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Back Propagation Algorithm: Revisited 

This is the third lecture of module 1 – Neural Networks. We have already discussed the linear 

neural network and system identification in linear neural network; then, we talked about the feed 

forward neural network, that is, the multilayer network, which has the capability of 

approximating any nonlinear function. We learnt in the second lecture how to derive the back 

propagation algorithm for the feed forward neural network that can approximate any nonlinear 

function.  

(Refer Slide Time: 01:11) 

 

Today, in this third lecture, we will again review the back propagation algorithm that we derived 

in the last lecture; then, we generalize the delta rule and we will understand this concept today. 

Then, system identification using this back propagation algorithm; then two different variations 

in back propagation algorithm, that is, adding a momentum and adaptive learning rate. Today, 

we will just have a very heuristic version of the adaptive learning rate. Probably after three or 



four lectures, you will have a detailed analysis on how to comprehensively design adaptive 

learning rate for back propagation network, the reason being that this particular analysis would 

need the concepts of stability for nonlinear systems, that is, Lyapunov function and Lyapunov 

function-based stability theory. These notions have to be reviewed, before we can talk about a 

very comprehensive method of computing adaptive learning rate for back propagation network. 

(Refer Slide Time: 02:27) 

 

We have already discussed about multilayer feed forward network. We said that you have an 

input layer and then you have many layers. These layers have many neurons. These are all input 

signals coming here (Refer Slide Time: 02:52) and they are fanned out. This is your output layer 

and these all are hidden layers. This is called the multilayer feed forward network. It has more 

hidden layers of computation units, that is, these hidden layers can be more than one. You can 

have one, two, three, four – as many as we want. FNN stands for feed forward neural network. In 

this feed forward neural network, the connections are allowed from one layer to the succeeding 

layer in the forward direction and not in the backward direction. I cannot have a connection like 

this. This is not allowed, this connection is not allowed – from this layer to this layer (Refer Slide 

Time: 03:56), but it is allowed from this layer to this layer. The hidden layer gets input from 

input layer and gives output to the next hidden layer or output layer after internal computation. 

This is the basic structure of feed forward network. 



(Refer Slide Time: 04:14) 

 

This is the notation we have used in the last class about the back propagation network. x is the 

input, v is the hidden node output, y is the actual output, wij is the weight connection between i 

th unit of output layer and j th unit of hidden layer, wjk is weight connecting j th unit of hidden 

layer and k th unit of input layer. 

(Refer Slide Time: 04:44) 

 



You can easily see that x is the input, which is a p-dimensional vector. The summation of 

weights into the input signals are all summed here and that sum is h. If I say hj, it is simply 

sigma over k wjk xk – this is your hj. After you go through this sigmoidal activation, that 

becomes your v, so vj is simply 1 upon 1 plus e to the power of minus hj – this is after sigmoidal 

activation. Again as usual, output y is an n-dimensional output. yi is…. You add all v1. We have 

shown this here.  

(Refer Slide Time: 05:53) 

 

vj is 1 upon 1 plus e to the power of minus hj, where hj is wjk xk and k equal to 1 to p. Similarly, 

final response yi is phi gi, which is 1 upon 1 plus e to the power of minus gi, where gi is wij vj. 



(Refer Slide Time: 06:16) 

 

If I go back here, I write here g and that means gi is simply sigma wij into vj. This is sigma 

(Refer Slide Time: 06:31). What you are seeing is that wij is the connection weights between the 

output layer and the hidden layer and wjk is the typical weight between the hidden layer and the 

input layer. This is the notation we used in the last class. This is called forward phase. In the 

forward phase, we computed the output of the hidden unit and output of the output unit. 

(Refer Slide Time: 07:02) 

 



Then, back propagation. Given the input output patterns, given input x, I know what the desired 

target – y d is. The network has a response yi and so, I compute a cost function E of t, which is a 

quadratic cost function. I use the gradient descent rule, which is of the nature wij into t plus 1 is 

wij of t minus eta into dow E of t upon dow wij of t. We have already discussed a lot about 

gradient descent; we apply this gradient descent to compute the error back propagation. 

(Refer Slide Time: 07:42) 

 

During that, we update the weights connecting the output layer and hidden layer. The weight that 

we are proposing, which is wij  



(Refer Slide Time: 07:54) 

 

You can see that the weight wij that we are talking about is this weight. Once I transfer the signal 

from x to y, then my target is there. I compute the target error here and I back propagate the 

target error. This is my e here at the target (Refer Slide Time: 08:10 min) and this target error is 

back propagated. Through back propagation, I update what is wij – it has to be updated.  

(Refer Slide Time: 08:26) 

 



To compute what is the weight update in wij, we need to compute what is dow E of t upon dow 

wij and that gives me the formula dow Ei of t upon dow yi into dow yi upon dow wij of t. How 

do I compute dow E upon dow wij? I know that E is summation of Ei. Hence, differentiating E 

with respect to wij means I differentiate Ei with respect to wij and take a sum. Then, individual 

Ei is a function of yi. So, I differentiate Ei with respect to dow yi and then, I differentiate yi, 

which is a function of wij. That is how I compute this partial derivative. 

Here, this is dow E upon dow yi of t, which is half, because, this function Ei is simply yi d minus 

yi whole square – this is Ei. Hence, if you look at this here, it is half into 2 yi d minus yi into… 

when you differentiate with respect to yi, we get minus 1 here. That is very clear. Now, dow yi 

upon dow wij is dow yi upon dow gi because, we found out that yi is 1 upon 1 plus e to the 

power of minus gi. We have already shown that here: yi is a function of gi (Refer Slide Time: 

10:21). While differentiating, I will obviously differentiate yi with respect to gi and then gi with 

wij. 

(Refer Slide Time: 10:33) 

 

Doing that way, I finally get this expression delta wij is eta into yi d minus yi into yi into 1 minus 

yi into vj. We wrote the weight update algorithm in a generalized format as wij of t plus 1 is wij 

of t plus eta deltai vj and vj is the input. You can see easily here that when I am updating weights 

for wij, vj is my input to the weights in this layer (Refer Slide Time: 11:10). vj is the input to the 



weights in this layer. My error is e, which is… The back propagated error that I am talking of 

here is represented as deltai (Refer Slide Time: 11:31). This deltai, which is the error back 

propagated from the output layer, is defined as yi into 1 minus yi into the error at the output, 

which is yi d minus yi. This called the back propagation algorithm. My weights are updated and 

the new weight is old weight plus eta, error back propagated into the input signal to the 

connection.  

(Refer Slide Time: 12:03) 

 

Similarly, we derived for wij. Now, we are talking about wjk. wjk was the weight vector or 

weight matrix between the hidden layer and input layer (Refer Slide Time: 12:20). We have 

already derived it and I will not go into a detailed discussion. What we did is that when I 

differentiate E with respect to jk, then I differentiate Ei with respect to yi and yi with respect to 

wjk in a similar manner.  



(Refer Slide Time: 12:46) 

 

Ultimately, we finally get a relationship, which is again a generalized form: wjk of t plus 1 is wjk 

of t plus eta deltaj xk. This similar format you see, the earlier one was wij of t plus 1 was wij of t 

plus eta deltaj vj. This is the weight update between output layer and hidden layer and this is the 

hidden layer and input layer, where the input is xk in the input layer and deltaj is the error back 

propagated from the output layer. You see that deltai is the error back propagated in the output 

layer and we multiply the corresponding weights wij and do the summation. The quantity deltaj 

is the total error back propagated from the output layer to the layer between input layer and 

hidden layer into vj into 1 minus vj. So, deltaj is the back propagated error to the layer that is 

situated between the hidden layer and input layer. Now, I will summarize what we saw in the 

back propagation algorithm. 



(Refer Slide Time: 14:14) 

 

We have a typical input layer – vector x, which is p by 1 and then a single hidden layer whose 

output is v, which is m by 1. This is p. Then, there is an output layer whose output is y and this is 

n by 1. Let us consider a j th computational unit in the hidden layer, i th computational unit in the 

output layer, and k th computational unit in the input layer. What we saw in the back propagation 

algorithm is wij of t plus 1 is wij of t plus eta deltai vj. What is vj? What is wij?  

This is my connection – this is wij. This particular weight is updated based on the error on a 

single data set, based on the instantaneous update rule. What we do is we update wij based on its 

previous value and the connection is…. eta is the learning rate and normally, this value eta is 0 to 

1. deltai is the error back propagated from the output to this output layer. I normally say that this 

is the second layer and this is the first layer. Let me say that this is the second layer.  

We found out deltai, the weight to be yi into 1 minus yi into the error that is yi d minus yi. This 

is my error at the output. This multiplied by yi into 1 minus yi deltai. vj is the input – this is vj 

(Refer Slide Time: 17:10). If you look at wij, the input is vj to this connection and the output of 

this unit is yi. Given that, the deltai has a unique structure. deltai is yi into 1 minus yi into yi d 

minus yi and the update rule also has a unique structure because, vj is the input to the 

connection, delta is the error being back propagated through this weight and this is called the 

delta rule.  



The weight update rule has a very simple form, which is delta, which is error back propagated, 

into vj. We will see the same thing here. This weight is wjk by convention we have already 

discussed that and this is my xk – the output of this unit. The output of this unit is vj. We saw 

that the weight update law is wjk of t plus 1 is wjk of t plus eta deltaj into xk. You see that this 

and this have the same form and that is why this is called delta rule. Of course, the deltaj has a 

different value than deltak, but it also has a unique structure. deltaj is vj into 1 minus vj into 

sigma over i deltai wij. 

I add i, the output (Refer Slide Time: 19:11) 1 to n deltai wij, multiply vj and 1 minus vj. This is 

my error being propagated from this unit over this (Refer Slide Time: 19:22). This is the error 

deltaj. So this is deltaj. deltaj being back propagated in this particular connection output. It is 

very important to understand this. deltaj into xk, where xk is the input to this connection. You 

can easily see that the error back propagated in that particular connection weight into the input to 

that connection weight, if you multiply by the learning rate, that gives you the back propagation 

rule. It is a very simple rule. Using this delta rule concept, we can write down this back 

propagation algorithm for any layer in the network. That is what we will write now.  

(Refer Slide Time: 20:09) 

 

Generalized delta rule: We derived this delta rule for a single hidden layer. Now, we will 

generalize this delta rule for any number of hidden layers in a feed forward network. That is why 

it is called a generalized delta rule. You see here we have a multilayered neural network and this 



multilayered neural network has L layers. This is the input layer, first layer, second layer, third 

layer and L th layer. These are all feed forward networks, these are all feed forward networks 

and these are all feed forward networks.  

Like we earlier assumed, the indexes for each layer are i, j and k; i is for output layer, j is for 

hidden layer and k is for input layer. Similarly, here, the index we have generalized iL for L th 

layer and similarly, ii is for i th layer, i3 is for the third layer, i2 is for the second layer and 

obviously, for the input layer, the index is i0. With this particular convention, we can now easily 

write down using the same – whatever we discussed here, the normal delta rule. This is called 

delta rule (Refer Slide Time: 21:37) because, our weight update algorithm consists of the error 

back propagated the input to the specific connection weight. So, this is the delta rule. Using that, 

we can now write down the update rule. 

(Refer Slide Time: 21:58) 

 

You see here, this is the typical connection weight between l th and l minus 1 th layer.  



(Refer Slide Time: 22:15) 

 

What I am talking about here is this is my wil, il minus 1. These are the weights between the L th 

layer and the preceding layer. We are talking about how to update the weight in this layer. Once I 

pass the input (Refer Slide time: 22:42) this network, compute the output at the output layer, 

compare with the desired data, then I want to update this weight. It is the same formula, that is, 

eta deltail into vi l minus 1. This is the input to this connection weight and this is the error being 

back propagated (Refer Slide Time: 23:08). Obviously, we can easily see that deltail lowercase l 

and uppercase L are the same – we are not discriminating.  



(Refer Slide Time: 23:29) 

 

deltail is y il d minus y il into this is our error at the output and you have to multiply this term yil 

into 1 minus yil. That transforms the error at the output to the… when it is back propagated.  

(Refer Slide Time: 23:50) 

 

This deltail (Refer Slide Time: 23:48) is here. This is the error back propagated in this immediate 

layer; that is the L th layer. This is for the output layer. This l represents any layer and deltail is 

the… for capital L, that is, the output layer. We have made some changes here. Let Wil, i l minus 1 



denote the synaptic weight connecting the i th neuron of layer l to that of layer l minus 1. This l 

is any typical layer. Considering sigmoidal function as the activation function for each layer, the 

weight update law can be written as…. 

(Refer Slide Time: 25:05) 

 

This is for any layer. This particular weight is the weight between any of these layers (Refer 

Slide Time: 25:09). For example, if I take L is equal to 2, then this is the layer; if L is equal to 3, 

then this is the layer; if L is equal to 1, then this is the layer; if l is equal to capital L, then this is 

the layer. This is the generalized delta rule. Given the delta at the output layer, we can easily 

compute corresponding delta in all proceeding layers subsequently. Then, we can update all the 

weights in all the layers using this concept of delta rule. I will give you a simple example. Let us 

explain this generalized delta rule through another example – we will talk about a four-layer 

network.  



(Refer Slide Time: 26:20) 

 

This is the input layer; this is the first layer, second layer, third layer and fourth layer. Obviously, 

the weight between the third layer and fourth layer will be represented by Wi4, i3; the weight 

between the third layer and second layer is Wi3, i2; the weight between the first layer and second 

layer is Wi2, i1, and the weight between input layer and first layer is Wi1, i0. This is the convention 

that we are following. Given the error, that is, y d minus y at the output layer, how do we go?  

Naturally, the element of y is yi4 because, i4 is the index for the output layer. When I say y is a 

vector, then yi4 is an element of the vector y. So, y is the output vector. This is the weight update 

law for the output layer, that is, the fourth layer. This is the first layer and then second layer. 

When I talk in terms of connection weight, this is the first layer of connection weight, second 

layer of connection weight, third layer of connection weight and fourth layer of connection 

weight. As many layers we have, we have that many layers of connection weights. 

What you are seeing here, as we saw earlier, is that Wi4, i3, the typical weight in the fourth layer, 

is updated using the generalized delta rule, which is eta into delta, which is the error back 

propagated, and vi3, which is the input to the connection weight Wi4, i3. What is deltai4? deltai4 is 

obviously yi4 d minus yi4 into yi4 into 1 minus yi4. This is my error (Refer Slide Time: 28:27) 

that I computed here. This is transformed and we get this because of the sigmoidal activation 



function. If we have a linear activation function, this particular term will not be there. This is my 

update rule for the last layer or the output of fourth layer.  

(Refer Slide Time: 28:53) 

 

Similarly, for the third layer, it is eta deltai3 vi2.  

(Refer Slide Time: 29:00) 

 

This is my deltai4 here; this is delta i3, deltai2 and deltai1. I computed what is deltai4. Based on 

deltai4, I can compute what deltai3 is. This is what I will do.  



(Refer Slide Time: 29:19) 

 

deltai3 is vi3 into 1 minus vi3 into delta i4 Wi4, i3. This is actually i4 equal to 1 to n or the number 

of units in my L th layer. Let me say that this is n4 and similarly, this is n3. The weight update 

law for the second layer will be eta deltai2 vi1. We can easily check it again (Refer Slide Time: 

30:08). For this, it is deltai4 into vi3; this is delta i3 vi2; this is deltai2 vi1 and this is deltai1 and xi0 

because it is the input layer here – xi0. This is what we will have now and this is what you can 

easily see. eta deltai3 vi2 is for third layer, deltai2 vi1 is for second layer, and this is your error 

back propagated (Refer Slide Time: 30:44). deltai2 is computed based on deltai3 and deltai3 is 

computed based on deltai4.  



 (Refer Slide Time: 30:54) 

 

Similarly, finally, deltai1 is computed based on deltai2. This is your first layer. Given any layer, 

using generalized delta rule, we can write the back propagation algorithm. We do not have to 

derive again making all those complicated forward response equations and then differentiating 

the error with respect to each typical weight and finding all those – there is no need actually. 

This rule is actually generalized and we do not have to compute. We are actually (Refer Slide 

Time: 31:32) formula. These represent the right formula.  

(Refer Slide Time: 31:39) 

 



We are done with the first part that we wanted to explain today – the generalized delta rule. In 

the generalized delta rule, the concept was that we wanted a recursive formula for a back 

propagation learning algorithm.  

(Refer Slide Time: 32:04) 

 

It allows the error signal of a lower layer to be computed as a linear combination of the error 

signal of the upper layer. In this manner, the error signals are back propagated through all the 

layers from the top down, that is, from the last layer -the output layer, backward until we reach 

the input layer. We can compute the error back propagation, which is in terms of delta, which is 

here.  



(Refer Slide Time: 32:38) 

 

We have to compute here what is delta iL for the output layer and based on that, we finally 

compute what is delta i1. deltai1 is computed based on deltai2, deltai2 is computed based on 

deltai3, deltai3 is computed based on deltai4 and so on. Finally, delta iL minus 1 is computed based 

on what is delta iL. The general form is that this is the original form (Refer Slide Time: 33:10). 

This is a typical weight between the l th layer and l minus 1 th layer.  

The update rule or delta w is eta deltail into vi l minus 1. What you are seeing is eta deltail vil minus 1. 

This is the input to the connection and this is the error back propagated to the layer l. Using this 

concept, we will now demonstrate the application of the back propagation algorithm for system 

identification. Since it is a control course, you would always use system identification while 

demonstrating any application of a specific neural network. A practical system, the surge tank 

system has been taken for simulation. We will identify the surge tank system using a neural 

network or we will model the surge tank. So, what is the surge tank? 



(Refer Slide Time: 34:27) 

 

A surge tank- what you are looking at is that. Normally, a surge tank is used to control the 

hydraulic transients and pressure changes. You see this is a big reservoir. In this reservoir, the 

water level sometimes increases suddenly or suddenly decreases, but this reservoir is connected 

particularly to a hydro power plant, where the turbines have to move in a specific speed. So, the 

flow rate here has to be constant. If the water level suddenly increases or suddenly decreases in 

this reservoir, then this flow rate will be affected. To maintain the flow rate as constant, the surge 

tank is used.  

What happens? Whatever the disturbance in the reservoir level, it can be controlled using this 

surge tank. The extra pressure you have, the extra flow can be pushed to the surge tank. 

Normally, the surge tank has a nonlinear structure level. For a surge tank, the structure is like 

this. This is a cylindrical structure. That means everywhere, the diameter of this surge tank… for 

example, if this is circular, then the diameter is constant. But if the surge tank has a nonlinear 

structure, then given the specific flow into this surge tank, the water level in the surge tank to the 

flow rate into the surge tank will bear a nonlinear relationship.  

We will now try to model this surge tank, because, unless we know how to model the surge tank, 

we cannot design; because we must know how the water level in this surge tank is increasing or 

decreasing, given a specific water flow into this surge tank. Based on that, we will design a surge 



tank and a specific dimension of the surge tank, that is, how the diameter will vary – linearly or 

nonlinearly, etc. We are just taking a nonlinear surge tank model. This is a schematic diagram of 

a surge tank. When the pressure increases due to sudden change in the flow from the reservoir, 

the level of the surge tank increases; thus, controlling the flow as well as pressure to the 

connecting system; this flow (Refer Slide Time: 37:27) is controlled accordingly. 

(Refer Slide Time: 37:32) 

 

Typically, we are not interested now in how we derive the model of a surge tank. What we are 

interested in is given a nonlinear structure-based surge tank, this is the dynamics of the surge 

tank, that is, h of t plus 1 is equal to h of t plus T, which is the sampling time, and this particular 

nonlinear … you can see easily that this is a nonlinear function (Refer Slide Time: 38:05), 

because, this is square root of h and also, u is multiplied with 1 upon square root of h and hence, 

this is a nonlinear function.  

t is the discrete time step, that is, the sample instant per second (Refer Slide Time: 38:25), T is 

the sampling time, u of t is input flow, h of t is the liquid level in the surge tank and g is the 

acceleration due to gravity. This is our model of the surge tank. Why I am considering this model 

is because, in simulation, we do not collect data from the actual surge tank – we collect data from 

a mathematical model in simulation. Using that data, we will represent those data in terms of 



neural network model. This neural network is the back propagation network that we have just 

earned. 

What we have done is that we have taken this model and we generated data using this model, not 

using an actual surge tank – an actual surge tank is there in a field, probably in a hydro power 

plant. We want to demonstrate the application of a back propagation algorithm to a specific 

system modeling. This is the mathematical model of the surge tank and using this mathematical 

model, we generate data. Using that data, we create a back propagation network. What we have 

done here is that we have taken sampling time capital T is 0.01 in the mathematical model. 

(Refer Slide Time: 40:02) 

 

150 data have been generated using the system equation. We saw that equation. This is the 

equation (Refer Slide Time: 40:06). Using this equation, we generated 150 data. What is u of t? 

Given u of t, what is h of t plus 1? This is our input that we have selected and this is the 

corresponding output. In that equation, you set T equal to 0.01 and g is the normal acceleration 

due to gravity, which is 9.81 meter per Second Square. Once you give those parameters, here all 

the others are known.  

T is given as 0.01, you are giving g, so it is simply u of t and h of t. You have given u of t is 

equal to (Refer Slide Time: 40:52) using this particular equation. We used the Runge–Kutta 

fourth order to generate the response. This response is generated using Runge–Kutta fourth order 



equation. Actually, there is no need, this is a discrete time recursive equation. If it is a 

differential equation, then we would have used the Runge–Kutta equation but it is a simple 

recursive equation and there is no need for the Runge-Kutta equation. We generated this data 

given this input and then we selected a network structure. 

(Refer Slide Time: 41:36) 

 

We took a back propagation network having two hidden layers. Each hidden layer has 15 

neurons or computational units and the number of outputs is the… this is desired (Refer Slide 

Time: 41:57). We represent data in this term, u of t and h desire t plus 1. We get this from the 

system equation. This is my desired output: h d t plus 1, given u of t. But you can see here, how 

we select.  



(Refer Slide Time: 42:30) 

 

You see here in the back propagation network feed forward network, if I give u of t, I cannot 

complete h of t plus 1. You can easily see that h of t plus 1 is a function of h of t as well as u of t; 

h of t plus 1 is a function of h of t and u of t. Obviously, I take this h of t from the system, 

because at instant t, I am able to measure what is the liquid level in the surge tank; I am 

measuring that and so I know the actual value of h d t; u of t is the flow rate that is going to the 

surge tank, which I am able to measure. Given the actual liquid level of the surge tank at time t 

and the flow rate u of t, I have to predict what h of t plus 1 is. This is my model.  



(Refer Slide Time: 43:49) 

 

Obviously, for my system, the input is u of t and h d t, which is written here, this is actually d 

here (Refer Slide Time: 43:59) the desired, which has been computed from the actual system. 

The number of inputs that I have is 2 and output is my h desired t plus 1. Given u of t and h d t, I 

must predict what is h d t plus 1 – that is the objective. We have fixed the learning rate to be 0.2, 

number of input/output data is 150, the activation function for hidden layers is sigmoidal and we 

have taken the activation function of the output layer to be linear. You have two hidden layers, 

so (Refer Slide time: 44:34) sigmoid and the output (Refer Slide Time: 44:36), but you can select 

your own architecture and do the same thing. 

In fact, this can be easily done using a single hidden layer and output layer with sigmoidal 

activation function – we can easily do it. What we do is that we have 150 training data, we 

selected network architecture; we observed what the input to the network is and what the output 

is and then we update the equation recursively – update the weights. In the beginning, all the 

weights in the network were randomly initialized – we took very small values.  



(Refer Slide Time: 45:26) 

 

You will see that the error has been reduced to less than 0.004 after 20,000 epochs. What is an 

epoch? Each epoch is 150; that is, in my data set, I have 150 different sets of data. One data is h 

d t u t and h d t plus 1. This is my single data set at t and t is equal to 1 to 150. Like that, I have 

150 data sets. I give to my network u t and h d t, compute what is h d t plus 1, compare it with h 

d t plus 1, back propagate the error and update the weight; doing that, I am able to reduce or 

make my cost function 0.004. 

(Refer Slide Time: 46:26) 

 



After training is over, what did we do? We give to the network a different control input and 

compare it with the actual output, that is, this control input (Refer Slide Time: 46:41 to 46: 45 

min) was given to this equation and then we computed what is the output. This is actual output 

based on this equation. We then gave it to the neural network that has been trained. Once we 

gave this input to the neural network, the response and the actual output based on the equation 

are actually matching – you can see that.  

You can see that there is a red line here and there is a green line. The red line is the desired based 

on the equation. Red is computed from the equation and green is from the neural network. Both 

the red and green are very much following each other. In essence, we can say that the actual 

system identification has been done; that is, the equation that represents a model of a specific 

surge tank has been again represented using a back propagation network having two hidden 

layers. Now, we will look into some other aspects of back propagation. 

(Refer Slide Time: 48:08) 

 

As I already told you, some of the problems in back propagation are that the normal back 

propagation can only optimize if my cost function is a single minima. Normally, in a cost 

function, you will have many local minima as well as global minima and so, I may reach here or 

I may reach here. If I start from here (Refer Slide Time: 48:31), I will reach here; if my initial 

weights are here, then I will reach here, because, that is the gradient descent; if my initial weights 



are here, I will reach here. This is the limitation of back propagation – reaching global minimum 

in back propagation is not guaranteed. 

(Refer Slide Time: 48:56) 

 

That is why researchers have introduced several variations in the back propagation algorithm. 

First is to improve the convergence speed, then avoid local minima and the generalizing 

capability. Generalizing capability means that if I have trained my network for a specific data 

set, it should be able to predict what the output is for a new data set; that is called generalization. 

One of the ways to improve the convergence speed is by adding a momentum.  



(Refer Slide Time: 49:29) 

 

How do we add a momentum? This is our equation. It is actually a heuristic approach, but we 

can analyze this equation just immediately. This is our normal equation: w t plus 1 is w of t 

minus eta into del E by del w of t – this is our normal gradient descent. Then, I have added a 

momentum term (Refer Slide Time: 49:48), which is alpha into w of t minus w of t minus 1. 

When I add this, this is heuristic and there is no derivation here – we have not derived this 

particular term; this is heuristic. 

Let us see what happens. Objectively analyze this equation in a flat surface. What is a flat 

surface? In a flat surface, w of t minus w of t minus 1 is the same as w of t plus 1 minus w of t; 

this is called a flat surface. Say for example, my error curve is sometimes like this. I am moving 

like this (Refer Slide Time: 50:33). This is a flat error surface. If I am here, I do not want to stay 

in the flat surface, I want to come back to the value, I must go towards the value (Refer Slide 

Time: 50:48) and so, my speed should be very fast in this zone.  

In that case, w of t plus 1 minus w of t is the same as w of t minus w of t minus 1, which is 

deltaw. If that is the case, I can rewrite this equation. If I rewrite this equation, this is 1 minus 

alpha into deltaw and deltaw is w of t plus 1 minus w of t and this is also the same – deltaw. This 

is my deltaw (Refer Slide Time: 51:23) and w of t plus 1 minus w of t is also deltaw. So, 1 minus 

alpha deltaw is minus eta into del E upon del w t.  



(Refer Slide Time: 51:37) 

 

Look at this equation. I can write down what is my weight update deltaw, the increment in 

weight. It is minus eta upon 1 minus alpha into delta E by delw t. Normally, deltaw is eta del E 

upon delw t, but utilizing this heuristic term, I am able to increase the learning rate by a term 

called eta by 1 minus alpha and alpha is less than 1. Obviously, if I say alpha is 0.5, then 1 minus 

0.5 is 0.5 and the effective increase in the learning rate is twice. If I make alpha 0.9, then 1 minus 

0.9 is 0.1 and so, the effective eta is now 10 times the actual eta. The learning rate is thus 

increased by a factor 1 by 1 minus alpha in the flat error surface. This is how we can increase the 

convergence speed and this is an example.  



(Refer Slide Time: 52:46)  

 

This is an XOR network. In the XOR network, we have taken eta equal to 0.5 ;this is the learning 

rate, and alpha, the momentum rate, is 0.8. 

(Refer Slide Time: 53:01) 

 

You can easily see here that when we use the simple gradient descent, we do not use the 

momentum. The number of iterations is 4200. I take 4200 iterations to converge, that is, my 

RMS error is less than 0.0005. For reaching the same termination condition (Refer Slide Time: 



53:26) momentum, I need only 2200 – almost half of the …. By adding a momentum, I could 

reduce the number of training by half – this called speed of convergence. The convergence speed 

is almost doubled using this momentum term. It is not that I can increase the convergence speed 

by always adding a momentum, but it occurs in some cases; this is heuristic; this is not always 

true. 

(Refer Slide Time: 54:45) 

 

Similarly, for adaptive learning rate, we will have a special class. For today, I will just give you a 

simple note on how we implement adaptive learning rate in a heuristic manner - a heuristic 

approach to adaptive learning rule. You see that in back propagation, eta is a fixed value. Once 

eta is fixed, most likely, you will be in local minima, but if I vary this eta in a very intelligent 

manner in such a way that it can avoid the local minimum, this is called adaptive learning rate. 

Can I do that? 

Here is a heuristic approach for which we do not have a theoretical basis. Based on certain 

intuition, we derive this algorithm. What this particular heuristic algorithm is that a different 

learning rate is assigned to each adjustable parameter; that is, every typical wij is associated with 

a different eta. Each learning rate parameter should be allowed to vary from iteration to iteration. 

When the derivative of the cost function with respect to weight has the same algebraic sign for 

several consecutive iterations, the learning rate parameter for that weight should be increased. 



When the algebraic sign of the derivative alternates consecutively for several iterations, the 

learning rate parameter should be reduced.  

What I am talking about now is that we always compute del E by del wij, where wij is the typical 

weight. If this derivative is constantly positive, then for that particular wij, I increase the eta. If 

this derivative alternates, that is, sometimes positive, then negative, positive, negative, positive, 

negative, then what I do is I decrease this weight; this is the heuristic we introduce. 

(Refer Slide Time: 56:08) 

 

Based on that heuristic, this is my adaptive learning rate: etai p t is equal to mu etai p t minus 1 

and d etai p t minus 1, where mu and d are the increase and decrease factor, respectively. I either 

increase this by u or decrease the previous eta by d. This is a multiplication factor. So I either 

increase it or decrease it.  



(Refer Slide Time: 56:51) 

 

You see that the increase factor means it has to be greater than 1 and decrease factor means it has 

to be lesser than 1. You have taken mu to be 1.1, d to be 0.7. We have taken the same XOR 

function. Now, using the adaptive learning rate, training is done until the root mean square error 

is less than 0.0005 for the XOR gate. 

(Refer Slide Time: 57:26)  

 



We finally see that without adaptive rate, as we have already seen, the simple gradient descent 

gives you 4200 number of iterations or training samples – I have to update the weights that many 

times; I have to update the weights 4200 times, whereas using the heuristic adaptive learning 

rule, we could reduce that to 1300 for the same root mean square error, reaching the same root 

mean square error.  

(Refer Slide Time: 58:16) 

 

Finally, to conclude, I would say what we discussed today. We reviewed what back propagation 

is, we talked about the generalized rule and then we talked about system identification of a surge 

tank. Then, we talked about adding a momentum – this is to increase the convergence speed as 

well as avoid local minimum. We also talked about a heuristic adaptive learning rule. We will 

take a special class on adaptive learning rule in detail - comprehensively how we can compute 

this adaptive learning rule having a theoretical basis; probably after two or three classes, but this 

is the summary of this class. Thank you very much. 


