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Module - 1 Lecture - 3
Back Propagation Algorithm: Revisited

This is the third lecture of module 1 — Neural Networks. We have already discussed the linear
neural network and system identification in linear neural network; then, we talked about the feed
forward neural network, that is, the multilayer network, which has the capability of
approximating any nonlinear function. We learnt in the second lecture how to derive the back

propagation algorithm for the feed forward neural network that can approximate any nonlinear
function.
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Today, in this third lecture, we will again review the back propagation algorithm that we derived
in the last lecture; then, we generalize the delta rule and we will understand this concept today.
Then, system identification using this back propagation algorithm; then two different variations
in back propagation algorithm, that is, adding a momentum and adaptive learning rate. Today,

we will just have a very heuristic version of the adaptive learning rate. Probably after three or



four lectures, you will have a detailed analysis on how to comprehensively design adaptive
learning rate for back propagation network, the reason being that this particular analysis would
need the concepts of stability for nonlinear systems, that is, Lyapunov function and Lyapunov
function-based stability theory. These notions have to be reviewed, before we can talk about a

very comprehensive method of computing adaptive learning rate for back propagation network.
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We have already discussed about multilayer feed forward network. We said that you have an
input layer and then you have many layers. These layers have many neurons. These are all input
signals coming here (Refer Slide Time: 02:52) and they are fanned out. This is your output layer
and these all are hidden layers. This is called the multilayer feed forward network. It has more
hidden layers of computation units, that is, these hidden layers can be more than one. You can
have one, two, three, four — as many as we want. FNN stands for feed forward neural network. In
this feed forward neural network, the connections are allowed from one layer to the succeeding
layer in the forward direction and not in the backward direction. | cannot have a connection like
this. This is not allowed, this connection is not allowed — from this layer to this layer (Refer Slide
Time: 03:56), but it is allowed from this layer to this layer. The hidden layer gets input from
input layer and gives output to the next hidden layer or output layer after internal computation.
This is the basic structure of feed forward network.
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This is the notation we have used in the last class about the back propagation network. x is the
input, v is the hidden node output, y is the actual output, wj; is the weight connection between i
th unit of output layer and j th unit of hidden layer, wj is weight connecting j th unit of hidden

layer and k th unit of input layer.

(Refer Slide Time: 04:44)




You can easily see that x is the input, which is a p-dimensional vector. The summation of
weights into the input signals are all summed here and that sum is h. If | say h;j, it is simply
sigma over k wijc Xx — this is your h;. After you go through this sigmoidal activation, that
becomes your v, so vj is simply 1 upon 1 plus e to the power of minus h; — this is after sigmoidal
activation. Again as usual, output y is an n-dimensional output. y; is.... You add all vi. We have

shown this here.
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vj is 1 upon 1 plus e to the power of minus h;, where h; is wj xx and k equal to 1 to p. Similarly,

final response y; is phi gi, which is 1 upon 1 plus e to the power of minus g;, where g; is wj; v;.



(Refer Slide Time: 06:16)

If I go back here, I write here g and that means g; is simply sigma wj; into v;. This is sigma
(Refer Slide Time: 06:31). What you are seeing is that wj; is the connection weights between the
output layer and the hidden layer and wj is the typical weight between the hidden layer and the
input layer. This is the notation we used in the last class. This is called forward phase. In the

forward phase, we computed the output of the hidden unit and output of the output unit.
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Then, back propagation. Given the input output patterns, given input x, I know what the desired
target — y d is. The network has a response y; and so, | compute a cost function E of t, which is a
quadratic cost function. | use the gradient descent rule, which is of the nature wj; into t plus 1 is
wj; of t minus eta into dow E of t upon dow wj; of t. We have already discussed a lot about

gradient descent; we apply this gradient descent to compute the error back propagation.
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During that, we update the weights connecting the output layer and hidden layer. The weight that
we are proposing, which is wj;
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You can see that the weight wj; that we are talking about is this weight. Once | transfer the signal
from x to y, then my target is there. | compute the target error here and | back propagate the
target error. This is my e here at the target (Refer Slide Time: 08:10 min) and this target error is

back propagated. Through back propagation, | update what is wj; — it has to be updated.
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To compute what is the weight update in w;j, we need to compute what is dow E of t upon dow
wij and that gives me the formula dow E; of t upon dow y; into dow y; upon dow wj; of t. How
do I compute dow E upon dow w;;? | know that E is summation of E;. Hence, differentiating E
with respect to wi; means | differentiate E; with respect to w;j; and take a sum. Then, individual
Ei is a function of y;. So, | differentiate E; with respect to dow y; and then, | differentiate y;,

which is a function of wj;. That is how | compute this partial derivative.

Here, this is dow E upon dow y; of t, which is half, because, this function E; is simply y; d minus
yi whole square — this is E;. Hence, if you look at this here, it is half into 2 y; d minus y; into...
when you differentiate with respect to y;, we get minus 1 here. That is very clear. Now, dow y;
upon dow wj; is dow y; upon dow g; because, we found out that y; is 1 upon 1 plus e to the
power of minus gi. We have already shown that here: y; is a function of g; (Refer Slide Time:
10:21). While differentiating, | will obviously differentiate y; with respect to g; and then g; with

Wij.

(Refer Slide Time: 10:33)
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Doing that way, | finally get this expression delta wj; is eta into y; d minus y; into y; into 1 minus
yi into vj. We wrote the weight update algorithm in a generalized format as wj; of t plus 1 is wj;
of t plus eta delta; v; and v; is the input. You can see easily here that when | am updating weights
for wjj, vj is my input to the weights in this layer (Refer Slide Time: 11:10). v; is the input to the



weights in this layer. My error is e, which is... The back propagated error that | am talking of
here is represented as delta; (Refer Slide Time: 11:31). This delta;, which is the error back
propagated from the output layer, is defined as y; into 1 minus y; into the error at the output,
which is y; d minus y;. This called the back propagation algorithm. My weights are updated and
the new weight is old weight plus eta, error back propagated into the input signal to the

connection.
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Similarly, we derived for wj. Now, we are talking about wj.. wjx was the weight vector or
weight matrix between the hidden layer and input layer (Refer Slide Time: 12:20). We have
already derived it and | will not go into a detailed discussion. What we did is that when |
differentiate E with respect to jk, then I differentiate E; with respect to y; and y; with respect to

Wi in a similar manner.
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Ultimately, we finally get a relationship, which is again a generalized form: wj. of t plus 1 is wj
of t plus eta delta; x«. This similar format you see, the earlier one was w;; of t plus 1 was w;; of t
plus eta delta; vj. This is the weight update between output layer and hidden layer and this is the
hidden layer and input layer, where the input is xi in the input layer and delta; is the error back
propagated from the output layer. You see that delta; is the error back propagated in the output
layer and we multiply the corresponding weights wj; and do the summation. The quantity delta;
is the total error back propagated from the output layer to the layer between input layer and
hidden layer into v; into 1 minus v;. So, delta; is the back propagated error to the layer that is
situated between the hidden layer and input layer. Now, | will summarize what we saw in the

back propagation algorithm.



(Refer Slide Time: 14:14)

"'g',g | LN 5 sEEes

Dack P mpagafn aﬂr,.n.
“iet) "5;@1) o (4?1; Wt &0y
t M &k ~t

We have a typical input layer — vector x, which is p by 1 and then a single hidden layer whose
output is v, which is m by 1. This is p. Then, there is an output layer whose output is y and this is
n by 1. Let us consider a j th computational unit in the hidden layer, i th computational unit in the
output layer, and k th computational unit in the input layer. What we saw in the back propagation
algorithm is wj; of t plus 1 is wij; of t plus eta delta; v;. What is v;? What is w;;?

This is my connection — this is wj;. This particular weight is updated based on the error on a
single data set, based on the instantaneous update rule. What we do is we update wj; based on its
previous value and the connection is.... eta is the learning rate and normally, this value eta is 0 to
1. delta; is the error back propagated from the output to this output layer. I normally say that this

is the second layer and this is the first layer. Let me say that this is the second layer.

We found out delta;, the weight to be y; into 1 minus y; into the error that is y; d minus y;. This
is my error at the output. This multiplied by y; into 1 minus y; delta;. v; is the input — this is v;
(Refer Slide Time: 17:10). If you look at wijj, the input is v;j to this connection and the output of
this unit is y;. Given that, the delta; has a unique structure. delta; is y; into 1 minus y; into y; d
minus y; and the update rule also has a unique structure because, v;j is the input to the
connection, delta is the error being back propagated through this weight and this is called the
delta rule.



The weight update rule has a very simple form, which is delta, which is error back propagated,
into v;. We will see the same thing here. This weight is wj. by convention we have already
discussed that and this is my xx — the output of this unit. The output of this unit is v;. We saw
that the weight update law is wj of t plus 1 is wjc of t plus eta delta; into Xx. You see that this
and this have the same form and that is why this is called delta rule. Of course, the delta; has a
different value than deltay, but it also has a unique structure. delta; is v; into 1 minus v; into

sigma over i delta; wij.

| add i, the output (Refer Slide Time: 19:11) 1 to n delta; wj;, multiply v; and 1 minus v;. This is
my error being propagated from this unit over this (Refer Slide Time: 19:22). This is the error
delta;. So this is delta;. delta; being back propagated in this particular connection output. It is
very important to understand this. delta; into xi, where Xy is the input to this connection. You
can easily see that the error back propagated in that particular connection weight into the input to
that connection weight, if you multiply by the learning rate, that gives you the back propagation
rule. It is a very simple rule. Using this delta rule concept, we can write down this back

propagation algorithm for any layer in the network. That is what we will write now.

(Refer Slide Time: 20:09)
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Generalized delta rule: We derived this delta rule for a single hidden layer. Now, we will
generalize this delta rule for any number of hidden layers in a feed forward network. That is why

it is called a generalized delta rule. You see here we have a multilayered neural network and this



multilayered neural network has L layers. This is the input layer, first layer, second layer, third
layer and L th layer. These are all feed forward networks, these are all feed forward networks

and these are all feed forward networks.

Like we earlier assumed, the indexes for each layer are i, j and k; i is for output layer, j is for
hidden layer and k is for input layer. Similarly, here, the index we have generalized i, for L th
layer and similarly, i; is for i th layer, i3 is for the third layer, i, is for the second layer and
obviously, for the input layer, the index is ip. With this particular convention, we can now easily
write down using the same — whatever we discussed here, the normal delta rule. This is called
delta rule (Refer Slide Time: 21:37) because, our weight update algorithm consists of the error
back propagated the input to the specific connection weight. So, this is the delta rule. Using that,

we can now write down the update rule.
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You see here, this is the typical connection weight between | th and | minus 1 th layer.
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What | am talking about here is this is my wi it minus 1. These are the weights between the L th
layer and the preceding layer. We are talking about how to update the weight in this layer. Once |
pass the input (Refer Slide time: 22:42) this network, compute the output at the output layer,
compare with the desired data, then | want to update this weight. It is the same formula, that is,
eta deltaj into Vi | minus 1. This is the input to this connection weight and this is the error being
back propagated (Refer Slide Time: 23:08). Obviously, we can easily see that delta; lowercase |

and uppercase L are the same — we are not discriminating.
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deltaj is y i d minus y j into this is our error at the output and you have to multiply this term y;

into 1 minus y;. That transforms the error at the output to the... when it is back propagated.

(Refer Slide Time: 23:50)
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This delta; (Refer Slide Time: 23:48) is here. This is the error back propagated in this immediate

layer; that is the L th layer. This is for the output layer. This | represents any layer and delta;; is

the... for capital L, that is, the output layer. We have made some changes here. Let Wi, i | minus 1



denote the synaptic weight connecting the i th neuron of layer | to that of layer | minus 1. This |
is any typical layer. Considering sigmoidal function as the activation function for each layer, the

weight update law can be written as....

(Refer Slide Time: 25:05)
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This is for any layer. This particular weight is the weight between any of these layers (Refer
Slide Time: 25:09). For example, if | take L is equal to 2, then this is the layer; if L is equal to 3,
then this is the layer; if L is equal to 1, then this is the layer; if | is equal to capital L, then this is
the layer. This is the generalized delta rule. Given the delta at the output layer, we can easily
compute corresponding delta in all proceeding layers subsequently. Then, we can update all the
weights in all the layers using this concept of delta rule. I will give you a simple example. Let us
explain this generalized delta rule through another example — we will talk about a four-layer

network.
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This is the input layer; this is the first layer, second layer, third layer and fourth layer. Obviously,
the weight between the third layer and fourth layer will be represented by Wi, is; the weight
between the third layer and second layer is Wiz, i»; the weight between the first layer and second
layer is Wiz, i1, and the weight between input layer and first layer is Wij_ 0. This is the convention
that we are following. Given the error, that is, y d minus y at the output layer, how do we go?

Naturally, the element of y is yis because, iy is the index for the output layer. When | say y is a
vector, then yi4 is an element of the vector y. So, y is the output vector. This is the weight update
law for the output layer, that is, the fourth layer. This is the first layer and then second layer.
When | talk in terms of connection weight, this is the first layer of connection weight, second
layer of connection weight, third layer of connection weight and fourth layer of connection

weight. As many layers we have, we have that many layers of connection weights.

What you are seeing here, as we saw earlier, is that Wi, i3, the typical weight in the fourth layer,
is updated using the generalized delta rule, which is eta into delta, which is the error back
propagated, and vis, which is the input to the connection weight Wi, i3. What is delta;s? deltajs is
obviously yis d minus yis into yis into 1 minus yis. This is my error (Refer Slide Time: 28:27)

that 1 computed here. This is transformed and we get this because of the sigmoidal activation



function. If we have a linear activation function, this particular term will not be there. This is my

update rule for the last layer or the output of fourth layer.
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Similarly, for the third layer, it is eta deltajz vi,.

(Refer Slide Time: 29:00)
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This is my deltais here; this is delta i3, deltaj, and deltaj;. | computed what is delta;s. Based on

deltais, I can compute what delta;s is. This is what I will do.
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deltajz is vz into 1 minus vjz into delta is W4, i3. This is actually i, equal to 1 to n or the number
of units in my L th layer. Let me say that this is n, and similarly, this is n3. The weight update
law for the second layer will be eta deltaj; vi;. We can easily check it again (Refer Slide Time:
30:08). For this, it is deltajs into vis; this is delta i3 viy; this is deltaj, vi; and this is deltaj; and Xio
because it is the input layer here — Xxjo. This is what we will have now and this is what you can
easily see. eta deltajz vi, is for third layer, delta;, vi; is for second layer, and this is your error
back propagated (Refer Slide Time: 30:44). delta;, is computed based on delta;3 and deltajs is
computed based on deltais.
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Similarly, finally, delta;; is computed based on deltaj,. This is your first layer. Given any layer,
using generalized delta rule, we can write the back propagation algorithm. We do not have to
derive again making all those complicated forward response equations and then differentiating
the error with respect to each typical weight and finding all those — there is no need actually.
This rule is actually generalized and we do not have to compute. We are actually (Refer Slide

Time: 31:32) formula. These represent the right formula.
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We are done with the first part that we wanted to explain today — the generalized delta rule. In
the generalized delta rule, the concept was that we wanted a recursive formula for a back
propagation learning algorithm.

(Refer Slide Time: 32:04)

Al ey v JEte Cxy Doy gpeckoals ) ey o carrnlon ey

& [ pecaanren Mamadd o 5w vy B ok progasgatsn
(FETY

® b asow the armdr pageuld oF § Koweld Linger b B
rrwrpruler] pey o e cvweilbsinle of Thee pivcw acpwd

ol s i Longres

w I ik e Pee areor wrirue mee Bascl peopapeled
Harnngs il Hae keyers Sty [Bue b ceows

It allows the error signal of a lower layer to be computed as a linear combination of the error
signal of the upper layer. In this manner, the error signals are back propagated through all the
layers from the top down, that is, from the last layer -the output layer, backward until we reach

the input layer. We can compute the error back propagation, which is in terms of delta, which is
here.
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We have to compute here what is delta j for the output layer and based on that, we finally
compute what is delta i;. deltaj; is computed based on deltaj,, deltaj, is computed based on
deltajs, deltajz is computed based on deltaj; and so on. Finally, delta i_ minus 1 1S cOmputed based
on what is delta j_. The general form is that this is the original form (Refer Slide Time: 33:10).

This is a typical weight between the | th layer and | minus 1 th layer.

The update rule or delta w is eta deltaj into Vi minus 1. What you are seeing is eta deltaj Vii minus 1-
This is the input to the connection and this is the error back propagated to the layer I. Using this
concept, we will now demonstrate the application of the back propagation algorithm for system
identification. Since it is a control course, you would always use system identification while
demonstrating any application of a specific neural network. A practical system, the surge tank
system has been taken for simulation. We will identify the surge tank system using a neural

network or we will model the surge tank. So, what is the surge tank?
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A surge tank- what you are looking at is that. Normally, a surge tank is used to control the
hydraulic transients and pressure changes. You see this is a big reservoir. In this reservoir, the
water level sometimes increases suddenly or suddenly decreases, but this reservoir is connected
particularly to a hydro power plant, where the turbines have to move in a specific speed. So, the
flow rate here has to be constant. If the water level suddenly increases or suddenly decreases in
this reservoir, then this flow rate will be affected. To maintain the flow rate as constant, the surge

tank is used.

What happens? Whatever the disturbance in the reservoir level, it can be controlled using this
surge tank. The extra pressure you have, the extra flow can be pushed to the surge tank.
Normally, the surge tank has a nonlinear structure level. For a surge tank, the structure is like
this. This is a cylindrical structure. That means everywhere, the diameter of this surge tank... for
example, if this is circular, then the diameter is constant. But if the surge tank has a nonlinear
structure, then given the specific flow into this surge tank, the water level in the surge tank to the

flow rate into the surge tank will bear a nonlinear relationship.

We will now try to model this surge tank, because, unless we know how to model the surge tank,
we cannot design; because we must know how the water level in this surge tank is increasing or

decreasing, given a specific water flow into this surge tank. Based on that, we will design a surge



tank and a specific dimension of the surge tank, that is, how the diameter will vary — linearly or
nonlinearly, etc. We are just taking a nonlinear surge tank model. This is a schematic diagram of
a surge tank. When the pressure increases due to sudden change in the flow from the reservoir,
the level of the surge tank increases; thus, controlling the flow as well as pressure to the

connecting system; this flow (Refer Slide Time: 37:27) is controlled accordingly.

(Refer Slide Time: 37:32)
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Typically, we are not interested now in how we derive the model of a surge tank. What we are
interested in is given a nonlinear structure-based surge tank, this is the dynamics of the surge
tank, that is, h of t plus 1 is equal to h of t plus T, which is the sampling time, and this particular
nonlinear ... you can see easily that this is a nonlinear function (Refer Slide Time: 38:05),
because, this is square root of h and also, u is multiplied with 1 upon square root of h and hence,

this is a nonlinear function.

t is the discrete time step, that is, the sample instant per second (Refer Slide Time: 38:25), T is
the sampling time, u of t is input flow, h of t is the liquid level in the surge tank and g is the
acceleration due to gravity. This is our model of the surge tank. Why | am considering this model
is because, in simulation, we do not collect data from the actual surge tank — we collect data from

a mathematical model in simulation. Using that data, we will represent those data in terms of



neural network model. This neural network is the back propagation network that we have just

earned.

What we have done is that we have taken this model and we generated data using this model, not
using an actual surge tank — an actual surge tank is there in a field, probably in a hydro power
plant. We want to demonstrate the application of a back propagation algorithm to a specific
system modeling. This is the mathematical model of the surge tank and using this mathematical
model, we generate data. Using that data, we create a back propagation network. What we have

done here is that we have taken sampling time capital T is 0.01 in the mathematical model.

(Refer Slide Time: 40:02)
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150 data have been generated using the system equation. We saw that equation. This is the
equation (Refer Slide Time: 40:06). Using this equation, we generated 150 data. What is u of t?
Given u of t, what is h of t plus 1? This is our input that we have selected and this is the
corresponding output. In that equation, you set T equal to 0.01 and g is the normal acceleration
due to gravity, which is 9.81 meter per Second Square. Once you give those parameters, here all

the others are known.

T is given as 0.01, you are giving g, so it is simply u of t and h of t. You have given u of t is
equal to (Refer Slide Time: 40:52) using this particular equation. We used the Runge—Kutta
fourth order to generate the response. This response is generated using Runge—Kutta fourth order



equation. Actually, there is no need, this is a discrete time recursive equation. If it is a
differential equation, then we would have used the Runge-Kutta equation but it is a simple
recursive equation and there is no need for the Runge-Kutta equation. We generated this data

given this input and then we selected a network structure.

(Refer Slide Time: 41:36)
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We took a back propagation network having two hidden layers. Each hidden layer has 15
neurons or computational units and the number of outputs is the... this is desired (Refer Slide
Time: 41:57). We represent data in this term, u of t and h desire t plus 1. We get this from the
system equation. This is my desired output: h d t plus 1, given u of t. But you can see here, how

we select.



(Refer Slide Time: 42:30)
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You see here in the back propagation network feed forward network, if | give u of t, I cannot
complete h of t plus 1. You can easily see that h of t plus 1 is a function of h of t as well as u of t;
h of t plus 1 is a function of h of t and u of t. Obviously, I take this h of t from the system,
because at instant t, | am able to measure what is the liquid level in the surge tank; I am
measuring that and so | know the actual value of h d t; u of t is the flow rate that is going to the
surge tank, which I am able to measure. Given the actual liquid level of the surge tank at time t

and the flow rate u of t, | have to predict what h of t plus 1 is. This is my model.



(Refer Slide Time: 43:49)

Contd...

The systern is identifi od from o sat of L0 Input-output date

trurw) i rradlilppesr fowd Bewwan ] resban ko
we) A %‘“)
P ——t

Thes puwimrsstens of thes retwor k= grven Dedow

MNusnbew of hecddewy Ly
Lhmbs i Tl Picewry By i
Uiats, y Zrnd Pk Ly ‘

Number of cutputs | ‘Laeget

Numzer of inputs 2 A Q' \b
Leaming rate 1

Number of 1D data |4

A traaton function of helden lirwey Shormosd

Actrvation funclion of outpot heper

Obviously, for my system, the input is u of t and h d t, which is written here, this is actually d
here (Refer Slide Time: 43:59) the desired, which has been computed from the actual system.
The number of inputs that | have is 2 and output is my h desired t plus 1. Givenu of tand hdt, |
must predict what is h d t plus 1 — that is the objective. We have fixed the learning rate to be 0.2,
number of input/output data is 150, the activation function for hidden layers is sigmoidal and we
have taken the activation function of the output layer to be linear. You have two hidden layers,
so (Refer Slide time: 44:34) sigmoid and the output (Refer Slide Time: 44:36), but you can select

your own architecture and do the same thing.

In fact, this can be easily done using a single hidden layer and output layer with sigmoidal
activation function — we can easily do it. What we do is that we have 150 training data, we
selected network architecture; we observed what the input to the network is and what the output
is and then we update the equation recursively — update the weights. In the beginning, all the

weights in the network were randomly initialized — we took very small values.



(Refer Slide Time: 45:26)
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You will see that the error has been reduced to less than 0.004 after 20,000 epochs. What is an
epoch? Each epoch is 150; that is, in my data set, | have 150 different sets of data. One data is h
dtutandhdtplus 1. This is my single data set at t and t is equal to 1 to 150. Like that, | have
150 data sets. | give to my network u t and h d t, compute what is h d t plus 1, compare it with h
d t plus 1, back propagate the error and update the weight; doing that, I am able to reduce or

make my cost function 0.004.

(Refer Slide Time: 46:26)
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After training is over, what did we do? We give to the network a different control input and
compare it with the actual output, that is, this control input (Refer Slide Time: 46:41 to 46: 45
min) was given to this equation and then we computed what is the output. This is actual output
based on this equation. We then gave it to the neural network that has been trained. Once we
gave this input to the neural network, the response and the actual output based on the equation
are actually matching — you can see that.

You can see that there is a red line here and there is a green line. The red line is the desired based
on the equation. Red is computed from the equation and green is from the neural network. Both
the red and green are very much following each other. In essence, we can say that the actual
system identification has been done; that is, the equation that represents a model of a specific
surge tank has been again represented using a back propagation network having two hidden

layers. Now, we will look into some other aspects of back propagation.

(Refer Slide Time: 48:08)
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As | already told you, some of the problems in back propagation are that the normal back
propagation can only optimize if my cost function is a single minima. Normally, in a cost
function, you will have many local minima as well as global minima and so, | may reach here or
I may reach here. If | start from here (Refer Slide Time: 48:31), | will reach here; if my initial

weights are here, then I will reach here, because, that is the gradient descent; if my initial weights



are here, | will reach here. This is the limitation of back propagation — reaching global minimum
in back propagation is not guaranteed.

(Refer Slide Time: 48:56)
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That is why researchers have introduced several variations in the back propagation algorithm.
First is to improve the convergence speed, then avoid local minima and the generalizing
capability. Generalizing capability means that if | have trained my network for a specific data
set, it should be able to predict what the output is for a new data set; that is called generalization.

One of the ways to improve the convergence speed is by adding a momentum.



(Refer Slide Time: 49:29)
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How do we add a momentum? This is our equation. It is actually a heuristic approach, but we
can analyze this equation just immediately. This is our normal equation: w t plus 1 is w of t
minus eta into del E by del w of t — this is our normal gradient descent. Then, | have added a
momentum term (Refer Slide Time: 49:48), which is alpha into w of t minus w of t minus 1.
When | add this, this is heuristic and there is no derivation here — we have not derived this

particular term; this is heuristic.

Let us see what happens. Objectively analyze this equation in a flat surface. What is a flat
surface? In a flat surface, w of t minus w of t minus 1 is the same as w of t plus 1 minus w of t;
this is called a flat surface. Say for example, my error curve is sometimes like this. | am moving
like this (Refer Slide Time: 50:33). This is a flat error surface. If I am here, | do not want to stay
in the flat surface, | want to come back to the value, | must go towards the value (Refer Slide

Time: 50:48) and so, my speed should be very fast in this zone.

In that case, w of t plus 1 minus w of t is the same as w of t minus w of t minus 1, which is
delta,. If that is the case, | can rewrite this equation. If | rewrite this equation, this is 1 minus
alpha into delta,, and delta,, is w of t plus 1 minus w of t and this is also the same — delta,,. This
is my delta,, (Refer Slide Time: 51:23) and w of t plus 1 minus w of t is also delta,,. So, 1 minus

alpha deltay, is minus eta into del E upon del w t.



(Refer Slide Time: 51:37)
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Look at this equation. | can write down what is my weight update delta,, the increment in
weight. It is minus eta upon 1 minus alpha into delta E by del,, t. Normally, delta,, is eta del E
upon dely, t, but utilizing this heuristic term, | am able to increase the learning rate by a term
called eta by 1 minus alpha and alpha is less than 1. Obviously, if | say alpha is 0.5, then 1 minus
0.5is 0.5 and the effective increase in the learning rate is twice. If | make alpha 0.9, then 1 minus
0.9 is 0.1 and so, the effective eta is now 10 times the actual eta. The learning rate is thus
increased by a factor 1 by 1 minus alpha in the flat error surface. This is how we can increase the

convergence speed and this is an example.



(Refer Slide Time: 52:46)
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This is an XOR network. In the XOR network, we have taken eta equal to 0.5 ;this is the learning

rate, and alpha, the momentum rate, is 0.8.

(Refer Slide Time: 53:01)
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You can easily see here that when we use the simple gradient descent, we do not use the
momentum. The number of iterations is 4200. | take 4200 iterations to converge, that is, my
RMS error is less than 0.0005. For reaching the same termination condition (Refer Slide Time:



53:26) momentum, | need only 2200 — almost half of the .... By adding a momentum, | could
reduce the number of training by half — this called speed of convergence. The convergence speed
is almost doubled using this momentum term. It is not that | can increase the convergence speed
by always adding a momentum, but it occurs in some cases; this is heuristic; this is not always

true.

(Refer Slide Time: 54:45)

.Adaptlvo learning rate

A AR APPIGAch 10 adaptive ladimeng rule
® A diffecent Marming rate i ALgned 1o aach
acjuyinbie parsmete!
o Coch lwurning rule pararmeter shoulkd be allowed 1o
waary froen demiaton by derndbon sewos Bee stron e i
Dl wvownn, RPNy b)) hife ol fomjecne.

® Wheen thee dewrrentive Of Col funchion wirl wesght fos
IR Bielraic HEN for several SOnpecutve terations
the learning robe parnmeler for But weloh should be E
Fwitigwan 3
——
o Vi W el i, ragpy of ey Oesraatian ollog nestes,
Condas Litrvaly K Lol bes s e e renyg fate '%’
parameter Ihould be reduced

Similarly, for adaptive learning rate, we will have a special class. For today, | will just give you a
simple note on how we implement adaptive learning rate in a heuristic manner - a heuristic
approach to adaptive learning rule. You see that in back propagation, eta is a fixed value. Once
eta is fixed, most likely, you will be in local minima, but if I vary this eta in a very intelligent
manner in such a way that it can avoid the local minimum, this is called adaptive learning rate.
Can | do that?

Here is a heuristic approach for which we do not have a theoretical basis. Based on certain
intuition, we derive this algorithm. What this particular heuristic algorithm is that a different
learning rate is assigned to each adjustable parameter; that is, every typical wj; is associated with
a different eta. Each learning rate parameter should be allowed to vary from iteration to iteration.
When the derivative of the cost function with respect to weight has the same algebraic sign for
several consecutive iterations, the learning rate parameter for that weight should be increased.



When the algebraic sign of the derivative alternates consecutively for several iterations, the
learning rate parameter should be reduced.

What | am talking about now is that we always compute del E by del wij;, where wj; is the typical
weight. If this derivative is constantly positive, then for that particular wj;, | increase the eta. If
this derivative alternates, that is, sometimes positive, then negative, positive, negative, positive,

negative, then what I do is | decrease this weight; this is the heuristic we introduce.

(Refer Slide Time: 56:08)
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Based on that heuristic, this is my adaptive learning rate: eta; p t is equal to mu eta; p t minus 1
and d eta; p t minus 1, where mu and d are the increase and decrease factor, respectively. | either
increase this by u or decrease the previous eta by d. This is a multiplication factor. So | either
increase it or decrease it.



(Refer Slide Time: 56:51)

.Example: XOR gate

The sumwe exampie of lvarmng & XOR gale i
presenivd

The learning porametons ano grven bolow

Buac lpwrmng ruly 1 0.5

InCrewsmng lagtor 1.1
—

Decrousmng loctor ¥

Trwreng i3 done unbl an RMSE of < 00005 1y

You see that the increase factor means it has to be greater than 1 and decrease factor means it has
to be lesser than 1. You have taken mu to be 1.1, d to be 0.7. We have taken the same XOR
function. Now, using the adaptive learning rate, training is done until the root mean square error
is less than 0.0005 for the XOR gate.

(Refer Slide Time: 57:26)
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We finally see that without adaptive rate, as we have already seen, the simple gradient descent
gives you 4200 number of iterations or training samples — | have to update the weights that many
times; | have to update the weights 4200 times, whereas using the heuristic adaptive learning
rule, we could reduce that to 1300 for the same root mean square error, reaching the same root

mean square error.

(Refer Slide Time: 58:16)
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Finally, to conclude, | would say what we discussed today. We reviewed what back propagation
is, we talked about the generalized rule and then we talked about system identification of a surge
tank. Then, we talked about adding a momentum - this is to increase the convergence speed as
well as avoid local minimum. We also talked about a heuristic adaptive learning rule. We will
take a special class on adaptive learning rule in detail - comprehensively how we can compute
this adaptive learning rule having a theoretical basis; probably after two or three classes, but this

is the summary of this class. Thank you very much.



