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Module – 1 Lecture – 5 
Nonlinear System Analysis: Part 2 

This is lecture 5 of module 1. We will continue the discussion that we did in the last class on 

nonlinear system analysis. 

(Refer Slide Time: 00:36) 

 

What we did in the last class was we represented a general nonlinear system in a state-space 

format. These are your states (Refer Slide Time: 00:58) and this is your output. f is a nonlinear 

function, it is a vector; h is also a vector. These are all n-dimensional vectors and y is a p-

dimensional vector. What we said (Refer Slide Time: 01:20) we said how a nonlinear function 

can be expanded using Taylor series expansion around some point. This is my point and around 

this point, I want to expand this function. Then I can write del f by del x into delta x plus del f by 

del u into delta u. This is the first-order expansion and there is some higher order term. If xe is an 

equilibrium point, then f xe1 ue is 0.  



(Refer Slide Time: 02:51) 

 

The linearized system around xe and ue is given by delta x dot is equal to del f by del at xe, ue 

into delta x plus del f by del u into delta u. In our Taylor series expansion, we ignore the higher 

order approximation with certain condition. We said that this is A matrix and this is your B 

matrix. So this is your A matrix and this is your B matrix (Refer Slide Time: 03:33). For stability 

of x dot equal to f x, there are two methods we discussed: Lyapunov's indirect method and 

Lyapunov's direct method; this is what we discussed. In this indirect method, we linearize.  

(Refer Slide Time: 04:33) 

 



In indirect method, we linearize x dot equal to f of x as A x, where A is del f by del x. This is an 

n-by-n matrix. We check if A has Eigen values with negative real parts. If so, the system is stable 

– that is what we discussed in the last class. Then, we discussed Lyapunov's direct method; 

prescribe a Lyapunov function v x for x dot equal to f x. and then after finding Lyapunov 

function, we have certain properties for Lyapunov function vx (Refer Slide Time: 06:20) and we 

had discussed that.    

(Refer Slide Time: 06:28) 

 

Then, we have to make sure that v dot x, if negative definite, then the system x dot equal to f x is 

stable around an equilibrium point xe, where v xe is 0 and vx is greater than 0 if.… (Refer Slide 

Time: 07:25). This is the summary of the last class. Now, we go to the next further discussion.  



(Refer Slide Time: 07:38) 

 

If we have linearized the system, now our actual system is x dot equal to f x. If you linearize this 

system, after linearization we write x dot equal to x and you say that (Refer Slide Time: 08:05), 

you see that linearization makes so you just make our symbols very simple. The linearized 

system is actually delta x dot equal to A delta x but for convenience, we represent this equation 

as x dot equal to A x of the same system x dot equal to f x. This is our original nonlinear system 

(Refer Slide Time: 08:30), this is the linearized system and then we concluded how to determine 

the stability of the linearized system.  



(Refer Slide Time: 08:44) 

 

We discussed in the last class the direct method and indirect method. Now, can we use this 

Lyapunov stability theory for stability of linear system, which is x dot equal to A x? The answer 

is yes. It is very interesting to see that for x dot equal to A x, there is a very scientific method to 

say what exactly a Lyapunov function is. It turns out that the Lyapunov function is V x is equal 

to x transpose P x. It is a quadratic form Lyapunov function and this is a valid Lyapunov 

function. One really need not break his head to find out what a Lyapunov function is for a linear 

system. It is very well defined: x transpose P x and where P is symmetric positive definite. That 

is very important.  



(Refer Slide Time: 09:50) 

 

Once we have defined V x is x transpose P x, this is our Lyapunov function (Refer Slide Time: 

09:58), then we differentiate V x, which is V dot x. It is obviously x dot transpose P x plus x 

transpose P x dot and our x dot is A x. You replace x dot by A x. So, (A x) transpose P x, then x 

transpose P and x dot is A x. By simplification, we find x transpose into A transpose P plus P A 

into x, which is minus x transpose Q x. For stability of a linear system, according to the stability 

theory, this quantity x transpose Q x should be positive definite because if x transpose Q x is 

positive definite, then V dot x, which is negative of positive definite, becomes negative definite. 

What is the condition? If it is stable, then this should be positive definite. If x transpose Qx is 

positive definite, the definition of a quadratic function to be positive definite is that Q should be 

positive definite.  



(Refer Slide Time: 11:34) 

 

Let me write here that x transpose Q x to be positive definite, Q must be positive definite. Our 

identity is A transpose P plus P A equal to minus Q. This is our identity from here, V dot x, this 

is known as Lyapunov matrix equation (Refer Slide Time: 12:05). Popularly, this is also known 

as Lyapunov equation. If this Lyapunov equation A transpose P plus P A equal to minus Q…. 

For stability, Q should be positive definite. We can always arbitrarily select Q to be positive 

definite, we already know what is A, and determine if P comes out to be positive definite.  

If that is the case, then the system is stable. We will go by circularity. So A transpose P plus P A 

is minus Q. We select a Q, which is positive definite. A is given to us. Now, we solve this 

equation with a specific positive definite Q and then solve the equation to find P. If P is positive 

definite, then A is a stable matrix, that is, the linear system is stable.  



(Refer Slide Time: 13:50) 

 

Already, we know that if x dot is equal to x, then the system is stable if A has Eigen values with 

negative real parts – all Eigen values (Refer Slide Time: 14:12) negative real part. That is a well-

known theory, we already know about it, but we now say that even the Lyapunov stability theory 

can be used. We can use the direct method of Lyapunov stability for a linear system. In that 

sense, Lyapunov's direct method is a more generalized stability theory because using this, we can 

determine the stability of both a linear system as well as nonlinear system – this is important. 

Lyapunov's direct method is a more generalized stability theory and can be applied to both a 

linear and a nonlinear system.  



(Refer Slide Time: 15:21) 

 

We already discussed that if matrix Q is positive definite, then the system is asymptotically 

stable. Therefore, we should pick Q equal to I, the identity matrix, which is a positive definite 

matrix and find if P is positive definite. If P is positive definite, then it is stable.  

(Refer Slide Time: 15:34) 

 

The usefulness of Lyapunov's matrix equation for linear systems is that it can provide an initial 

estimate for a Lyapunov function for a nonlinear system in cases where this is done 



computationally. Furthermore, it can be used to show stability of the linear quadratic regulator 

design. Sometimes, we are not very clear how to find out the Lyapunov function for some linear 

and nonlinear systems and there, the Lyapunov matrix equation becomes handy.  

(Refer Slide Time: 16:13) 

 

This is an important theorem, the LaSalle–Yoshizawa theorem. It is an addendum to the already 

existing Lyapunov stability theory using direct method. If x = 0, origin, this is an origin and it is 

the equilibrium point of this nonlinear system, then assume that V x is continuously 

differentiable, positive definite, radially unbounded. That is the property of a Lyapunov function. 

Then if the time derivative of the Lyapunov function V dot is less than or equal to minus some 

function of x (Refer Slide Time: 17:15), where W x is a positive definite function, then…. Not 

only W x here, W x is positive definite. W x is a positive definite function. 

Then, all solutions of x dot are globally uniformly bounded and satisfy W x t tends to 0. We 

already said that if b dot is negative definite, then the system is stable. Now, we are only simply 

saying this W x is a positive definite as well as a continuous function. Earlier, we simply said it 

is a positive definite. Now, we are saying that it is a positive definite as well as a continuous 

function. When these two are together true, then what happens? This is also true. W x t … t tends 

to infinity, will become 0. This is LaSalle–Yoshizawa theorem and this theorem is very 

important to determine the convergence of trajectories, as we will see later in this course.  



If W x is positive and definite, then the equilibrium point is globally uniformly asymptotically 

stable.  

Now, we will discuss more examples using these concepts. What we discussed now were the 

Lyapunov direct method, the indirect method and how to apply Lyapunov's direct method to a 

linear system plus the LaSalle–Yoshizawa theorem, which gives the convergence property of the 

function that W x, which goes to 0 as t tends to infinity. Now, we will talk about now 

Lyapunov's examples for Lyapunov's direct method.  

(Refer Slide Time: 20:01) 

 

We will try to answer these three questions: how to assess the importance of nonlinear terms in 

stability or instability, how to estimate the domain of attraction of an equilibrium point and how 

to design a control law that guarantees global asymptotic stability?  



(Refer Slide Time: 20:35) 

 

We will take one example here. In this example, will show how using Lyapunov's direct method, 

we can find out the domain of attraction. x1 dot is minus x2 a x1 x2 square, x2 dot is x1 minus b 

x1 square x2, where a is not equal to b. This is an important condition. First of all, through this 

example, we will compare direct versus indirect, that is, we linearize the system, look at the 

stability, linearize (Refer Slide Time: 21:33) and then as a whole, we apply the direct method and 

look at the stability and we will see what the difference is. x1 bar and x2 bar are the states 

corresponding to the equilibrium point. 

If you put x1 bar x2 bar here, then at the equilibrium point, the dynamics becomes stand still, 

there is no dynamics meaning this becomes 0 and this becomes 0 at equilibrium point (Refer 

Slide Time: 22:31). This is very important – at equilibrium point. What is equilibrium point? It is 

a point where there is no more dynamics. So x1 dot x2 dot all become 0. If we put this, then we 

find what the equilibrium points are.  



(Refer Slide Time: 22:50) 

 

Obviously, you will see that at equilibrium points, the solution because a minus b is not 0. Since 

this quantity is not equal to 0 (Refer Slide Time: 23:02), obviously x1 square and x2 square has 

to be 0.  

(Refer Slide Time: 23:10) 

 

If you go back to the previous one, if you consider in this x2 equal to 0, that is, if this is 0, then 

x1 has to be 0. Similarly, if x1 is 0, then this quantity becomes 0 and so x2 has to be 0.  



(Refer Slide Time: 23:27) 

 

Finally, the net result is the origin is the equilibrium point. x1 equal to x2 equal to 0 is the 

equilibrium point. We linearize using the linearize concept. This is our result x1 dot, x2 dot 

(Refer Slide Time: 23:46). How did you find this 0, ―1? Please verify. This is actually (del f1 by 

del x1, del f1 by del x2, del f2 by del x1, del f2 by del x2) at x1 = 0, x2 = 0. What is f1 in this 

case? x1 dot is minus x2 plus a x1 x2 square and x2 dot is x1 minus b x1 square x2. This is our 

system. This is my f1 (Refer Slide Time: 24:50) and this is my f2. You differentiate this f1 with 

respect to x1, which is 2 a x2 square a and if you put x2 = 0, this becomes 0. Similarly, del f1 by 

del x2 is actually ―1. This is ―1. At any value, this is ―1. 

Similarly, if you differentiate f2 with respect to x1, the first element is 1, second element is 2 x1 

x2 into ―b and by putting x1 = 0, x2 = 0, this second term becomes 0, so 1 is retained. You can 

also verify that del f2 by del x2, which is minus b x1 square, at x1 = 0 becomes 0. I hope it is very 

clear to you how to linearize a nonlinear system around an equilibrium point. This should be 

very clear to you. 



(Refer Slide Time: 26:02) 

 

We found out that x dot is equal to A x. The linearization around x = 0 is x dot is equal to A x 

where A is (0, ―1, +1, 0). This is the matrix we obtain. You can easily check that the Eigen 

values of A are s square plus 1 equal to 0. So s1, s2 are plus or minus j omega. The Eigen values 

do not have negative real part. By using Lyapunov indirect method, we cannot determine the 

stability. The indirect method fails to determine the stability. For saying stability or instability, 

all real parts have to be either negative or all real parts have to be positive. If it is negative, then 

it is stable; if all are positive, then it is unstable. But what happens when the Eigen values are 0 

or like in this case we found out plus or minus j omega – 0 real part? In this case, the indirect 

method fails, it is silent, it does not say anything about the stability, but let us go to the….  



(Refer Slide Time: 28:25) 

 

For this system, the indirect method fails. Now, go to the direct method. We apply the direct 

method. In the direct method, we assume the Lyapunov function, which is a quadratic Lyapunov 

function. We have two states x1 and x2. It is simple, it is half x1 square plus half x2 square and 

we differentiate V dot x. This, as you know, is our f1 (Refer Slide Time: 29:05) and this is our f2. 

You replace because if I see here, V dot is x1 x1 dot plus x2 x2 dot. That is what I am doing. x1 is 

here and this is my x1 dot, this is x2 and this is my x2 dot.  

If I finally simplify it, I get a very nice expression here. This expression is a minus b into x1 

square x2 square. You can easily see that this is negative if minus delta x1 square x2 square, 

where delta is b minus a and is positive, that is, if a is less than b, then this becomes a negative 

definite quantity (Refer Slide Time: 30:30) and hence, the system is stable. This answer is very 

simple. If a is greater than b, the system is unstable; if b is greater than a, the system is stable 

using the direct method. That is the interesting application. 



(Refer Slide Time: 30:44) 

 

We see that if a is less than b, the system is asymptotically stable, but if a is greater than b, the 

system is unstable. This result cannot be obtained by linearization using indirect method.  

(Refer Slide Time: 31:02) 

 

Now, we go to another example. In the first example, we found what is the advantage of the 

direct method over the indirect method. In some cases, the indirect method is silent about the 

concept of stability, but the direct method gives that. We take another example where x1 dot is 



this and x2 dot is this. You can verify. This is an exercise for you: verify that x1 = 0 and x2 = 0 is 

an equilibrium point. You can easily see that because if this is 0, all 0s, then this also becomes 0. 

So obviously, this is an equilibrium point. Now, the question is what is the stability about this 

equilibrium point? How stable is this equilibrium point?  

(Refer Slide Time: 32:15) 

 

This is the question. We linearize and again, we go back to the indirect method, linearize the 

system, verify that the linearized system of the original x dot equal to f x is (―1, 1, ―1, ―1) 

into (x1, x2). In this, you can see the characteristic polynomial concerning this A matrix is x 

square plus 2 s plus 2 equal to 0. You can easily see that this particular system has all Eigen 

values that are negative, because s1 and s2 are ―1 plus or minus j1. Obviously, this system is 

stable.  

The indirect method also gives us the solution, that is, the system is stable around the equilibrium 

point, but it cannot say how stable this equilibrium point is – there is no quantification about it 

that if I disturb the system from the equilibrium point, that is, the origin to a very… how much I 

can disturb from this equilibrium point and still say the system is stable. We will not get that 

answer using the indirect method. If the initial condition is close to the equilibrium point (0, 0), 

then we can say the system is stable using the concept of Lyapunov's indirect method.  



(Refer Slide Time: 34:10) 

 

But now, let us go to the direct method. The indirect method cannot say what is the domain of 

attraction, that is, this is my x1, this is my x2 and this is my origin. The indirect method said that 

if I disturb this origin to this point (Refer Slide Time: 34:28), then I can come back here, but how 

far can I disturb this particular origin? Can I disturb it to this point? Further? Where will I fail? 

Let us go to the direct method to answer this question. This is called domain of attraction or 

region of attraction. V x is half x1 square plus half x2 square.  

(Refer Slide Time: 35:00) 

 



Apply the derivative, x1 x1 dot plus x2 x2 dot. I think there is some mistake here. (Refer Slide 

Time: 35:20) This is our f1 (Refer Slide Time: 35;26) and this is our f2. If we simplify this V dot 

x, then we get an expression like this: x1 square plus x2 square into x1 square plus x2 square 

minus 1. This will become negative definite or this V dot x is negative definite if x1 square plus 

x2 square is less than 1; that means these quantity is negative. You can always say that this 

quantity is positive.  

This will become negative definite. This is always positive, so this will become negative definite 

if this becomes negative. This becomes negative if x1 square plus x2 square is less than 1 and 

that is the condition for which the system is stable. Obviously, this gives me a region of 

attraction, because this is my x1, this is my x2 and this is my origin. Obviously, this is a circle of 

radius 1; this is r equal to 1. If my initial system states are anywhere inside this region, this is 

always positive and if this can be made negative, then the system V dot x is negative definite. 

Using Lyapunov direct method, we conclude this system is globally stable. But then, the region 

of stability is not globally stable but is asymptotically stable and that stability is guaranteed as 

long as your system initial states are disturbed and the disturbed initial states lie inside this circle. 

The circle has a radius 1. x1 square plus x2 square is equal to 1.  

(Refer Slide Time: 3:41) 

 



This means that the domain of attraction of the equilibrium point is a circular disk of radius 1. As 

long as the initial conditions are inside the disk, it is guaranteed that the solution will end up at 

the stable equilibrium, that is, the origin (0, 0). In case the initial condition lies outside the disk, 

then convergence is not guaranteed.  

(Refer Slide Time: 38:03) 

 

It should be mentioned that the above disk is an estimate of the domain of attraction based on the 

particular Lyapunov function we selected. A different Lyapunov function could have produced a 

different estimate of the domain of attraction. Another Lyapunov function may again determine a 

domain of attraction where the domain of attraction that we found will be a subset, or it may find 

a domain of attraction that will be a subset of the domain of attraction that we just found out.  



(Refer Slide Time: 38:44) 

 

We just gave certain ideas about how to determine stability using Lyapunov stability theory with 

both the indirect and direct method. Now, we will go a little further in terms of application to 

control system design. We will just take some examples in this class. This is a trajectory-tracking 

example.  

(Refer Slide Time: 39:13) 

 



What you are seeing is that this is the dynamics of a single link robot manipulator. This is one 

link, a rigid link. This rigid link is mounted on a motor. This rigid link is mounted on a motor 

and this moves in a vertical plane and there is a motor. This is my motor here, this is my rigid 

link and this rigid link moves in the vertical plane. The motor rotates this rigid link in the vertical 

plane. There is some friction here, there is some friction the motor shaft on which the link is 

mounted. The equation is m l square theta double dot plus K theta dot plus m g l cos theta equal 

to tow. theta is this angle (Refer Slide Time: 40:20).  

The objective is to find a control law so that theta tracks a desired trajectory thetad. I am moving 

my hand like this, this is the way and this should follow any trajectory that I want it to follow, 

whether it is a sinusoid trajectory or a set point. This is a sinusoid trajectory with constant 

amplitude, maximum amplitude; it goes from one point to another point and it can also go set 

point (Refer Slide Time: 41:01) – any trajectory. Now, we define trajectory tracking.  

This is my thetad. thetad can be a set point; thetad also can be a sinusoid trajectory; it can be also 

exponential trajectory. This is thetad. This is initial theta and final theta is here and follows there. 

The objective is what should be my control law, how much torque this motor should develop and 

apply to this link such that the link follows this desired theta angle, desired angle. The position of 

the link is given in terms of… the angular position is always following given thetad, the desired 

angular position. For that, what we do is we define e equal to theta minus thetad. The error gives 

us an idea of how close my actual theta is – the angle of my link from the actual trajectory. By 

putting e equal to this, we can show that the error dynamic equation is m l square e double dot 

plus K e dot plus m g l cos theta is equal to tow.  



(Refer Slide Time: 42:48) 

 

This is an example that we will show an application to control of design using Lyapunov stability 

theory. In this, we will take a single link manipulator. A single link manipulator means you have 

one rigid link here and this rigid link is mounted on a motor shaft in such a way that this rigid 

link moves in a vertical plane (vertical plane and not horizontal plane – it is in a vertical plane) 

and we are assuming there is some friction at the shaft where the link is moving.  

We can write the dynamic equation as m l square theta double dot plus K theta dot plus m g l cos 

theta is equal to tow. If you have a little difficultly with this dynamical equation, kindly refer any 

book on robot manipulators and you will understand the dynamics of the robot manipulator from 

the book. Now, we are not interested in how we got the dynamics. We are interested if given a 

dynamics, how to control the robot manipulator, a single link manipulator. This is my dynamics, 

this is my applied tow, torque. tow is applied by the motor here at this point.  

This is my single link, the motor is applying a torque here and this torque is making this link 

move vertically at some angular position theta. The objective is theta should follow a particular 

trajectory thetad, but here, thetad is a constant reference. So although we say trajectory tracking, 

this is actually set point tracking. This is my dynamics and I want that whatever my initial 

angular position of this link, it has to go to a desired thetad, whatever my actual angular position. 

How do I actuate a torque here by the motor such that this link goes to any point, any angle?  



We define an error theta minus thetad, how far it is from the reference point. You can easily see 

that thetad double dot is 0 and thetad dot is 0. This is because thetad is a constant reference and 

so, thetad double dot is 0 and thetad dot is 0. Using these two ideas, we can always add theta 

double dot minus thetad double dot. Similarly, here, theta dot minus thetad double dot. I subtract 

here thetad double dot (Refer Slide Time: 46:13) and I subtract here thetad dot because this is 0 

and this is 0. My dynamics remains unchanged, but this gives me an error dynamics, where m l 

square e double dot plus K e dot plus m g l cos theta is equal to tow.  

(Refer Slide Time: 46:37) 

 

Now, for this error dynamics, I define a Lyapunov function, which is half m l square e dot square 

plus half Kp e square. As I said in the last class, we have proposed these Lyapunov functions 

based on some experience, it is not exactly a science, it is just an art based on our experience. We 

have to make sure that we have proposed a Lyapunov function that is positive definite. There are 

so many ways but for this, we design this and the time derivative of V dot is m l square e dot e 

double dot plus Kp e e dot. This is not u, this is actually tow (Refer Slide Time: 47:28). You see 

that we found out just now m e square e double dot plus K e dot plus m g l cos theta is equal to 

tow.  

From here, we can write e dot to be minus K e dot minus m g l cos theta plus tow and 1 by m l 

square. This m l square is multiplied with this m l square (Refer Slide Time: 28:09) and that 



becomes 1. We have here tow minus K e dot minus m g l cos theta and then, here also, this is Kp 

e e dot (Refer Slide Time: 48:25). Now, I can take e dot as common, then Kp e will come inside; 

so if I take e dot as common, then this is tow minus K e dot, this is the torque developed by the 

motor, minus m g l cos theta plus Kp e. This is V dot.  

Obviously, to make it negative definite, I should adjust this quantity in such a way that this 

becomes a negative definite. Can you think how this can be made negative definite? You see that 

this can be made negative definite if tow is m g l cos theta minus Kp e. We can see that, because 

in that case, this term will be minus K e dot and you have so many ways to propose what should 

be my controller law. Do you how see how we are using Lyapunov function or Lyapunov 

stability theory to design a controller? We do not know what is tow. We have to design tow. we 

are given a dynamics, we proposed a Lyapunov function, we found out the time derivative of the 

Lyapunov function and we reached here. Here is an option for you – how do you select tow in 

such a way that V dot is negative definite such that the system is stable for that controller you 

proposed. 

(Refer Slide Time: 50:12) 

 

Obviously, if I simply make u equal to m g l cos theta minus Kp e, then in the previous slide, we 

saw that simply it can be equal to e dot minus K e dot square, but that does not guarantee me 

asymptotic stability – you will see that. That is the reason why we added another term called 



minus KD e dot. By doing that, V dot becomes minus (KD plus K) into e dot squared. Hope you 

are very clear about this. Why? It is because the initial K may be positive negative. Now, KD 

plus K, because KD is my extra parameter I provided and even K may be a very small quantity. 

The KD e dot was actually introduced to make this quantity reasonably large. Now, this is a 

positive quantity, e dot square is a positive quantity, so V dot becomes negative definite. This 

implies that….  

You see that the LaSalle–Yoshizawa theorem says when V dot becomes a function like this…. 

This is a continuous function because e dot is a continuous function and this particular quantity is 

a positive definite (Refer Slide Time: 51:54) and these will converge to 0; since e dot square 

converges to 0, e dot also converges to 0 and because e dot converges to 0, e double dot 

converges to 0, but does not guarantee, this does not imply that e goes to 0. If e dot goes to 0, e 

double dot goes to 0, but does not imply that e goes to 0. We take this control input and replace 

this control input in our….  

This is u or tow (Refer Slide Time: 52:33). Normally, the control input is denoted by u, but 

actually this is tow and our actual system is m l square theta double dot plus K theta dot plus m g 

l cos theta is equal to tow. This tow is here and I bring this quantity and put it here. If we put it 

there, you get this equation (Refer Slide Time: 53:03). This is complete error dynamics. This is 

the actual error dynamics given the control law. Once this error dynamics is known, from here 

you can see… because e double dot is 0, converges, e dot goes to 0 and obviously, e has to go to 

0. This implies e is 0, e dot is 0 and e double dot is 0. That means whatever might be the initial 

position of my link, it will exactly go to the desired position. I hope you appreciate this particular 

symbol as an example.  

What you saw is that an example of how we can actually use Lyapunov's stability theory to 

design even a controller. We use Lyapunov stability theory and LaSalle–Yoshizawa theorem to 

show how finally the single link manipulator will follow a given set point exactly with no steady 

state error. This is very important because in this course, most of the time, we will use this 

Lyapunov stability theory to show that our system is stable and trajectory convergence is there.  
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In any control, the most important is that in control system design, of course nonlinear, when we 

say intelligent control, it will always apply to a nonlinear system. The first is stability and then 

trajectory tracking. In this case, we showed using Lyapunov's stability theory that e goes to 0, e 

dot goes to 0, e double dot goes to 0, where e is theta minus thetad. That means theta follows 

thetad and that is the objective of intelligent control, how accurately.… But we have not done. 

This is a classical control system and we will also talk about this. These are the basics we must 

have.  
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In the next class, we will discuss how we can use this Lyapunov stability theory. We will use the 

Lyapunov stability theory to train neural networks. Why are we learning this? It is because these 

neural networks are good tools to perform system identification of a nonlinear system. That is the 

reason I introduced now what is Lyapunov stability theory. We will use this concept to train 

neural networks in the next class.  
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For your further reference, here are the same books that I mentioned in the last lecture. These are 

the books that you can follow for grasping the concepts or the ideas that we discussed now. 

Thank you. 


