Intelligent Systems and Control
Prof. Laxmidhar Behera
Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Module — 1 Lecture-5
Nonlinear System Analysis: Part 2
This is lecture 5 of module 1. We will continue the discussion that we did in the last class on

nonlinear system analysis.

(Refer Slide Time: 00:36)

What we did in the last class was we represented a general nonlinear system in a state-space
format. These are your states (Refer Slide Time: 00:58) and this is your output. f is a nonlinear
function, it is a vector; h is also a vector. These are all n-dimensional vectors and y is a p-
dimensional vector. What we said (Refer Slide Time: 01:20) we said how a nonlinear function
can be expanded using Taylor series expansion around some point. This is my point and around
this point, | want to expand this function. Then | can write del f by del x into delta x plus del f by
del u into delta u. This is the first-order expansion and there is some higher order term. If x. is an

equilibrium point, then f xe; ue is 0.



(Refer Slide Time: 02:51)

The linearized system around X, and ue is given by delta x dot is equal to del f by del at Xe, Ue
into delta x plus del f by del u into delta u. In our Taylor series expansion, we ignore the higher
order approximation with certain condition. We said that this is A matrix and this is your B
matrix. So this is your A matrix and this is your B matrix (Refer Slide Time: 03:33). For stability
of x dot equal to f x, there are two methods we discussed: Lyapunov's indirect method and

Lyapunov's direct method,; this is what we discussed. In this indirect method, we linearize.

(Refer Slide Time: 04:33)
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In indirect method, we linearize x dot equal to f of x as A x, where A is del f by del x. This is an
n-by-n matrix. We check if A has Eigen values with negative real parts. If so, the system is stable
— that is what we discussed in the last class. Then, we discussed Lyapunov's direct method;
prescribe a Lyapunov function v x for x dot equal to f x. and then after finding Lyapunov
function, we have certain properties for Lyapunov function v, (Refer Slide Time: 06:20) and we
had discussed that.

(Refer Slide Time: 06:28)

Then, we have to make sure that v dot x, if negative definite, then the system x dot equal to f x is
stable around an equilibrium point X, where v X is 0 and vy is greater than O if.... (Refer Slide
Time: 07:25). This is the summary of the last class. Now, we go to the next further discussion.



(Refer Slide Time: 07:38)
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If we have linearized the system, now our actual system is x dot equal to f x. If you linearize this
system, after linearization we write x dot equal to x and you say that (Refer Slide Time: 08:05),
you see that linearization makes so you just make our symbols very simple. The linearized
system is actually delta x dot equal to A delta x but for convenience, we represent this equation
as x dot equal to A x of the same system x dot equal to f x. This is our original nonlinear system
(Refer Slide Time: 08:30), this is the linearized system and then we concluded how to determine

the stability of the linearized system.



(Refer Slide Time: 08:44)
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We discussed in the last class the direct method and indirect method. Now, can we use this
Lyapunov stability theory for stability of linear system, which is x dot equal to A x? The answer
is yes. It is very interesting to see that for x dot equal to A X, there is a very scientific method to
say what exactly a Lyapunov function is. It turns out that the Lyapunov function is V X is equal
to x transpose P x. It is a quadratic form Lyapunov function and this is a valid Lyapunov
function. One really need not break his head to find out what a Lyapunov function is for a linear
system. It is very well defined: x transpose P x and where P is symmetric positive definite. That

IS very important.



(Refer Slide Time: 09:50)
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Once we have defined V x is x transpose P X, this is our Lyapunov function (Refer Slide Time:
09:58), then we differentiate V x, which is V dot x. It is obviously x dot transpose P x plus x
transpose P x dot and our x dot is A x. You replace x dot by A x. So, (A x) transpose P x, then x
transpose P and x dot is A x. By simplification, we find x transpose into A transpose P plus P A
into X, which is minus x transpose Q x. For stability of a linear system, according to the stability
theory, this quantity x transpose Q x should be positive definite because if x transpose Q X is
positive definite, then V dot X, which is negative of positive definite, becomes negative definite.
What is the condition? If it is stable, then this should be positive definite. If x transpose Qyx is
positive definite, the definition of a quadratic function to be positive definite is that Q should be

positive definite.



(Refer Slide Time: 11:34)

Let me write here that x transpose Q X to be positive definite, Q must be positive definite. Our
identity is A transpose P plus P A equal to minus Q. This is our identity from here, V dot X, this
is known as Lyapunov matrix equation (Refer Slide Time: 12:05). Popularly, this is also known
as Lyapunov equation. If this Lyapunov equation A transpose P plus P A equal to minus Q....
For stability, Q should be positive definite. We can always arbitrarily select Q to be positive

definite, we already know what is A, and determine if P comes out to be positive definite.

If that is the case, then the system is stable. We will go by circularity. So A transpose P plus P A
is minus Q. We select a Q, which is positive definite. A is given to us. Now, we solve this
equation with a specific positive definite Q and then solve the equation to find P. If P is positive

definite, then A is a stable matrix, that is, the linear system is stable.



(Refer Slide Time: 13:50)
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Already, we know that if x dot is equal to x, then the system is stable if A has Eigen values with
negative real parts — all Eigen values (Refer Slide Time: 14:12) negative real part. That is a well-
known theory, we already know about it, but we now say that even the Lyapunov stability theory
can be used. We can use the direct method of Lyapunov stability for a linear system. In that
sense, Lyapunov's direct method is a more generalized stability theory because using this, we can
determine the stability of both a linear system as well as nonlinear system — this is important.
Lyapunov's direct method is a more generalized stability theory and can be applied to both a

linear and a nonlinear system.



(Refer Slide Time: 15:21)
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We already discussed that if matrix Q is positive definite, then the system is asymptotically
stable. Therefore, we should pick Q equal to I, the identity matrix, which is a positive definite

matrix and find if P is positive definite. If P is positive definite, then it is stable.

(Refer Slide Time: 15:34)
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The usefulness of Lyapunov's matrix equation for linear systems is that it can provide an initial

estimate for a Lyapunov function for a nonlinear system in cases where this is done



computationally. Furthermore, it can be used to show stability of the linear quadratic regulator
design. Sometimes, we are not very clear how to find out the Lyapunov function for some linear

and nonlinear systems and there, the Lyapunov matrix equation becomes handy.

(Refer Slide Time: 16:13)
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This is an important theorem, the LaSalle-Yoshizawa theorem. It is an addendum to the already
existing Lyapunov stability theory using direct method. If x = 0, origin, this is an origin and it is
the equilibrium point of this nonlinear system, then assume that V X is continuously
differentiable, positive definite, radially unbounded. That is the property of a Lyapunov function.
Then if the time derivative of the Lyapunov function V dot is less than or equal to minus some
function of x (Refer Slide Time: 17:15), where W x is a positive definite function, then.... Not

only W x here, W x is positive definite. W X is a positive definite function.

Then, all solutions of x dot are globally uniformly bounded and satisfy W x t tends to 0. We
already said that if b dot is negative definite, then the system is stable. Now, we are only simply
saying this W x is a positive definite as well as a continuous function. Earlier, we simply said it
is a positive definite. Now, we are saying that it is a positive definite as well as a continuous
function. When these two are together true, then what happens? This is also true. W x t ... t tends
to infinity, will become 0. This is LaSalle-Yoshizawa theorem and this theorem is very

important to determine the convergence of trajectories, as we will see later in this course.



If W x is positive and definite, then the equilibrium point is globally uniformly asymptotically

stable.

Now, we will discuss more examples using these concepts. What we discussed now were the
Lyapunov direct method, the indirect method and how to apply Lyapunov's direct method to a
linear system plus the LaSalle-Y oshizawa theorem, which gives the convergence property of the
function that W x, which goes to 0 as t tends to infinity. Now, we will talk about now

Lyapunov's examples for Lyapunov's direct method.

(Refer Slide Time: 20:01)
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We will try to answer these three questions: how to assess the importance of nonlinear terms in
stability or instability, how to estimate the domain of attraction of an equilibrium point and how

to design a control law that guarantees global asymptotic stability?



(Refer Slide Time: 20:35)
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We will take one example here. In this example, will show how using Lyapunov's direct method,
we can find out the domain of attraction. x; dot is minus X, a X3 X, square, X, dot is X; minus b
X1 square X, where a is not equal to b. This is an important condition. First of all, through this
example, we will compare direct versus indirect, that is, we linearize the system, look at the
stability, linearize (Refer Slide Time: 21:33) and then as a whole, we apply the direct method and
look at the stability and we will see what the difference is. x; bar and x, bar are the states

corresponding to the equilibrium point.

If you put x; bar x, bar here, then at the equilibrium point, the dynamics becomes stand still,
there is no dynamics meaning this becomes O and this becomes 0 at equilibrium point (Refer
Slide Time: 22:31). This is very important — at equilibrium point. What is equilibrium point? It is
a point where there is no more dynamics. So x; dot x, dot all become 0. If we put this, then we

find what the equilibrium points are.



(Refer Slide Time: 22:50)
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Obviously, you will see that at equilibrium points, the solution because a minus b is not 0. Since

this quantity is not equal to 0 (Refer Slide Time: 23:02), obviously x; square and X, square has

to be 0.

(Refer Slide Time: 23:10)
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If you go back to the previous one, if you consider in this x, equal to 0, that is, if this is O, then

X1 has to be 0. Similarly, if x; is 0, then this quantity becomes 0 and so x; has to be 0.



(Refer Slide Time: 23:27)
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Finally, the net result is the origin is the equilibrium point. x; equal to x, equal to O is the
equilibrium point. We linearize using the linearize concept. This is our result x; dot, X, dot
(Refer Slide Time: 23:46). How did you find this 0, —1? Please verify. This is actually (del f; by
del x1, del f; by del x,, del f, by del x1, del f, by del x;) at x; = 0, X, = 0. What is f; in this
case? Xy dot is minus X, plus a X; X, square and X, dot is X3 minus b x; square x,. This is our
system. This is my f; (Refer Slide Time: 24:50) and this is my f,. You differentiate this f; with
respect to x;, which is 2 a X, square a and if you put x, = 0, this becomes 0. Similarly, del f; by

del x; is actually —1. This is —1. At any value, this is —1.

Similarly, if you differentiate f, with respect to x;, the first element is 1, second element is 2 X
Xz into —b and by putting x; = 0, X, = 0, this second term becomes 0, so 1 is retained. You can
also verify that del f, by del x,, which is minus b x; square, at x; = 0 becomes 0. | hope it is very
clear to you how to linearize a nonlinear system around an equilibrium point. This should be

very clear to you.



(Refer Slide Time: 26:02)
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We found out that x dot is equal to A x. The linearization around x = 0 is x dot is equal to A x
where A is (0, —1, +1, 0). This is the matrix we obtain. You can easily check that the Eigen
values of A are s square plus 1 equal to 0. So s3, S2 are plus or minus j omega. The Eigen values
do not have negative real part. By using Lyapunov indirect method, we cannot determine the
stability. The indirect method fails to determine the stability. For saying stability or instability,
all real parts have to be either negative or all real parts have to be positive. If it is negative, then
it is stable; if all are positive, then it is unstable. But what happens when the Eigen values are 0
or like in this case we found out plus or minus j omega — 0 real part? In this case, the indirect
method fails, it is silent, it does not say anything about the stability, but let us go to the....



(Refer Slide Time: 28:25)
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For this system, the indirect method fails. Now, go to the direct method. We apply the direct
method. In the direct method, we assume the Lyapunov function, which is a quadratic Lyapunov
function. We have two states x; and X,. It is simple, it is half x; square plus half x, square and
we differentiate V dot x. This, as you know, is our f; (Refer Slide Time: 29:05) and this is our f5.
You replace because if | see here, V dot is x; X3 dot plus X, X, dot. That is what | am doing. X is

here and this is my x; dot, this is X, and this is my x, dot.

If 1 finally simplify it, | get a very nice expression here. This expression is a minus b into X
square X, square. You can easily see that this is negative if minus delta x; square X, square,
where delta is b minus a and is positive, that is, if a is less than b, then this becomes a negative
definite quantity (Refer Slide Time: 30:30) and hence, the system is stable. This answer is very
simple. If a is greater than b, the system is unstable; if b is greater than a, the system is stable

using the direct method. That is the interesting application.



(Refer Slide Time: 30:44)
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We see that if a is less than b, the system is asymptotically stable, but if a is greater than b, the

system is unstable. This result cannot be obtained by linearization using indirect method.

(Refer Slide Time: 31:02)
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Now, we go to another example. In the first example, we found what is the advantage of the
direct method over the indirect method. In some cases, the indirect method is silent about the

concept of stability, but the direct method gives that. We take another example where x; dot is



this and x; dot is this. You can verify. This is an exercise for you: verify that x; =0and x, =0 is
an equilibrium point. You can easily see that because if this is 0, all Os, then this also becomes 0.
So obviously, this is an equilibrium point. Now, the question is what is the stability about this

equilibrium point? How stable is this equilibrium point?

(Refer Slide Time: 32:15)
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This is the question. We linearize and again, we go back to the indirect method, linearize the
system, verify that the linearized system of the original x dot equal to f x is (—1, 1, —1, —1)
into (X1, X2). In this, you can see the characteristic polynomial concerning this A matrix is x
square plus 2 s plus 2 equal to 0. You can easily see that this particular system has all Eigen
values that are negative, because s; and s, are —1 plus or minus j;. Obviously, this system is

stable.

The indirect method also gives us the solution, that is, the system is stable around the equilibrium
point, but it cannot say how stable this equilibrium point is — there is no quantification about it
that if I disturb the system from the equilibrium point, that is, the origin to a very... how much I
can disturb from this equilibrium point and still say the system is stable. We will not get that
answer using the indirect method. If the initial condition is close to the equilibrium point (0, 0),

then we can say the system is stable using the concept of Lyapunov's indirect method.



(Refer Slide Time: 34:10)
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But now, let us go to the direct method. The indirect method cannot say what is the domain of
attraction, that is, this is my Xy, this is my X, and this is my origin. The indirect method said that
if I disturb this origin to this point (Refer Slide Time: 34:28), then | can come back here, but how
far can | disturb this particular origin? Can I disturb it to this point? Further? Where will | fail?
Let us go to the direct method to answer this question. This is called domain of attraction or

region of attraction. V x is half x; square plus half x, square.

(Refer Slide Time: 35:00)
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Apply the derivative, x; X3 dot plus X, X, dot. I think there is some mistake here. (Refer Slide
Time: 35:20) This is our f; (Refer Slide Time: 35;26) and this is our f,. If we simplify this V dot
X, then we get an expression like this: x; square plus X, square into x; square plus X, square
minus 1. This will become negative definite or this V dot x is negative definite if x; square plus
Xz square is less than 1; that means these quantity is negative. You can always say that this
quantity is positive.

This will become negative definite. This is always positive, so this will become negative definite
if this becomes negative. This becomes negative if x; square plus X, square is less than 1 and
that is the condition for which the system is stable. Obviously, this gives me a region of
attraction, because this is my x4, this is my x, and this is my origin. Obviously, this is a circle of
radius 1; this is r equal to 1. If my initial system states are anywhere inside this region, this is
always positive and if this can be made negative, then the system V dot x is negative definite.
Using Lyapunov direct method, we conclude this system is globally stable. But then, the region
of stability is not globally stable but is asymptotically stable and that stability is guaranteed as
long as your system initial states are disturbed and the disturbed initial states lie inside this circle.

The circle has a radius 1. x; square plus x, square is equal to 1.

(Refer Slide Time: 3:41)
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This means that the domain of attraction of the equilibrium point is a circular disk of radius 1. As
long as the initial conditions are inside the disk, it is guaranteed that the solution will end up at
the stable equilibrium, that is, the origin (0, 0). In case the initial condition lies outside the disk,

then convergence is not guaranteed.

(Refer Slide Time: 38:03)
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It should be mentioned that the above disk is an estimate of the domain of attraction based on the
particular Lyapunov function we selected. A different Lyapunov function could have produced a
different estimate of the domain of attraction. Another Lyapunov function may again determine a
domain of attraction where the domain of attraction that we found will be a subset, or it may find

a domain of attraction that will be a subset of the domain of attraction that we just found out.



(Refer Slide Time: 38:44)

We just gave certain ideas about how to determine stability using Lyapunov stability theory with
both the indirect and direct method. Now, we will go a little further in terms of application to
control system design. We will just take some examples in this class. This is a trajectory-tracking

example.

(Refer Slide Time: 39:13)
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What you are seeing is that this is the dynamics of a single link robot manipulator. This is one
link, a rigid link. This rigid link is mounted on a motor. This rigid link is mounted on a motor
and this moves in a vertical plane and there is a motor. This is my motor here, this is my rigid
link and this rigid link moves in the vertical plane. The motor rotates this rigid link in the vertical
plane. There is some friction here, there is some friction the motor shaft on which the link is
mounted. The equation is m | square theta double dot plus K theta dot plus m g | cos theta equal
to tow. theta is this angle (Refer Slide Time: 40:20).

The objective is to find a control law so that theta tracks a desired trajectory thetag. | am moving
my hand like this, this is the way and this should follow any trajectory that | want it to follow,
whether it is a sinusoid trajectory or a set point. This is a sinusoid trajectory with constant
amplitude, maximum amplitude; it goes from one point to another point and it can also go set

point (Refer Slide Time: 41:01) — any trajectory. Now, we define trajectory tracking.

This is my thetaqy. thetay can be a set point; thetay also can be a sinusoid trajectory; it can be also
exponential trajectory. This is thetaq. This is initial theta and final theta is here and follows there.
The objective is what should be my control law, how much torque this motor should develop and
apply to this link such that the link follows this desired theta angle, desired angle. The position of
the link is given in terms of... the angular position is always following given thetag, the desired
angular position. For that, what we do is we define e equal to theta minus thetay. The error gives
us an idea of how close my actual theta is — the angle of my link from the actual trajectory. By
putting e equal to this, we can show that the error dynamic equation is m | square e double dot

plus K e dot plus m g | cos theta is equal to tow.



(Refer Slide Time: 42:48)
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This is an example that we will show an application to control of design using Lyapunov stability
theory. In this, we will take a single link manipulator. A single link manipulator means you have
one rigid link here and this rigid link is mounted on a motor shaft in such a way that this rigid
link moves in a vertical plane (vertical plane and not horizontal plane — it is in a vertical plane)

and we are assuming there is some friction at the shaft where the link is moving.

We can write the dynamic equation as m | square theta double dot plus K theta dot plus m g | cos
theta is equal to tow. If you have a little difficultly with this dynamical equation, kindly refer any
book on robot manipulators and you will understand the dynamics of the robot manipulator from
the book. Now, we are not interested in how we got the dynamics. We are interested if given a
dynamics, how to control the robot manipulator, a single link manipulator. This is my dynamics,

this is my applied tow, torque. tow is applied by the motor here at this point.

This is my single link, the motor is applying a torque here and this torque is making this link
move vertically at some angular position theta. The objective is theta should follow a particular
trajectory thetaq, but here, thetaq is a constant reference. So although we say trajectory tracking,
this is actually set point tracking. This is my dynamics and | want that whatever my initial
angular position of this link, it has to go to a desired thetay, whatever my actual angular position.

How do | actuate a torque here by the motor such that this link goes to any point, any angle?



We define an error theta minus thetay, how far it is from the reference point. You can easily see
that thetay double dot is 0 and thetay dot is 0. This is because thetay is a constant reference and
so, thetay double dot is 0 and thetay dot is 0. Using these two ideas, we can always add theta
double dot minus thetay double dot. Similarly, here, theta dot minus thetay double dot. | subtract
here thetay double dot (Refer Slide Time: 46:13) and | subtract here thetay dot because this is 0
and this is 0. My dynamics remains unchanged, but this gives me an error dynamics, where m |

square e double dot plus K e dot plus m g | cos theta is equal to tow.

(Refer Slide Time: 46:37)
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Now, for this error dynamics, | define a Lyapunov function, which is half m | square e dot square
plus half K, e square. As | said in the last class, we have proposed these Lyapunov functions
based on some experience, it is not exactly a science, it is just an art based on our experience. We
have to make sure that we have proposed a Lyapunov function that is positive definite. There are
so many ways but for this, we design this and the time derivative of V dot is m | square e dot e
double dot plus K, e e dot. This is not u, this is actually tow (Refer Slide Time: 47:28). You see
that we found out just now m e square e double dot plus K e dot plus m g | cos theta is equal to

tow.

From here, we can write e dot to be minus K e dot minus m g I cos theta plus tow and 1 by m |
square. This m | square is multiplied with this m | square (Refer Slide Time: 28:09) and that



becomes 1. We have here tow minus K e dot minus m g | cos theta and then, here also, this is K,
e e dot (Refer Slide Time: 48:25). Now, | can take e dot as common, then K, e will come inside;
so if | take e dot as common, then this is tow minus K e dot, this is the torque developed by the

motor, minus m g | cos theta plus K, e. This is V dot.

Obviously, to make it negative definite, | should adjust this quantity in such a way that this
becomes a negative definite. Can you think how this can be made negative definite? You see that
this can be made negative definite if tow is m g | cos theta minus K, e. We can see that, because
in that case, this term will be minus K e dot and you have so many ways to propose what should
be my controller law. Do you how see how we are using Lyapunov function or Lyapunov
stability theory to design a controller? We do not know what is tow. We have to design tow. we
are given a dynamics, we proposed a Lyapunov function, we found out the time derivative of the
Lyapunov function and we reached here. Here is an option for you — how do you select tow in
such a way that V dot is negative definite such that the system is stable for that controller you
proposed.

(Refer Slide Time: 50:12)
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Obviously, if I simply make u equal to m g | cos theta minus K, e, then in the previous slide, we
saw that simply it can be equal to e dot minus K e dot square, but that does not guarantee me
asymptotic stability — you will see that. That is the reason why we added another term called



minus Kp e dot. By doing that, V dot becomes minus (Kp plus K) into e dot squared. Hope you
are very clear about this. Why? It is because the initial K may be positive negative. Now, Kp
plus K, because Kp is my extra parameter | provided and even K may be a very small quantity.
The Kp e dot was actually introduced to make this quantity reasonably large. Now, this is a
positive quantity, e dot square is a positive quantity, so V dot becomes negative definite. This
implies that....

You see that the LaSalle-Yoshizawa theorem says when V dot becomes a function like this....
This is a continuous function because e dot is a continuous function and this particular quantity is
a positive definite (Refer Slide Time: 51:54) and these will converge to 0; since e dot square
converges to 0, e dot also converges to O and because e dot converges to 0, e double dot
converges to 0, but does not guarantee, this does not imply that e goes to 0. If e dot goes to 0, e
double dot goes to 0, but does not imply that e goes to 0. We take this control input and replace

this control input in our....

This is u or tow (Refer Slide Time: 52:33). Normally, the control input is denoted by u, but
actually this is tow and our actual system is m | square theta double dot plus K theta dot plus m g
| cos theta is equal to tow. This tow is here and | bring this quantity and put it here. If we put it
there, you get this equation (Refer Slide Time: 53:03). This is complete error dynamics. This is
the actual error dynamics given the control law. Once this error dynamics is known, from here
you can see... because e double dot is 0, converges, e dot goes to 0 and obviously, e has to go to
0. This implies e is 0, e dot is 0 and e double dot is 0. That means whatever might be the initial
position of my link, it will exactly go to the desired position. | hope you appreciate this particular

symbol as an example.

What you saw is that an example of how we can actually use Lyapunov's stability theory to
design even a controller. We use Lyapunov stability theory and LaSalle—Yoshizawa theorem to
show how finally the single link manipulator will follow a given set point exactly with no steady
state error. This is very important because in this course, most of the time, we will use this

Lyapunov stability theory to show that our system is stable and trajectory convergence is there.



(Refer Slide Time: 54:42)
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In any control, the most important is that in control system design, of course nonlinear, when we
say intelligent control, it will always apply to a nonlinear system. The first is stability and then
trajectory tracking. In this case, we showed using Lyapunov's stability theory that e goes to 0, e
dot goes to 0, e double dot goes to 0, where e is theta minus thetay. That means theta follows
thetay and that is the objective of intelligent control, how accurately.... But we have not done.
This is a classical control system and we will also talk about this. These are the basics we must

have.



(Refer Slide Time: 55:56)

In the next class, we will discuss how we can use this Lyapunov stability theory. We will use the
Lyapunov stability theory to train neural networks. Why are we learning this? It is because these
neural networks are good tools to perform system identification of a nonlinear system. That is the
reason | introduced now what is Lyapunov stability theory. We will use this concept to train

neural networks in the next class.

(Refer Slide Time: 57:22)
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For your further reference, here are the same books that I mentioned in the last lecture. These are
the books that you can follow for grasping the concepts or the ideas that we discussed now.

Thank you.



