Intelligent Systems and Control
Prof. Laxmidhar Behera
Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Module — 1 Lecture -6
Radial Basis Function Networks

This is lecture 6 in the first module of neural networks, a course on intelligent control. Today, we
will take up another architecture of learning system that is used widely in control system. This is

called radial basis function network.

(Refer Slide Time: 00:56)
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The network architecture is given here. You can see that it has three layers. The first layer is as
usual the input layer. The second layer, which is the hidden layer, is different from the
computational unit in the hidden layer — different in structure compared to the multilayer
network that we discussed. These computational units are known as radial centers. It is a radial
center because if I look at C, this is a p into 1 vector — the same as the x vector, which is p into
1, the input vector. These centers represent the clusters in the input space; C;, C, and Cy
represent the clusters in the input space. So, C;s represent clusters in the input space. The output

of each center, which is phij, is a function of the Euclidean distance between C; and x.



You can see that the computational unit has a different function than the multilayer network.
Then what you are seeing is that we compute this phi;. The C;s are known as radial centers; they
represent small clusters in the input space. Then y, the output, is simply summation of phi; w;j, i
equal to 1 to h. This is the structure of a radial basis function network. There are certain

advantages we will talk about. Let me mention what we talked about just now.

(Refer Slide Time: 04:00)
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The radial basis function network consists of three layers: input layer, hidden layer and output
layer. Unlike in multilayer network, you can have as many hidden layers, but here, you can have
only one hidden layer. The computational units in the hidden layer have a different function than
that of multilayer network. The hidden units provide a set of functions that constitute an arbitrary
basis of input patterns. The hidden units are known as radial centers and are represented by the

vectors Cy, C,, ... Cy, and they have the same vector dimension as that of the input x.

Transformation from input space to hidden unit space is nonlinear, whereas the transformation
from the hidden unit space to output space is linear — that is what we talked about (Refer Slide
Time: 04:55). Here, the phijs is the nonlinear transformation of x input. Actually, this is a
function of the known or the Euclidean distance between C; and x, which we normally represent
by the second (Refer Slide Time: 05:14). This is nonlinear, phi; is a nonlinear function of x;,

whereas the output y is a linear function of phi. That is the difference. The dimension of each



center for a p input network is p by 1 — | have already told you that
discussed.

(Refer Slide Time: 05:42)

'!Haular Basis functions
' Pl 30l Bl Mam Bl o Tl Padchee® Lingded Broacdiacmi 5

algrafic vl ndn=denG magenine arily mieen e ngut el

il B i il bt ik nl e gl e
Ul el

1! vt AwIEE e B e SO Rl I CerT

w kil m sl ey | wrd | Fwvm e of dpimgl b ilwe

g
a v
Eieppd Oralpaad b Ol wiwn] | P Coilimil o st
.
R

wenary bt [l sy vl e tion

. This is our network that we

The radial basis functions in the hidden layer produce a significant non-zero response only when

the input falls within a small localized region of the input space. Let

(Refer Slide Time: 06:00)

me explain this.




We are talking about input space. These data belong to this input space. The input space instead
of being represented by each and every data, the principle in radial basis function network is say
for example, the inputs, the data are all distributed in a (Refer Slide Time: 06:18) set like this. If
this is the data, each point represents a datum in this input space, we can easily say let us select
from this bulk of data two clusters here, another two clusters here, another two clusters here.
These are small data points — one cluster, another cluster.

What is the meaning of cluster? This is another point that represents the data around this.
Similarly, this is another point that represents the data around this. When the input data is very
near this cluster, then the output of this cluster or output of this center will be maximum and the
response of this radial center.... Let me first clarify what | am trying to tell you. What | am
telling you is that we have a radial center and these radial centers are placed in the hidden unit.
These radial centers are the clusters in the input space. Input space means a space where all

possible data in the input are located.

That means we are trying to construct a map from the input space to output space. In the input
space, all possible varieties of data are there. The radial centers represent this data. In an ideal
case, the input space may contain many data — not infinite, but many data. To represent this data
using finite data points and these finite data points are known as clusters. Each cluster has its
own receptive field in the sense that each cluster represents a certain data point and for that data

point, that radial center output will be maximum.

I place these clusters in this hidden layer. For example, if | say this cluster is this cluster (Refer
Slide Time: 09:24), then the output of this cluster or radial center will be maximum for the data
lying in its receptive field. Obviously, the output of this for any other data in this away from this
radial center will be minimum. That is the idea. The radial basis function in a hidden layer
produces a significant non-zero response only when the input falls within a small localized

region of the input space.

Each hidden unit has its own receptive field in the input space, which | just told you — the output
will become maximum for the radial center when the input data belongs to its receptive field. An
input vector x; that lies in the receptive field for center c; would activate at c; and by proper

choice of weights, the target output is obtained. The output is given as y equal to sigma phi; w;j,



where phij is phi of x minus c; known; actually, this phi represents a function — what | said
earlier. As | have already told, the output y is a linear function of the outputs of the radial center,
which is phi; and phi; is a nonlinear function of x, a nonlinear function of distance between x and

Cj; phi is some radial centers.

(Refer Slide Time: 11:16)
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What are these radial functions? There are certain popular radial functions. If | define z as a
Euclidean known between X, the input data, and the j th center.... We saw that we have h centers
and the distance is Euclidean distance between the j th center and X. You can easily say that this
is the Euclidean distance between x and c; (Refer Slide Time: 11:46). The types of radial
functions that we normally use are Gaussian radial function and thin plate spline function.
Gaussian is very popular: e to the power minus z square by 2 sigma square, where z is the
Euclidean distance between the data and the radial center. Similarly, the thin plate spline
function is z square log z. phi z is z square plus r square to the power of 1 by 2 is a quadratic
function and is the third one. The inverse quadratic is just 1 upon z square plus r square to the
power 1 by 2, that is, root square of z square plus r square. The Gaussian function has been very

popular while selecting the radial center.
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What is the normal difference between a radial basis function network and multilayer network?
The difference is that a radial basis function network has a single hidden layer and a multiple
layer network has multiple hidden layers. MLN has multilayer network and RBFN has a single
hidden layer. The basic neural model as well as the function of the hidden layer is different from
that of the output layer. In the output layer, we have simply summation, where the hidden
computation is a function of the Euclidean distance between input and the center, whereas the
computational units in multilayer networks are all similar. The hidden layer is nonlinear, but the
output layer is linear. Here, all layers are nonlinear but not necessarily — sometimes in multilayer

network also, we can make the output layer to be linear.
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In the radial basis function network, the activation function of the hidden unit is a function of
(Refer Slide Time: 14:15) of the Euclidean distance between the input vector and the center of
that unit. The activation function is a function of the Euclidean distance between the input vector
and the center of that unit in a radial basis function network, whereas in a multilayer network, the
activation function computes the inner product of the input vector and the weight of that unit. In

a sense, this is all right.

(Refer Slide Time: 14:45)
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The objective here, whatever is written is just a comparison. What is happening is that the
activation function is a function of the Euclidean distance between the input vector and the
center, whereas this is the inner product — the activation function is a function of inner product. It
is not activation function. The idea should be very clear to all of you that here, the function phi is
a function of x minus C; whereas this is the sigmoidal function here. If I say it is also phi, then in
this case, it is f of x transpose w, the connection weight associated with the input.

Such a weight is absent in this case, the radial basis function network. The radial basis function
network establishes a local mapping and is hence capable of fast learning. The multilayer
network constructs a global approximation to the input/output mapping. The learning in a radial
basis network function consists of two different categories of parameters: one is the radial
centers and the other is the connection weights in the output layer, whereas in the multilayer

network, the only parameters are the synaptic weights.

(Refer Slide Time: 16:40)

Hacdidon ey Oulpaat
A R laryer

By functioens

Figure 1. Racial Dasis Function Network
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In a radial basis function network, the parameters are C;, C, up to C, — these are all centers
(Refer Slide Time: 16:49) and wi, w», up to w, are weights. The weights are in the output layer

and the centers are in the hidden layer.
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The training of RBFN requires optimal selection of the parameter vectors ¢ and w, the weight
vector. We have to select in such a way that given this set of data x and y d, the cost function half
sigma over all patterns, i equal to 1 to M number of patterns into yq minus y square (yq is the
desired output and vy is the radial basis function output) must be minimized. The objective is
select Cis and w;s such that this particular function is minimized. This is the objective. The
following techniques are used to update the weights and centers of an RBFN. There are many
methods by which these centers and weights are all optimized. One is the very simple pseudo-
inverse technique, which is an offline technique; the gradient descent learning and hybrid
learning are online techniques. Gradient descent is the same as back propagation that we talked

about in multilayer network.
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What is a pseudo-inverse technique? This is a least square solution. Let me tell you what we will

do here.

(Refer Slide Time: 19:08)

We have inputs, then we have hidden units, then we have an output unit. Given your x p, we
compute what is y p. What we do here in pseudo-inverse technique is that the radial centers are
fixed. How do you fix the radial center? The radial center represents the clusters in input data

space. This is my input data space. | have a stack of input data. What | can do is that | can



randomly sample this data and | assign each random sample from this data to Cis. What 1 do is |
assign a random sample from the input space to C;. From the input space or input data, | select a

random sample and assign to C; and like that, I assign all the centers.

The objective is that centers should be selected so that they are almost uniformly distributed in
the data. That means wherever there are more data points, more data should come from there and
less data should come from where there are less data points. For example in this zone, there are
more data points (Refer Slide Time: 20:54) and so, more number of points should come and this
should be assigned as a radial center. These data points are very sparsely located in this zone.
Then, very few points should come and we assign as the radial center — that is the objective. That

way, we can fix the radial center.

Once the radial center is fixed, then the outputs are known — these phi;s are fixed, because phi;s
are based on whatever the center; centers are fixed, so phi;s are same, phi; is fixed given a

specific data point. Given a specific data point, what do we have now? | have to write like this.

phi is a vector, w also is a vector, so | have to write phi; w;. This is right, phi; w; is the same as
phi transpose w. This phi; w; is now y p. For each x p, I can collect this kind of equation. So how
many unknowns do | have? The ws are.... We can see here (Refer Slide Time: 22:31) the
number of parameters now to be estimated are.... This is actually not n, this is h (Refer Slide
Time: 22:39), wy. The number of weights is h because the centers are h; the number of weights is
h for a single output radial basis function network.



(Refer Slide Time: 23:02)

We have w;s, i equal to 1 to h. For a given input pattern, we find out this equation phi transpose
w is y p. Like that, how many equations do we have? p is equal to 1 to M, where M is the
number of data patterns. We have these many equations. How many unknowns? The unknowns
are h weights — these are unknowns. Normally, the data patterns are many and h is usually much
less than M. In essence, you have more number of equations but less unknowns. So, we can

easily find a least square fit. That is the objective here.

(Refer Slide Time: 24:28) This is a least square problem. Assume a fixed radial basis function, a
Gaussian function. We assume that all the radial centers in the hidden units are Gaussian
functions. The centers are chosen randomly as | said. The standard deviation of the radial
function is determined by an ad hoc choice. The learning steps are as follows: the width is fixed
according to the spread of the centers. Your phi; is an exponential function (like a Gaussian
function) e to the power of minus h upon d square and this is the known (Refer Slide Time:
25:13) — x minus ¢, the Euclidean distance between x and c; square. This is the distance square. h
is the number of centers and d is the maximum distance between the chosen centers. What is the
meaning of this maximum distance between the chosen centers? If we go back (Refer Slide
Time: 25:36)....



(Refer Slide Time: 25:40)
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Let us say that we have two-dimensional data x; and X,. | have a data point, one cluster here,
another cluster here and all other clusters are like this. Obviously, for this cluster and this cluster
(Refer Slide Time: 26:04), the distance between these is maximum. Similarly, once you have

fixed the radial centers, find out two centers that have maximum distance between them.

(Refer Slide Time: 26:25)
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Once you do that, then that is d, that maximum distance is d. Obviously, if you look at that, if |
write e to the power of minus x minus C;, the Euclidean distance square by sigma square, then
sigma will become d upon root 2 sigma squared. Normally, the function is like this: e to the
power of minus z square by 2 sigma square. This is the normal form of a Gaussian function and
if 1 represent this function as this (Refer Slide Time: 27:03), which is written here, Then
obviously sigma is d upon root of 2 h and d is the maximum distance between any two radial

centers.

(Refer Slide Time: 27:27)
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Now, we will formulate the problem. The problem is let us say phi is phiy, phi, up to phiy is a
row vector that is taken here. This is a row vector phi. These are the outputs of the radial centers.
w is the weight vector. This is a column vector. phi w is y d, where y d is the desired output.
Now, we are only talking about a single output RBFN. You can also talk about multilayer output
— it is the same, the formulation will be the same. The required weight vector is computed as....
What | am trying to do here is that we will find a pseudo-inverse technique, how to solve a radial

basis function network.



(Refer Slide Time: 28:37)

For a p th pattern, phi p is a vector of phiy p, phi, p up to phiy p. These are the outputs of the
radial centers. The weight is wi, w, ... wy and the corresponding output is y4 p. Similarly, we
have M patterns. If | write this in terms of matrix, | can write a capital phi, which is phi; 1, phi,
1 up to phiy 1. These are the radial center outputs for the first pattern. The second pattern is phi;
2 phiy 2 ... phip 2. The M th pattern is phi; M, phi; M and so on up to phi, M. This is my phi

and correspondingly, each one is multiplied with W.

(Refer Slide Time: 29:52)
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Let me not put it here. This | put here. This is my big phi (Refer Slide Time: 29:57). I multiply
this with wy, wo, ... wy, because they are fixed. The weights are fixed. The pseudo-inverse
technique is offline training (Refer Slide Time: 30:22). It will allow the patterns to pass through
the network, compute the yq, store them for M patterns and while doing all these things, the
weights are all fixed. Hence, what we are doing is that we are keeping all these relation vectors
which is phiy to phi,, this phi vector, and we are equating with the output. Obviously, if we
multiply phi; 1, phi; 1 up to phi, 1 with this weight vector, the corresponding output is yq4 1
pattern. The second one is yq4 2 and the m the one is y4 M. What we have got is a matrix notation.
This is phi, this is weight and this is Y. Now, you can easily see that because the output has a
linear relationship with weight, we can always represent in terms of matrix format and you can

easily see that Y is an m by 1 vector, W is an h by 1 vector and phi is an m by h vector.

(Refer Slide Time: 32:02)
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The solution will be that capital phi into W is Y. We found out this is M by h, h by 1 and this is
M by 1. Since this is not a square matrix, we cannot invert it. The solution is very easy to find
out when phi is a square matrix and is invertible but when it is not a square matrix, what we can
do is we can use the pseudo-inverse technique. What is pseudo inverse? I multiply phi transpose
phi W. phi transpose is h into M cross M cross h. So, this is an h cross h matrix and W is h cross
1. Here, you multiply phi transpose Y (Refer Slide Time: 33:19). This is h M M 1 and this is



again h cross 1. Everything is satisfied. Finally, W is (phi transpose phi) inverse into phi

transpose Y because this is now a square matrix but this solution is possible only when....

(Refer Slide Time: 33:55)
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The solution we got for W is now (phi transpose phi) inverse phi transpose Y. This is known as
pseudo.... The solution is possible only when (phi transpose phi) inverse exists. Even otherwise,
we can use the singular value decomposition method when this is singular; singular means its

determinant is O.
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There was a little mistake there and | corrected that. What you found out is that the required
weight vector w is (phi transpose phi) inverse phi transpose y d and this is known as the pseudo-
inverse of phi. This is possible only when phi transpose phi is non-singular. If this is singular,
singular value decomposition used to solve for w.

(Refer Slide Time: 35:29)
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This is an example. We take an EX-NOR function: 001,010,100,11 1. Thisis an EX-NOR
function. You select two centers. Centers can be selected randomly from the input space. In input
space, we only have four data and we can select any one of them. Let us select 0 0 and 1 1 as the
centers. ¢c; = 0 0 is one of the centers and the other center is 1 1. So, phi; is exponential minus (x
minus c1) square and phi, is e to the power of (x minus c;), Euclidean (Refer Slide Time: 36:15)
square, where x is X1 and X».

(Refer Slide Time: 36:25)
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The output y is w; phiy plus w, phi, plus theta.



(Refer Slide Time: 36:31)
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If you look here, theta is the bias. This is the architecture we selected. This is radial basis
function network architecture selected to learn the function EX-NOR. We have taken two radial
centers and one bias (Refer Slide Time: 36:51). The bias input is +1, the bias weight is theta, y is

w1 phi; plus w; phi; plus theta and phi; phi, are computed according to this.

(Refer Slide Time: 37:07)
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We have four training patterns. If we compute for each pattern the phiy, the phiy for the first
pattern is 1 (Refer Slide Time: 37:23) because you can easily see here for the first pattern 0 0 and
c; is 0 0. Obviously, e to the power this Euclidean distance is 0 (Refer Slide Time: 37:32), so e
to the power of 0 is 1. That is what you are saying. w; into phiy, phiy is 0 here (Refer Slide
Time: 37:39) and phi; is e to the power of minus 2, because the Euclidean distance is root 2 and
square is 2, so e to the power minus 2. To let you know, we have only taken e to the power
Euclidean distance square; that means we have already selected sigma equal to 1. It implies that

2 sigma square is 1 in the Gaussian function.

(Refer Slide Time: 38:12)
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Based on that for each pattern.... This is for 0 0 (Refer Slide Time: 38:16), this is the next
pattern 0 1, 1 0 and 1 1. Obviously, for 1 1, phi; is 1. These are the four equations we have for
four data patterns. If you form a matrix phi into w equal to y d, phi W is Y d. If you put this, then
ydis(1,0,0,1),thatis,ydis(1,0,0,1) (Refer Slide Time: 38:53) and this is your phi and w. w
is (w1 , wp, theta) — we have two weights and one bias. If we solve using pseudo-inverse
technique, where w is (phi transpose phi) inverse phi transpose, this is this value (2.5, 2.5, and
—1.8), which is a column vector. This is the solution. To conclude, if we have already some set
of input/output data, we have no restriction for online training, then pseudo-inverse technique is

good.



(Refer Slide Time: 40:05)

If a data set is already available and no demand on online training, then pseudo-inverse technique
is a good approach to find the weight vector W. This is our weight vector. We talked about the
pseudo-inverse technique where we fix the radial center, but imagine the situation where the data
is coming online and you have to do online training. For example, in a control system, when we
do a control system, data is coming online and we have to train our controller online. In that

case, how should the training be done? Gradient descent as usual.

(Refer Slide Time: 41:35)
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Instantaneous gradient decent is a good method for it. This is again the same methodology —once
you are given instantaneous cost function E, c;j t plus 1 is ¢ of t minus eta; del E upon del cj
and this can be easily updated. Similarly, for weight also, we can do another gradient descent,
where (Refer Slide Time: 42:01) the instantaneous cost function y d minus y. These are

instantaneous values; these are all scalars, not vectors.

(Refer Slide Time: 42:15)
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Just to give an example, | will be little faster here because we have already discussed a lot about
gradient descent derivation. Our y is phi; w;. phi; is e to the power minus z; square upon 2 sigma
square, where z; is X minus e; — the Euclidean distance between x and c;, and sigma is the width
of the center. Differentiating E with respect to wj, you get this particular thing (Refer Slide Time:
42:46). Obviously, the weight update is w; t plus 1 is w; t plus eta into error y d minus y into
phi;. This is the weight update for weights in a radial basis function network. It is very simple

because it is a linear network.



(Refer Slide Time: 43:18)

The weight update of center.... Imagine each center has p elements because x, the input, is a p-
dimensional vector. That is why if you look at the derivation del E upon del c;, this is this
particular thing (Refer Slide Time: 43:40). First, you differentiate E with respect to y, y with
respect to phi; and phi; is a function of cj;. cjj is not there in any other radial; only the i th radial
center contains the element c;; — this is important and hence this expression is right. We already
know del E upon del y is this (Refer Slide Time: 44:07), del y upon del phi; was w; and to
compute phi; by this, we differentiate phi; with respect to z;, z; with respect to cjj. When you
differentiate phi; with respect to z;, we get z; upon sigma square phi; negative and similarly, for
z; with respect to cj;, we get this expression. This is negative, this is also negative, this is also
negative, so overall, the sign of this expression is negative.



(Refer Slide Time: 44:43)
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cij t plus 1 is thus our final expression for Gaussian centers and this is for weights. This is a

simple derivation and you can verify for yourselves.

(Refer Slide Time: 45:12)
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Using this online training — instantaneous gradient descent, we will now do a system
identification of a surge tank. We have already discussed what a surge tank is. A surge tank is

there to minimize the effect due to sudden pressure in the water reservoir. Normally, in a hydro



power plant, we have a water reservoir and suddenly, the level increases. From the water
reservoir, there is a connection to the turbine. If a sudden increase is there, then the flow
increases. To maintain the same flow, we place a surge tank here. The flow goes up and the
liquid level in the tank increases. In the surge tank, the volume has a nonlinear relationship with
the level h. Then, one of the models of such a surge tank is this. It is a nonlinear model h t plus 1
is equal to h t plus T into this quantity (Refer Slide Time 46:38), where h t is the liquid level and

u t is the flow inside this surge tank.

What you are seeing here.... Let me do it like this. This is our water reservoir, this is the surge
tank and we are only concerned with the model of this surge tank. This model of the surge tank is
that if there is a certain flow rate into the tank, then how the level of the tank increases. For a
nonlinear thing, this is the... for a discrete dynamic model of the surge tank. Please see this — T
into minus square root of 2 g h t upon square root of (3 h t plus 1) plus u t upon square root of 3 h
t plus 1, where u t is the water flow into the surge tank, h t is the liquid level, g is the acceleration
due to gravity, T is the sampling time (Refer Slide Time: 47:43) and t is the sampling instant.

(Refer Slide Time: 47:48)

We have generated data in a similar manner —we have done it earlier. Sampling time is 0.01

second and 150 data have been generated using this data. Input flow is according to this



particular curve and corresponding h t liquid level. This is your u t and this is your corresponding
liquid level.

(Refer Slide Time: 48:17)
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We selected a radial basis function network. Obviously, it has two inputs and one target. The two
inputs are u t and h t, the target is h t plus 1, the units in hidden layer are 30, numbers of
input/output data is 150, the radial basis function is Gaussian, the width of the radial function
sigma is 0.707, the center learning rate eta; is 0.3 and the weight learning rate is 0.2.



(Refer Slide Time: 48:46)
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You can easily see that this is the convergence. Within 200 or less than 200 epochs, the
convergence is achieved to achieve the root mean square error below 0.007.

(Refer Slide Time: 49:02)
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When we give a new input, the input flow follows this particular curve (Refer Slide Time:
49:09), then the liquid level here. You can see the red curve and the green curve. Over the red

curve, there is a green curve and red is desired and green is actual. You can easily see that the



RBFN model that has been trained, which is 200 epochs, could easily map or could easily learn
the dynamic of the surge tank.

(Refer Slide Time: 49:55)
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We talked about two different learning: pseudo-inverse and gradient descent. Now, we will talk
about a new kind of learning that is normally employed for radial basis function network, which
is called hybrid learning. What is hybrid learning? Center and weights are separated. Centers,
since they represent the clusters in the input space, we can use unsupervised learning to learn the
centers, whereas it is supervised learning for the weights. Hybrid learning means unsupervised
learning for centers and supervised learning for weights. In hybrid learning, the radial basis
functions relocate their centers in a self-organized manner, that is, unsupervised learning, while

the weights are updated using supervised learning.

When a pattern is presented to RBFN, either a new center is grown if the pattern is sufficiently
novel or the parameters in both layers are updated using gradient descent. The test of novelty
depends on two criteria: Is the Euclidean distance between the input pattern and the nearest
center greater than a threshold? Is the mean square error at the output greater than a desired
accuracy? A new center is allocated when both criteria are satisfied.



(Refer Slide Time: 51:32)
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Normally, the easiest way to do this center learning using the classical clustering is that we fix
the number of centers and assign them random vectors from the input space — this is the first
step, this is step 1. This is step 2. In step 2, what will do is once the centers are fixed, uniformly
sampled from the input space, then what we do is we present an input pattern, find the Euclidean
distance between this input pattern and all these centers which are already fixed, the numbers are
also fixed, and then find the winner. Whichever is the winner, you update the weight of that
winner. This is for the winner and for all other centers, we do not do any changes, the centers

remain as is.

We repeat this process for all the data patterns from the training set. This is called K-means
clustering. Not only can radial centers use K-mean clustering, but there are other clustering
techniques. We will not focus on that now, we will just give an idea how this is done —
clustering, unsupervised manner. What about the weights? Weights can be used because weight
and the output have a linear relationship. We can use any least mean square, we can also use
gradient descent. Apart from gradient descent, we can also use the least mean square algorithm

or recursive least square algorithm.



(Refer Slide Time: 54:05)
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This is a recursive least square algorithm. I will not discuss this in this class, but maybe later.

(Refer Slide Time: 54:12)
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The surge tank can also be modeled using this hybrid learning, where K-means clustering has
been used with a learning rate 0.5, which is alpha. Alpha is 0.5 (Refer Slide Time: 54:36). The

gradient descent method has been used for weight update, where the eta is... this is eta, this is



alpha (Refer Slide Time: 54:45) and the training is terminated when root mean square error was
less than 0.007.

(Refer Slide Time: 54:56)
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You can easily see that in the beginning, when we reshuffled this, the centers were uniformly
distributed. These are the centers. The circles are the centers and this is my input data (Refer
Slide Time: 55:16). This is my u and this is my h. What you are seeing is that before
unsupervised learning, the centers are all randomly distributed — this is the data and as we
presented data to the centers using K-means clustering, you see that most of these centers were

aligned with the input data and very few are left unaligned.



(Refer Slide Time: 56:05)
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This is the final comparison of the result. What we are seeing is that when we train a surge tank,
do the system identification of a surge tank using back propagation network, that is, multilayer
network, the radial basis function network using gradient descent, radial basis function network
(hybrid learning), then the number of iterations that are required... you see that back propagation
takes a long time (Refer Slide Time: 56:35) and the radial basis function network takes less time.
The RMS error is the same because we have fixed the RMS error — the training is terminated
over the same RMS error. Obviously, the same RMS error for the new data... that means

generalization for all the three networks are the same.



(Refer Slide Time: 57:11)
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The conclusion is that we discussed today RBFN network and we talked about three types of
learning. The first one is pseudo-inverse, which is offline training, the second is normal gradient
descent and the third one is hybrid, which is a combination of unsupervised plus supervised.

Thank you very much.



