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Module – 1 Lecture – 4 
Nonlinear System Analysis: Part 1 

This is lecture 4 of module 1. In this lecture, we will discuss some concepts in nonlinear systems 

analysis, specifically, the Lyapunov based approach, the reason being that we will use this 

concept to derive some new training algorithm for neural network based control schemes. Hence, 

I thought that we must discuss this subject of nonlinear system analysis. You should have some 

background before you can actually appreciate what we teach in this course. 

(Refer Slide Time: 01:16) 

 

In this course, we will introduce what is nonlinear system, what is linearization, Lyapunov 

stability theory and some examples. 



(Refer Slide Time: 01:27) 

 

What you are seeing is.… This is our general state-space model – nonlinear system model. x dot 

is equal to f t x u. Hence, it is explicit in time as well as function of x as well as input u. This is a 

state variable model and output is again a nonlinear function h. You see x is a vector, f is a 

vector, y is a vector and h is also a vector. This is a multi-input, multi-output system. When I say 

this is nonlinear, what does it mean? Of course, the first thing that you already know is that a 

linear system means it follows the principle of superposition and a nonlinear system is expected 

to not follow the principle of superposition. Let me for your benefit compare. A linear system is 

different from a nonlinear system in terms of superposition principle. 
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This is a linear system and this is a nonlinear system. Here, this is my system, which is linear. If I 

give u1, I get y1. In this case, if I give alpha u1, then also I get alpha y1; same system, say some 

system G. Now, if I give another input u2 to the same system G, I get y2 and finally, the 

superposition principle is I give alpha1 u1 plus alpha2 u2 and I find alpha1 y1 plus alpha2 y2. A 

nonlinear system is just the opposite. For example, if I give u1, I get y1, same system G 

nonlinear. When it is a nonlinear system and if I give an input alpha1 u1, the output is y and y is 

not equal to alpha1 u1.  

Similarly, if I provide these two inputs alpha1 u1 plus alpha2 u2 to the same nonlinear system, 

the output y is not equal to alpha1 y1 plus alpha2 y2. This is the major difference between a 

nonlinear system and a linear system as far as differences are concerned, but a nonlinear system 

is more than just…. It does not follow the superposition principle; it has an even broader 

perspective and some of these perspectives are summarized here.  
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We will just discuss how a nonlinear system has multiple equilibrium points – we will shortly 

discuss this. It has limit cycles. If you give a specific sinusoid signal of a specific frequency, then 

in a linear system, the output will have the same frequency whereas a nonlinear system may 

produce subharmonic oscillations of frequencies. Also, the nonlinear system can behave or can 

exhibit chaos. Chaos means its steady state behavior is highly unpredictable and random. The 

nonlinear system also executes multiple modes of behavior and that is called bifurcation. That is 

one of the examples. 



(Refer Slide Time: 06:26)  

 

This is the example of an autonomous system, a nonlinear system x dot equal to f x u. 

Autonomous means it does not explicitly depend on time and y is h x u. This is the generalized 

state-space model of a nonlinear system that is autonomous. Some systems that have been very 

widely studied in nonlinear system are known as affine systems. They have a specific structure. 

In our control system design, many times we will discuss this kind of system while designing a 

controller, that is, x dot is equal to f x plus g x into u. This is a nonlinear function (Refer Slide 

Time: 07:15) and this is another nonlinear function, but you can see that this has a specific 

structure. When you have no external input, then x dot is equal to f x – this is an unforced 

system. 
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What is the equilibrium point? At equilibrium point, x dot, the dynamics, becomes 0 – the 

derivative of the states becomes 0; that is the equilibrium point. If xe and ue correspond to a 

specific equilibrium point, you replace and then equate to 0. You will find what the equilibrium 

point is.  

(Refer Slide Time: 08:01) 

 



What is linearization? Linearization is the process of replacing the nonlinear system model by its 

linear counterpart in a small region about its equilibrium point. We linearize because we have 

well-established tools to analyze and stabilize the linear system.  

(Refer Slide Time: 08:20) 

 

Let us try to understand the basic process of linearization. Let us write the general form of a 

nonlinear system x dot is equal to f x u as this. We have x1, x2 … xn – there are n states. So dx1 

upon dt is f1 of x1, x2 … xn and u1 to um. We have m inputs and n outputs. This is the 

generalized way to write, a very explicit way to write this compact notation x dot equal to f x u. f 

is a vector. You can see f1, f2 … fn.  
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Let x1e, x2e … xne be a point of equilibrium… the point of equilibrium xe and ue, where ue is a 

vector – u1e, u2e … ume and xe is x1e, x2e … xne. We have xe and ue. This is an equilibrium point 

and this holds true: f xe ue is 0. 

(Refer Slide Time: 10:04) 

 

Then, we perturb this equilibrium state by allowing x equal to xe plus delta x – little perturbation 

from xe and similarly, a little perturbation from ue by delta u. Then, Taylor's expansion yields a 



very…. (Refer Slide Time: 10:22). We can write dx upon dt is f and this is your x, this is your u 

due to perturbation and we expand this using Taylor's expansion. First, this is your equilibrium 

point, the operating point and then del f upon del x, you know f is a vector, so x is also a vector.  

If you differentiate a vector with respect to a vector, you get a matrix. So, del f upon del x into 

delta x and this matrix is computed at the value x equal to xe and x equal to ue. These are first-

order terms and this is the operating point or equilibrium point. This is del f upon del u and you 

compute this – again, another Jacobian matrix; you have to compute at xe and ue and multiply by 

delta u. This is the first-order expansion plus second order, third order and higher orders. But we 

only go up to the first-order expansion of Taylor series because that is where we can apply our 

linear system theory. If you go to second order, again the system becomes nonlinear. It is not 

always true that we can always approximate a nonlinear system around an equilibrium point 

using first-order Taylor series expansion – there is some limit on that. Let us compute and see 

what the Jacobian matrix is. 
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del f upon del x. As I told you, this is the matrix. The easiest way to remember is that the first 

vector in f1 is differentiated with respect to each element of the x vector and that is in the first 

row. Similarly, in the last row, the last vector of f, is the n th vector of f, is differentiated with 

respect to all the elements of x and that is the last row. You can easily remember this: del f1 by 



del x1 to del f1 upon del xn; similarly, del fn upon del x1 to del fn upon del xn. These values have 

to be computed by replacing x as xe. So x has to be xe and u has to be ue. This will be a constant 

matrix xe. Once you replace xe and ue, this becomes a constant matrix (Refer Slide Time: 13:35). 

Once you replace xe and ue, this becomes a constant matrix. Similarly, you can compute also del 

f upon del u – similar principle. Obviously, you can see that this is n into n matrix and this is n 

rows and m columns, so n into m matrix. These are all Jacobian matrices.  

(Refer Slide Time: 14:13) 

 

Let us note here that dx upon dt is dxe upon dt plus d delta x upon dt, because x is xe plus delta 

x. When I differentiate x with respect to dt, I differentiate xe with respect to dt and delta x with 

respect to dt, but you can see that xe is an equilibrium point, and at that point, x dot is 0, the 

derivative is 0, so this is 0 (Refer Slide Time: 14:49). You only get this term: d delta x upon dt. 

Furthermore, f xe ue is also 0 because that is how you computed xe and ue – by making it 0. At 

the equilibrium point, x dot (the derivative) is 0. 
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We have already computed in the previous slide. This matrix is actually matrix A and this matrix 

is matrix B. As we defined, A is del f upon del x and B is del f upon del u. We have neglected 

the higher order terms and we arrive at the linear approximation – d delta x upon dt is A delta x 

plus B delta u. This gives sometimes we also say small signal models, that is, the behavior of a 

nonlinear system around an equilibrium point, where the dynamics is assumed to be linear. 

Hence, the dynamic is in the linear state-space model delta x dot equal to A delta x plus B delta 

u. 



(Refer Slide Time: 16:23) 

 

Similarly, we had P outputs. For P outputs, the functions are h1, h2 … hP. In vector notation, you 

can write y equal to h x u. 

(Refer Slide Time: 16:36) 

 

We can again use Taylor's series expansion: y equal to ye plus delta y. That is being perturbed – 

equilibrium point ye with delta y. Then, we have the actual system is y equal to h x u. Using 

Taylor's series, we can always write delta y is C delta x plus D delta u, where C and D are again 

Jacobian matrices (computed). Can you guess now what is C and what is D? As we have already 



said, C has to obviously be del h upon del x. This has to be a P into n matrix. Similarly, D is del 

h upon del u and this has to be a P into m matrix. That is how we also linearize the output y 

around the equilibrium point ye. ye corresponds to xe and ue. At value xe, ue, the system 

response is ye. So, ye is the system response when the system state is xe or system is at the 

equilibrium point. Let us take an example. 

(Refer Slide Time: 18:46) 

 

You can see here that this is a simple scalar differential equation. x is a scalar – one-dimensional, 

simply one-dimensional; it is a scalar quantity. Here is a scalar differential equation but 

nonlinear because of this term x square. We can verify that this equation will not follow the 

principle of superposition. You linearize it about the origin and you can easily see that if I write f 

xe as 0, then you will find when you make minus x plus x square equal to 0, this will lead you to 

x is 0. So origin (Refer Slide Time: 20:02) equilibrium point; x = 0 is an equilibrium point. 

Linearize it about the origin and you get x dot equal to minus x. The solution is x t equal to x0 e 

to the power of minus t. It is very simple because this is a simple linear differential equation: x 

dot is equal to minus x. I hope that you are very well aware on how to get the solution of this. 

You can verify this now.  

You put x0 e to the power of minus t here (Refer Slide Time: 20:38), differentiate it and at x of 0, 

when t equal to 0, put this value x0 and you see this equation is fine. Whatever may be the initial 



state x0, the state will settle at x t = 0, because whatever the initial condition, when you perturb 

the system from its initial position, the equilibrium point x0 will always come to the origin. The 

state will settle at x t (Refer Slide Time: 21:12). This is your equilibrium point, which is the only 

equilibrium point that this linearized system has. Let me again clarify what we actually did.  

(Refer Slide Time: 21:27) 

 

We had x dot equal to minus x plus x square. First, we found out the equilibrium point, that is, f 

xe is 0, which is minus x plus x square. So x = 0 is an equilibrium point. At the equilibrium 

point, the linearized equation is… if you follow the linearization scheme, it is minus x. This is 

your linearized system around the equilibrium point x = 0. The solution we found out here is x t 

is x0 e to the power of minus t – that is the solution to the equilibrium point. 



(Refer Slide Time: 22:48)  

 

Now, if I actually take the exact solution of x t dot, which is minus x plus x square, if I find the 

actual solution of this nonlinear system, then x t equal to x0 e to the power of minus t upon 1 

minus x0 plus x0 e to the power of minus t. You can try it. It is an exercise for you. This is a 

simple nonlinear system (Refer Slide Time: 23:17), for which we find a closed loop solution and 

this is the closed loop solution for this nonlinear solution. In general, we cannot express the 

solution of a nonlinear system in a closed form but because this is a simple one, we can actually 

find the closed form solution of this nonlinear system.  

Earlier, we showed that the origin was one of the equilibrium points, but there is another 

equilibrium point, that is, when I solve minus x plus x square is 0, you have x of x minus 1 is 0. 

This implies x = 0 and x = 1. There are two equilibrium points. We talked about linearizing the 

system around only one equilibrium point x = 0, origin, but there is also another equilibrium 

point x = 1. Let us see the system behavior around these equilibrium points. 
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This is a plot. You can see this is one equilibrium point (Refer Slide Time: 24:39). What we are 

showing is this is the time axis and this is your x t – we are showing the response. The value of x 

t in the beginning t = 0…. We can start either near the first equilibrium point, that is, 0 – this 

particular point and another is 1 – this is another equilibrium point. If I give the initial condition 

as ―0.5, you see they all settle. ―0.5 and +0.5, wherever I give in this zone, they are all going 

towards 0.  

Finally, the system at t tends to infinity, goes back to the equilibrium point 0, that is, if the 

system is disturbed slightly from its equilibrium point 0, it is near the origin, it goes back to the 

origin, whereas if you look here, this is a little interesting. One: if you go back here, it diverges 

from 1. Very near it diverges, but surprisingly what happens is that after it goes to a very high 

value, it comes back and then again goes back to 0. Similarly, we can see this one (Refer Slide 

Time: 26:08). Just after 1, it goes and again from here to here, it jumps and then again goes to 0.  

Similarly, another point here, this particular line and from here, it jumps here and again goes to 

0. What you are seeing is that as I said in the beginning, the equilibrium point 1 is actually an 

unstable equilibrium point. From here, the system diverges from this point, whereas if you start 

somewhere near the origin, then you could disturb the system near the equilibrium point, which 

is the origin. Then, it goes back to the origin. The conclusion is x = 0 is a stable equilibrium 



point, whereas x = 1 is an unstable equilibrium point. At the end of the lecture, we will discuss a 

little more about these equilibrium points – we will solve through examples but let us discuss 

some notion of stability in a nonlinear system. What we talked about now is that a nonlinear 

system can be linearized around an equilibrium point. Some equilibrium points are stable 

equilibrium points and some equilibrium points are unstable equilibrium points. Now, what is the 

concept of stability on a nonlinear system?  

(Refer Slide Time: 27:47) 

 

In linear system, we had only one equilibrium point. We never talked about locally stable, 

globally stable – you never heard these kind of notions in a linear system, because it has only one 

equilibrium point. But when it becomes a nonlinear system, we always talk about whether it is 

locally stable, globally stable – all these, because an equilibrium point can be locally stable, it 

can also be globally stable. This is not a course on nonlinear systems and we will not go into 

details, but we will cover whatever minimal is necessary in this course. x dot is equal to f of x. 

This is your nonlinear system and the equilibrium point is x bar. This is your equilibrium point. 

(Refer Slide Time: 28:44) 



(Refer Slide Time: 29:04)  

 

The equilibrium point x bar is stable in the sense of Lyapunov…. This is the definition we are 

giving – what we are seeing on the board is the definition. We say that x bar is the stable 

equilibrium point in the sense of Lyapunov if there exists a positive quantity epsilon such that for 

every delta (this is a function of epsilon), we have this particular…. (Refer Slide Time: 29:24) 

and this is satisfied, that is, this is my initial state. My system state has been disturbed from the 

equilibrium point x bar and so, there is some disturbance. After you disturb the system, now I am 

relaxing the system, that is, system dynamically evolves and after dynamically evolving, where 

does it go? What happens to the system states?  

If this disturbance that I have given is less than delta, I cannot infinitely disturb the system and 

then conclude that system still remains stable. I assume some value delta, that is, I put an upper 

bound by which I give a disturbance to the system. If this is true, if this is my disturbance, this is 

the way I disturb the system, then, x t minus x bar, that is the future state of my system is not…. 

If x t minus x bar is less than epsilon, then the system…. What is the meaning of that? When I 

say this statement (Refer Slide Time: 30:55) that if this is my disturbance, finally, always the 

magnitude or absolute magnitude of my future state minus the equilibrium point is always less 

than epsilon, what does that mean?  



If I am giving a simple disturbance to the system, the future states do not go far away from the 

equilibrium point at any point of time – they remain very close to their equilibrium point. That is 

the concept of stability that we defined. Then, we define a concept of asymptotically stable or 

asymptotic stability, where this particular difference that we said in the beginning is less than 

epsilon (Refer Slide Time: 31:42), we are now saying that if it goes to 0, that is, my future state 

converges to the equilibrium point as t tends to infinity, then, this is called asymptotically stable 

and we call x bar unstable if it is not stable. If it is neither this nor this (obviously, this is neither 

of these), then the system is unstable. These are all definitions we are talking about. We defined 

stability, that is, it is just stable and then we defined the notion of asymptotic stability. Now, how 

do we determine this notion – whether the system is stable or asymptotically stable? 

(Refer Slide Time: 32:38)  

 

We will discuss two methods in this class today: one is the indirect method and another is the 

direct method. The indirect method is that we linearize the system, that is, x dot is equal to f x –

that is my nonlinear system. Imagine that we are all…. In the beginning, we are only considering 

the unforced system u = 0. So, x dot is equal to f x means my u is 0 and I have no external force 

on the system. Now, what I do is that I linearize the system and the delta x that we wrote earlier, 

I am again redefining that delta x again as x just to make our notations very simple.  



Here, delta x is defined as x. That is here (Refer Slide Time: 33:36). Now, x dot is equal to A x 

plus g x. This g x represents all higher order terms – second order, third order and so on. What is 

A? A has to be del f upon del x and this is an n by n matrix. This is A.  

(Refer Slide Time: 34:12) 

 

Now, g x is my higher order term and I assume that this higher order term satisfies this condition. 

You can see that the absolute magnitude of g x upon the absolute magnitude of x as x tends to 0 

is 0. It means that this approximation linearization is valid. Using first-order Taylor's series 

expansion, this linearization scheme is valid when this higher order term at g x becomes smaller, 

it becomes very small in comparison to x – then only, it can become 0 and that is the meaning. 

The nonlinear system x dot = f x is asymptotically stable if and only if the linear system x dot 

equal to A x is stable. This is our theorem or definition of the indirect method.  

How to determine whether the system is stable or not? This is the definition of how to determine 

whether a system is locally stable – stable around an equilibrium point. If a system is stable 

around an equilibrium point, then the linearized system around that equilibrium point, which is x 

dot equal to A x and if we analyze the stability of the system, all the Eigen values of A must be 

in the left half of this plane, that is, the real part of the Eigen values must be negative. If the real 

part of the Eigen values of A are negative, then the system is asymptotically stable around the 



equilibrium point and that means all Eigen values of A have negative real parts. What is the 

advantage of this method? 

(Refer Slide Time: 36:37) 

 

It is very simple, because if x dot equal to f x is given, find out what is x dot equal to A x, that is, 

A is del f upon del x at equilibrium point x is equal to x bar or xe or whatever is the equilibrium 

point. Then, check if A has all the Eigen values whose real parts are all negative, but the problem 

here is that if any of these Eigen values are 0, the real parts are 0 or if some of the Eigen values 

are imaginary values, then we cannot conclude that the system is locally stable. So, if some 

Eigen values of A are 0, then we cannot draw any conclusion about the stability of the nonlinear 

system and also if the Eigen values are simply pure imaginary quantities – the 0 real part. It is 

valid only if initial conditions are close to the equilibrium point x bar, because of the condition 

that the higher order term g of x upon x limit x tends to 0 should be 0. These are two drawbacks. 

Although this is very simple, now we must look for a very nice method of determining stability, 

which is known very popularly as Lyapunov stability theory or Lyapunov's second or direct 

method. 



(Refer Slide Time: 38:29) 

 

For this, x dot is equal to f x. We define a Lyapunov function V x with the following properties. 

This Lyapunov function at the origin or at the equilibrium point is 0; this Lyapunov function is a 

scalar function, this scalar function is always greater than 0 and x is not in the equilibrium point 

– it is always a positive definite; and the rate derivative of this Lyapunov function is negative 

definite along the trajectory x dot = f of x. Then, we say the system is stable.  

(Refer Slide Time: 39:18) 

 



Then, x is asymptotically stable. The method hinges on the existence of a Lyapunov function, 

which is energy-like function. We defined a function V x. If I want to differentiate V x with 

respect to dt, so d V x by dt is the rate derivative (Refer Slide Time: 39:35). Then, del V by del x 

into dx by dt. This dx by dt is already my f x, this is my system. So I replace this f x here. dow V 

by dow x into f x. What is f x now? V is a scalar function and x is a vector and my f x is also a 

vector. You can see that dow V by dow x is a row vector and f x is a column vector. This is my 

column vector and this is a row vector. If I expand, we can easily see that V dot x is dow V by 

dow x1 into f1 plus dow V by dow x2 into f2 and so on plus dow V by dow xn into fn. What is 

the advantage? 

(Refer Slide Time: 40:56) 

 

This answers the stability of nonlinear system without explicitly solving the dynamic equations. 

It can easily handle time varying systems. It can determine asymptotic stability as well as plain 

stability. It can determine the region of asymptotic stability or the domain of attraction of an 

equilibrium. We will see all these things through examples. 



(Refer Slide Time: 41:13) 

 

Here is an example. This is a second-order system with cubic nonlinearity – y cube is there. If 

you linearize this system, you get y double dot plus 3 y dot equal to 0. The characteristic 

equation of the linearized system is s into s plus 3. You see that you cannot say that by using 

Lyapunov's indirect method, the system is stable, because one of the poles s is 0. So, the indirect 

method fails here. So, there is a 0. 

(Refer Slide Time: 41:59) 

 



We found out y double dot plus 3 y dot is 0. If I convert this into Laplace domain, s square y s 

plus s 3 y s is 0. If I look at the characteristic polynomial, s square plus 3 s into y s is 0. The 

poles are at s = 0 and s = ―3 and because one of the poles is at 0, the indirect method fails in this 

case. We saw that the indirect method failed and so now, we will apply Lyapunov's direct 

method.  

(Refer Slide Time: 43:16) 

 

We had the system, which is y double dot plus 3 y dot plus y cube is 0. I select the states as x1 is 

y and x2 is y dot. I select these two states and then, this equation (Refer Slide Time: 43:38) can 

be written as a state-space format. x1 dot is y dot, which is x2 and x2 dot, which is y double dot, 

is ―3…. This is y double dot plus 3 y dot. So minus 3 x2 minus x1 cube. This is my state-space 

model. For this, the equilibrium point is obviously the origin. The origin is the equilibrium point. 

Now, the Lyapunov function I select for the system V x is 1 upon 4 into x1 to the power of 4 plus 

1 upon 2 into x2 square. This is an energy-like function.  



(Refer Slide Time: 44:28)  

 

I take the derivative of this. V dot x is.… I put the formula dow V by dow x1 into x1 dot plus 

dow V by dow x2 into x2 dot and you can check that x1 dot is x2 and x2 dot is minus 3 x2 minus 

x1 cube. This is your f1 (Refer Slide Time: 44:51) and this is your f2. This is f1 and this is f2. 

dow V by dow f1 plus dow V by dow x2 f2. So, f1 is x2 and f2 is minus 3 x2 minus x1 cube. If 

you simplify it, V dot x is minus 3 x2 square, which is always less than 0 because x2 square… 

other than origin; when x2 is not in the origin or when x2 is not 0, it is always negative. It follows 

that the equilibrium point is asymptotically stable, which we could not conclude using the 

indirect method.  

What is the disadvantage of this Lyapunov based approach? Although we showed an example 

where we could not solve or we could not determine the stability using the indirect method, we 

could determine that stability using the direct method.  
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The problem is that there is no systematic way of obtaining Lyapunov functions. Finding a 

Lyapunov function is more of an art than science. This is an art, not science – how to find out a 

Lyapunov function. The Lyapunov stability criterion provides only sufficient condition for 

stability. To end the lecture, there are two examples that we will solve today. 

(Refer Slide Time: 46:39) 

 



The first is to make your concept very clear of how to linearize a nonlinear system. We will 

always encounter these in our intelligent control course. More importantly, the Lyapunov 

stability theory will be used to determine or to derive some new algorithm – the training 

algorithm as well as current control algorithm. So, you see here (Refer Slide Time: 47:09), please 

note the system dynamics. Obtain a nonlinear state-space representation of this and linearize this 

system around its equilibrium point. This is your question. Let us solve it.  
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This is the solution. We have y double dot equal to 2 y minus y square plus one dy upon dt plus 1 

plus u plus du by dt. This is the nonlinear dynamics. Now, we have to find the state-space model. 

In the state model, we first define the states. Obviously, let us take x1 equal to y. From our 

experience looking at the form of the structure of this equation, we define x2 as x1 dot minus 2 u, 

which is y dot minus 2 u – this is our definition. With this definition, you can write down x1 dot 

is y dot and y dot is x2 plus 2 u.  

State-space means we always write the derivative of the state in terms of other states and input. 

Here, x1 dot is a function of x2 and u – in terms of states and u. Similarly, for x2 dot, you can do 

little algebraic manipulation – x2 dot is obviously y double dot minus 2 u dot. You can see that y 

double dot minus 2 u dot is this particular quantity (Refer Slide Time: 49:37). We can write 

that… 2 y, so 2 x1 minus y is x1 square plus 1 and dy upon dt, that is, x1 dot is x2 plus 2 u plus 1 



plus u. On simplification, this becomes 2 x1 minus x1 square plus 1 into x2 plus 2 u plus 1 plus u. 

Actually, we did not simplify – it is the same. 
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Finally, y is x1 – that is my output. How do I linearize it? Set u = 0 and x1 dot = 0 and so also x2 

dot. x1 dot and x2 dot are both made 0. If you make u = 0, the first equation is x2 = 0 and the 

second equation is 2 x1 minus x1 square plus 1 into x2 plus 1 is 0. The solution is x1 = 1 and x2 = 

0 – this is the equilibrium point. At this equilibrium point, we have to linearize the system.  
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Linearize around the equilibrium point, which is 1 and 0. Apply the formula that we derived 

earlier using Taylor's series expansion, that is, delta x dot is del f upon del x at 1, 0 delta x plus 

del f by del u at 1, 0 into delta u. (Refer Slide Time: 52:46). We are not writing the input here 

because we have assumed u to be 0 and we are linearizing around the equilibrium point 1, 0 and 

u is 0. That is the question that is asked to you. If you compute del f by del x, it is… please 

verify, this will be your A matrix. The B matrix is…. (Refer Slide Time: 53:36).  

How do I find it? 0 is del f1 by del x1 and f1 is actually del x2 by del x1. By definition, this is 0. 

Similarly, the second one del f1 by del x2, which is this value (Refer Slide Time: 54:07), is del x2 

by del x2 and this is 1. You are differentiating x2 with respect to x2. Like that, please verify this 

particular solution that we got. Finally, delta y is obviously (1, 0) delta x – this is the answer. 

Now, we will take the second example.  
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The second example is that we again have a nonlinear system and you are asked to find out 

whether (1, 1) is an equilibrium state – first question; the second is that is this the only 

equilibrium state or there are many; the third is whether the first one that is given – xe – is 

asymptotically stable. Let us try to solve this equation again. 
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The solution is that you are given x1 dot is minus x1 square plus x1 x2 and x2 dot is minus 2 x2 

square plus x2 minus x1 x2 plus 2. How do you know that xe = (1, 1) is an equilibrium point? 

Just put these values here (Refer Slide Time: 55:54) and see whether they are 0. If you put (1, 1) 

here, this is minus 1 plus 1, which is 0. In this case, when you replace x2 as 1 and x1 as 1, again 

you have minus 2 plus 1 minus 1 plus 2 and again, it is 0; hence, xe is an equilibrium point. This 

is the first part of the answer. 

The second part is to find whether there are other equilibrium points. A simple way is there to 

solve it – put x1 dot equal to 0 and x2 dot is equal to 0 and solve. You will find these equilibrium 

points are…. We have more equilibrium points: (minus 2 by 3, minus 2 by 3) is one more, then 

(0, 1 plus root 17 by 4), and (0, 1 minus root 17 by 4). There are three more equilibrium points. 

You can verify this by just putting x1 dot equal to 0 and x2 dot equal to 0 – you will find this 

solution. 
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The next question, the third part, was whether xe is asymptotically stable. How do we do it? We 

linearize the system around xe. If you linearize around xe, linearize f x around xe, then you get x 

dot equal to A x, where A is del f upon del x. Please verify that A is (―1, 1, ―1, 4) and the 

Eigen values are ―5 plus or minus root 5 divided by 2. You can check that both the Eigen values 



have negative real part ―5 and hence, it is asymptotically stable. We will continue further 

discussion on nonlinear system in the next class.  
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Here is a little help for you to follow some reference books. You can follow one of the books by 

Khalil – Nonlinear Systems, Prentice Hall. Another one is Slotine and Li's Applied Nonlinear 

Control – a very nice book. I like this book on Applied Nonlinear Control. M. Vidyasagar has 

also written a nice book – Nonlinear System Analysis, Prentice Hall. Thank you again.  


