF-I is that we said that… we showed that y tilde converges to 0, but there 

was a condition that if W dot exists along the convergence trajectory, then our theorem is right. 

But W dot may not exist along the convergence trajectory. Then, our thing does not hold good. 

The theorem states that the global convergence of LF-I is guaranteed, provided W dot exists 

along the convergence trajectory. This, in turn, necessitates that del V1 by del W, the norm of 

that, is J transpose y tilde is not equal to 0.  

This says that the W dot exists along the convergence trajectory (Refer Slide Time: 26:51) and 

for this existing convergence trajectory meaning that this should always exist – J transpose y 

tilde should always exist. This implies that J transpose y tilde should not be 0 or del V1 upon del 

W is 0, which indicates a local minimum of the error function. Thus, the theorem only says that 

the global minimum is reached only when local minima are avoided during the training. Since 



instantaneous update rule introduces noise, it may be possible to reach global minimum in some 

cases. However, global convergence is not guaranteed. This is the implication of the theorem that 

W dot exists along the convergence trajectory. 

(Refer Slide Time: 28:43) 

 

This is a second version of that same algorithm where our Lyapunov function V2 is the earlier 

Lyapunov function. This was the earlier Lyapunov function we took and we added a term, which 

is lambda into W dot transpose W dot. This term was added into the error function V2. Again, if 

we follow the same method, we find out V2 dot, then this can written in this form, which is 

minus y tilde transpose into (J minus D) W dot, where J is del y upon del W and D is this 

quantity, that is, lambda into 1 upon y tilde norm square y tilde W double dot transpose. If I put 

this, then this V2 dot, which is computed here…. This is V2, this is V2 dot and this is the same 

quantity as this.  
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Now, we propose another theorem. If the update law for weight vector W follows a dynamics 

given by the following nonlinear differential equation, which is 14, where this alpha W has this 

form y tilde norm square upon J transpose y tilde norm square plus epsilon is a scalar function of 

weight vector W and epsilon is a small positive constant, then y tilde converges to 0 under the 

condition that J minus D transpose y tilde is non-zero along the convergence trajectory. This 

should be non-zero along the convergence trajectory.  

(Refer Slide Time: 30:24) 

 



We take this W dot and this W dot can be written in this form now. From here, I can write this 

equation in this form. Substituting for W dot from this equation, if I replace this W dot here, 

which is V2 dot, then V2 dot becomes this quantity. You can easily see that this is a positive 

quantity or 0. This is again a positive quantity and this is another positive quantity or 0 (Refer 

Slide Time: 30:19). In that sense, since (J minus D) transpose y tilde is non-zero, V2 dot is less 

than 0 for all y tilde less than or equal to 0 and V2 dot is 0 if y tilde equal to 0. If V2 dot is 

uniformly continuous and bounded, then according to Barbalat's lemma as t tends to infinity, V2 

dot tends to 0, implying y tilde will converge to 0, which was the theorem. The theorem is 

proved that y tilde you will again converge to 0, provided the condition…. 

(Refer Slide Time: 31:02) 

 

The condition is (J minus D) transpose y tilde is non-zero along the convergence trajectory. This 

is necessary because if this is not 0 (Refer Slide Time: 31:15), if this becomes 0, then W dot does 

not get updated. We say that W dot should exist (Refer Slide Time: 31:21). For W dot existing 

here, this quantity should not become 0 (Refer Slide Time: 31:32). If this becomes 0, then 

obviously W dot becomes 0 and then weights cannot move along. The trajectory of weight 

update becomes stagnant and you cannot have further. So, this should not become 0; if this 

becomes 0, then this theorem does not hold good. This can be 0 in local minima, that is, for LF-I; 

for LF-II, we showed now the same thing (Refer Slide Time: 31:56) that this quantity also should 

not become 0. As long as this is not 0, y tilde will converge to 0.  



We derived two Lyapunov function based algorithms, but in both the theorems, we showed that 

y tilde will converge to 0, but there is a condition. In the first one, the condition was that Ji 

transpose y tilde should not become 0. Here, (J minus D) transpose y tilde should not become 0 

and because of these conditions, global convergence is not achieved. Anyway, the weight update 

law that we talked about, the difference equation version of that weight update law is this 

particular format, which is equation 17.  

This can be written in terms of two forms. W t plus 1 is W t and there is some quantity here, 

which is a time-varying quantity, then J transpose P y tilde. This is the instantaneous and that is 

why P has come – P for each pattern. Minus… again, this is another quantity, where mu1 is mu 

plus lambda and that quantity is written – again, another time-varying quantity into W double 

dot. This is a gradient term (Refer Slide Time: 33:42) that has some input and this is W double 

dot into some constant, where W double dot is computed using this formula, which you can 

easily derive using Euler's method.  

(Refer Slide Time: 34:02) 

 

If I use the same cost function and apply back propagation, I get this equation. The recursive 

term is this, equation 18. Now also, we are getting the same thing, but we are now getting eta 

dash and mu dash are time-varying quantities, that is, the adaptive quantity using Lyapunov 

function. The Lyapunov function or the method that we have described gives us weight update 



law, which is similar to gradient descent, but…. that but is very important because the learning 

rate associated is the adaptive map. Normally, in back propagation, we call this term the 

acceleration term, but our mu dash is an adaptive acceleration term and eta dash in back 

propagation is a fixed learning rate, whereas in our case, it is an adaptive learning rate.  

(Refer Slide Time: 35:12) 

 

I will not go into details of this because this requires a little bit of more introspection and you 

really need to understand and go into detail about it. Simple classroom teaching will not help you 

to understand this. In this particular class, I am just telling you or I am giving you or I am 

delivering this lecture to just let you know or to inspire you to think about the methodology that 

will help you to get a better convergence algorithm. The convergence of LF-II is again the same 

thing that this should not become 0 (Refer Slide Time: 36:02) and if this does not become 0, then 

it ensures global convergence, but we cannot guarantee that these cannot become 0. This can 

become 0.  

You can easily see that J transpose y tilde is D transpose y tilde. If this is the case, then the 

solution of the above equation represent local minima. When this is 0, this is the local minima it 

reaches. We said that this should exist. That means this should not become 0 for global 

convergence (Refer Slide Time: 36:44), but W dot vanishes whenever this is 0. If we assume J is 

not equal to D, then rank of J minus D equal to n ensures global convergence because if J is not 



equal to D, it implies this is 0 only when y tilde is 0 and that is global convergence. At global 

convergence, y tilde is 0. The other condition is that when J transpose y tilde…, but this case of 

course is for… when this is true, the solution of the above equation represent local minima and 

then, the convergence is not global. 

(Refer Slide Time: 37:42) 

 

For a neural network, n is much much less than m. There are at least m minus n vectors for 

which solutions do not exist. Hence, local minima do not occur. Increasing the numbers of 

hidden layers or hidden neurons, chances of encountering local minima can be reduced because 

of this particular statement. Increasing the number of output neurons increases m and n, as well 

as n by m. Thus, for MIMO systems, there are more local minima as compared to single output 

system. So more complexity, more local minima.  
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This is one of the interesting parts. I will not go in detail here but all that I will tell you is that 

using Lyapunov function, the second Lyapunov function, LF-II algorithm (the first one is LF-I, 

the second one is LF-II), one can show that because of the acceleration term that we are adding, 

most of the time… because whenever this quantity del V1 upon del W is 0, that does not ensure 

that W double dot… Whenever del V1 by del W is 0, it does not imply that W double dot is 0. 

This fact actually ensures that this term can actually drive away this local minimum. It can bring 

the weight from this local minima and it can come here. We can avoid local minima, not always 

but in some cases using LF-II algorithm by adding that extra term, which is half W dot transpose 

into W. That extra term helps us because that introduces an acceleration term in our learning 

algorithm. That acceleration term can take away the weight from being stuck in the local minima 

towards the global minima.  
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We talked about adaptive learning rate. What is this adaptive learning rate? Let us consider the 

LF-I algorithm and in this algorithm, if we apply this algorithm to an XOR function…. All of 

you know what an XOR function is – when both input are equal, then the output is 0 and 

unequal, the output is 1. That is the XOR function. We have four patterns in the XOR function 

for two-input XOR function; four patterns for a two-input XOR function, that is, I have this. This 

is XOR, x1, x2 and y. If I train this function, if I train a network to learn this function, then when 

I plot this eta function….  

You see for each pattern, I have four curves here – one, two, three and four (Refer Slide Time: 

41:32) and you can easily see this eta is increasing and decreasing until it goes to 0. What you 

are seeing are two important things: learning rate is not fixed, which in BP is a fixed quantity, 

and learning rate goes to 0 as error goes to 0 – this is important. That is what is important – how 

the learning should be done. Learning should be done… in the beginning, eta should be very 

high or whatever is necessary, but as the learning is over for the patterns and the network has 

already learned, then eta should be 0. Why should eta be there? But for back propagation, the eta 

is always fixed. This is important. What is the meaning of adaptive learning rate? It has two 

important properties: eta is time varying and it has a property that y tilde converges to 0, eta also 

becomes 0.  
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We will now talk about simulation results. This is your LF-I versus LF-II, the XOR function. Let 

me first summarize. We proposed two theorems for weight updates in a feed-forward network – 

it can be a multilayer network or it can be a radial basis function network. We said that these 

weight update algorithms will ensure that y tilde converges to 0, that is, global convergence 

provided two conditions …. There is a condition for each theorem that has to be satisfied. In one 

case, while the weights are sliding along the convergence trajectory, they should not be stuck in 

the local minimum. This is the first theorem. The second theorem says J minus D transpose y 

should also not be 0. Again, that solution also ensures us to be in local minima if it becomes 0. 

Now, the problem is which is better – LF-I or LF-II? We have some idea that LF-II can avoid 

local minimum. Let us do simulation and see whether the theory we predicted is true or wrong.  

See what we have done here for XOR function. (Refer Slide Time: 44:23) feed-forward neural 

network, that is, a multilayer neural network and using that neural network, what we did is we 

started from this different initial condition W and for every run, we wanted to see how many 

training epochs were necessary for each algorithm for convergence. If you look at the top one, 

which is the broken line, that represents the number of training epochs. One epoch is training 

about four patterns. In the XOR function, I have ―1, ―1 is ―1; ―1, +1 is +1. This is my x1, 

this is my x2, this is my y. Then, +1, ―1 is +1 and +1, + 1 is ―1. This is my XOR function and 

if I train this XOR function in a multilayer network using my Lyapunov function-I algorithm, 



then from every different initial condition, because initial weights are all random, for each initial 

condition I get.… You see that these are the number of patterns here and one epoch is these four 

patterns. 

I give these four patterns to my network, train it and again, I repeat it. Like that, if I train 

almost… here, it is almost near 200 and here, it is around 120 or so, it is varying; sometimes, it 

may also go to up to 300. You can easily see the number of training epochs necessary to train an 

XOR function using LF-I is always a varying quantity and there is a good deal of fluctuation – 

that is almost as 120 training epochs to 300 training epochs, whereas if you look at LF-II, it is 

almost constant. This is a straight line except these fluctuations here – this is one fluctuation, this 

is another fluctuation (Refer Slide Time: 47:09), but otherwise, they are very fixed quantities. 

This is always below the training epochs that are necessary using LF-I.  

The observation is LF-II provides tangible improvement over LF-I both in terms of convergence 

time and training epochs and the most important is that it is invariant to initial condition. I have 

to recognize that training a neural network means you start from a new initial condition. Each 

initial condition will lead to a different convergence time. If that is the case, then the algorithm is 

not a good one. So, can I say that I have an algorithm that ensures that whatever may be my 

initial weight vector, my convergence time is independent of that? That is important. That was 

for XOR function.  
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This is for three-bit parity problem and in three-bit parity problem, you can easily see…. I hope 

that you can get all these functions – they are there in many textbooks. This is XOR function 

three-bit parity. If you take a three-bit parity function, again you can see that LF-I is again very 

much fluctuating between 750 epochs to almost 3,000 epochs. It fluctuates, whereas in LF-II, the 

number of training epochs is fixed almost at the 500 level and some was fixed very rarely. Here, 

one fluctuation, second fluctuation here, big fluctuation 3. Again, LF-II performs better than LF-

I both in terms of computation time and training epochs.  
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This is a 2D Gabor function. For this Gabor function, the LF-I and LF-II, if you look at the RMS 

error and these are the training iterations, you can easily see that for LF-II, the error is much less 

and it has a lesser value than the LF-I and so, it has a better convergence performance.  
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We have a kind of a table format. We have compared the results for performance of back 

propagation algorithm and LF-I and LF-II for an XOR function. You can easily see that the 



number of epochs that are necessary for training the XOR function using eta equal to 0.5 is 5,620 

and when eta equal to 0.95, it is 3,769, whereas in the case of LF-I, we take only 165 and LF-II 

only 120. The epoch simply gives the number of times I have to train, but what is the total 

computation time?  

Of course, one can argue that gradient descent is a very simple function and computationally 

very simple but if you look at the total number of computation times in seconds that is necessary, 

if you again see that also, in that case, the proposed algorithm is much better because it is 0.0038 

whereas for back propagation, it is 0.0354. It is pretty fast, at least 10 times faster than the back 

propagation algorithm in convergence time. 
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The three-bit parity problem. Again, you can easily see here that LF-II takes 738 number of 

epochs and LF-I is 1,338 epochs, whereas back propagation takes a pretty low time of 5,941 with 

eta 0.95 and eta = 0.5 is 12,032. If you look at the computation time also, for LF-II, it is 0.0676 

seconds, whereas back propagation takes 0.483 seconds for training. This is the three-bit parity 

problem we talked about.  
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This is the 8 by 3 encoder. You already know what an encoder is. If I use an 8 by 3 encoder map 

using a feed-forward neural network, again if you look at the number of epochs that are 

necessary – LF-II and LF-II using Lyapunov function, they are pretty small compared to back 

propagation, and you can see the comparison time-wise also.  
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The 2D Gabor function. We took a multilayer network with 40 hidden units, 80 hidden units and 

we tried using back propagation network as well as LF-I and LF-II only 40. You can see the 

RMS error per run. We train the network using many initial weight conditions and average rate 

over 100 such runs and then we computed the average error and you can easily see the 

computation is in terms of RMS error. LF-I and LF-II are much better than the back propagation 

algorithm.  

(Refer Slide Time: 53:11) 

 

Let us come to the final part, the global convergence of Lyapunov based learning algorithm. It is 

possible…. If we take the objective function V2 (Refer Slide Time: 53:29), Lyapunov function is 

mu V1 plus half sigma this square, where V1 is this quantity which is the Lyapunov function we 

have considered for our first theorem. If I compute V2 dot, then this becomes equation 22. The 

objective is to select a weight update law W dot such that the global minimum V1 equal to 0 and 

del V1 by del W equal to 0 is simultaneously reached.  

You see that if I have a cost function, then at this, del V1 by del W also 0 and V1, this quantity, is 

also 0 here. In this case, this is 0 – del V1 by del W is 0, but V1 is not 0 here, V1 is 0 here. Let 

me now try to explain what the meaning of attaining global convergence is. If I look at the 

Lyapunov function, which is now V2, you can easily see that if this is my Lyapunov function, at 

this point, V1 is 0 and at this point, this quantity del v1 by del W is also 0. V2 is 0 here in this 



point, but in this case, this one is 0 but this is not 0 (Refer Slide Time: 55:26) in this case; in this 

case, this one is 0, but this is not 0. If I can take a Lyapunov function like this, some researchers 

have proved that we can attain global convergence. But what is the problem if I take 22? This 

has a Lyapunov function, which is 21. Then, I have to make sure that this V2 dot is negative 

definite.  
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For that, you see that this is my weight update law – researchers have shown it, but 

unfortunately, this involves a Hessian matrix and its inversion. Computationally, it is impossible. 

Normally, a neural network will have a number of weights, at least in 100s. In a tangible 

application, this number is at least 100. In that case, you can easily see that this is a very huge 

matrix whose inversion is very difficult. It is not difficult to compute the inversion, but it is time-

consuming. Obviously, they cannot be applied online, but the algorithm that we presented today 

is applicable online.  
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The implementation of weight update algorithm becomes very difficult due to the inverse 

presence of the inverse of the Hessian term. The above algorithm is of theoretical interest only 

and also, this weight update algorithm is similar to BP learning algorithm with a fixed learning 

rate, whereas the learning rate that we presented today is adaptive.  
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The Lyapunov function algorithms performs better than… (I did not talk about today what is 

extended Kalman filtering, it is not necessary) performs better in comparison to back propagation 

algorithm in terms of speed and accuracy. LF-II, the second algorithm that we proposed today, 

avoids local minima to a greater extent as compared to LF-I. It is seen that by choosing proper 

network architecture, it is possible to reach global minimum. Both LF-I and LF-II have an 

interesting parallel with conventional BP algorithm, where the fixed learning rate of BP is 

replaced by adaptive learning rate.  
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The conclusion is that the adaptive learning rate can be comprehensively computed using 

Lyapunov function approach. Here, we select a Lyapunov function V, then find V dot and 

propose W dot such that V dot is negative definite.  
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By doing this, what we did is that we attained an adaptive learning rate. In gradient descent, we 

have W t plus 1 is W t plus eta del E by del W. This is gradient descent. In Lyapunov function, 

we got the same plus etaadaptive del E by del W. We derived the Lyapunov function in adaptive eta 

– the structure is the same otherwise. I hope that this is clear for you – how to compute 

comprehensively an adaptive learning rate such that our convergence is better. Although the two 

algorithms that we proposed do not guarantee global convergence, they give us an idea how we 

can certainly improve the convergence of such algorithm for feed-forward networks. Thank you.  


