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This will be lecture six on fuzzy control. The topic that we will be discussing today is 

linear controllers using T-S fuzzy model. In the last class, we discussed how to design 

controllers for T-S fuzzy model when the input matrix is common for all subsystems. 

Now, we will consider the generic T-S fuzzy model and how do we design linear 

controllers for it.  
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We will just revise our notion of T-S fuzzy model representation of nonlinear systems. , 

The approach of Controller design linear controller design. We will give two controllers 

for this, stabilizing controller design robust controller approach; we will propose 

controller I and as well as controller II - two different types of controller, simulation 

results: two-link manipulator, ball beam system and summary.  



Refer Slide Time (01:42) 

 

The T-S fuzzy model is expressed in terms of r fuzzy rules where ith fuzzy rules has the 

following form: if x1t is F1 i and x2t is a F2 i and so on until nxnt is an FnI then x dot t is 

a is Aix t plus Biu t. This is my ith fuzzy rule consisting of n states and each state is fuzzy 

variable and where the fuzzy variable FjI is the jth fuzzy set of the ith rule. Then, the 

fuzzy index muI associated with the ith fuzzy rule is given by this (Refer Slide Time: 

02:27) formula where mui j xj is the membership function of the fuzzy set Fj i. i equal to 

1 to r. 
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Given an input output pair x t u t the fuzzy variable around this operating point is 

constructed as the weighted average of the local model as x dot t equal to summation j 

equal to 1 to r sigma i Ajx t plus Bju t. This is jth local model and with jth local model 

associated membership function is actually sigmaj, so sigmaj is a normalized fuzzy index 

associated with jth local model. The summation of such local model multiplied with 

fuzzy index over j equal to 1 to r gives me the complete fuzzy dynamics in terms of T-S 

fuzzy model. A T-S fuzzy model approximates a nonlinear system as a cluster of a linear 

system. This is my linear system; this is my jth linear system, sigmaj is the normalized 

fuzzy index associated with jth linear system. When the cluster of such a linear system if 

there are there, then if I fuzzy cluster these r number of linear systems then, I get the 

approximation of a non linear system. The advantage of the fuzzy system is more 

informative in terms of local dynamics because I can look at a nonlinear system in terms 

of linear system. Dynamics is governed by subsystems fired at each operating point. In 

this class we will talk about variable gain controller using single nominal plant.  
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This is the first type of controller will be talking today and in this we expressed the fuzzy 

systems as a linear system with non linear disturbance. Our fuzzy system which is x dot 

sigma j equal to 1 to r sigmaj Ajx plus Bju, this is my T-S fuzzy model approximation of 

nonlinear system using T-S fuzzy model you can easily see that this has a very 

convenient form. It looks as very convenient form easy to handle and I can write this as 

Ax plus Bu plus disturbance term. This is my disturbance term (Refer Slide Time: 05:43), 

this is worst part I am saying here; express the fuzzy system is the linear system with 

nonlinear disturbance. Then design a controller to stabilize in the linear system in the 

presence of disturbance. The original plant was x dot is sigmaj Ajx plus Bju j equal to 1 

to r. So, this is my original plant.  
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I can always write this plant you see as: A x t plus B u t this is the nominal plant. Once I 

separate from this as a nominal plant how do I write that this sigmaj Aj x in that I have to 

subtract A x t which is here. So sigmaj Aj minus A x t, I subtract that and j equal to 1 to I. 

Similarly, if I subtract b because, Bj is there I subtract b here. How can I do? You must 

know sigma j equal to 1 to r sigmaj A is A; because, j equal to 1 to r sigma j equal to 1. 

You may worried that I should have only subtracted A outside no, this is one and this is 

equal to A so I can subtract this quantity here. Similarly, about B so x dot t is written in 

the particular form; this is my original dynamics; this can be written in this particular 

form. This can be finally written A x t plus B u t F x t u t and this is my disturbance term 

around this nominal plant where, A x t B u t is the linear system and F x t is a nonlinear 

disturbance given by. I represent this nonlinear system in terms of three different 

components. So, this is simply F x t B h1 x t B h2 u t. You can easily see that, B x t u t is 

obviously taken into account of this. This one is actually B h2 u t you can easily see that 

this is a nonlinear term and that is given by B x2 u t, we can express that. Similarly, these 

two terms combined represents this one. If I say this is the second term this is my second 

term. This term is represented by this. I wish that you understood what we are trying to 

do my original plant was given by this particular thing x dot is sigma Ajx plus Bju this 

one I am representing this same dynamics as this. There is no difference between (Refer 

Slide Time: 09:30) this and this. I am representing this whole thing as A x t plus B u t is 



the first plant nominal plant and this F x t is disturbance and this has three component 

which the first component here I is this one. Sigmaj Bj minus B u t sigmaj equal to 1 to r 

and the second component is F x t plus B h1 x t this component here. Always in 

controller design whenever we say any disturbance, we are not interested in exact 

represent of disturbance rather an upper bound. This is the principle of robust control; we 

want to know the upper bound of this disturbance. That means if I am designing 

controller for the worst case naturally the controller also will be a stable for the other 

cases. This is the robust control design principle is design the controller for worst case.  
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That is why we will represent first of all disturbance terms more elaborately, we will 

define the upper bound. Let us see the first disturbance B h2 u t the component one as I 

said which is: sigmaj Bj minus u t j equal to 1 to r. We can write this equation as, I have 

to write in terms of B here multiplied sigmaj Bj bar t u t and this Bj bar is obviously such 

that the b Bj bar is v j minus v. This identity has to be satisfied, so B Bj bar is Bj minus B  

Similarly, F x t plus B h1 x t is this term, the second term, j equal to 1 to r sigmaj Aj 

minus x t and then this can be written in terms of two. Looking at this you can easily 

sigmaj A1 j x t is F x t and sigma Bj plus x t is I can take of B and I can write this as B h1 

x t. So, here Aj minus A has to be written in terms of A1j plus BA2j where, the A1j 



represents the unmatched disturbance, unmatched means you see that, this disturbance is 

not magnified by u, means this is not with there with the control input. This is matched 

you see the b in to this and you see our normal plant is A x x dot is Ax plus Bu. So, 

anything with B means you can say that, this term is like an excitation because anything 

multiplied with B is kind of excitation to the system and this term is not with b. It is 

separate term unmatched disturbance and this is matched disturbance means this is 

disturbance excitation that is exciting system because, we say b is the control matrix. In 

that sense, A1j is the unmatched disturbance and this is the matched disturbance.  
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Now, we will talk about the control problem. The T-S fuzzy model approximates a 

nonlinear system as a fuzzy cluster of r linear subsystems. Since each sub system is 

linear, linear control theory can be applied to design fixed gain controller for each system 

design fixing controller for each subsystem. Since the desired system output traverses a 

specific trajectory system states traverse across different fuzzy zones. It is thus expected 

that, the controller will be characterized by variable gain instead of fixed gain which I 

have already discussed. 

The control problem is given a T-S fuzzy model representation design a variable state 

feedback controller u t equal to minus kx t where, k is the variable such that, the T-S 



fuzzy model is Lyapunov stable. Here, the matrix k represents variable state feedback 

gain it is not a constant gain as in case of a linear system. Now, we will be talking about 

this disturbance measure. Since the nominal plant is linear while disturbance term is 

nonlinear one can possibly solve the control problem using the principles of robust 

control theory.  
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For that the norm bounds of uncertainties have to be computed first. The norm bound of 

unmatched state disturbance which is h1x t. I will show you which is h1 x t is 1 this one is 

matched state disturbance. Matched state disturbance h1 x t is alpha j you see h1 x t we 

have represented h1 x t is this is h1 x t. You can easily say sigmaj A2 x t sigma j equal to 

1 to r. So that is what we have written here: h1 x t is sigmaj A2 j x t known from j equal to 

1 to r overall norm. I can represent this particular term using a triangular in a quality as 

less than equal to sigmaj and this is the induced norm of A2j is alpha h x j, alpha h x j 

represent the maximum singular value of A2j and the norm of x2 x t separately. This is a 

triangular in equality and what we are saying is that the kind of this disturbance is 

represented in terms of a major disturbance which is less than this quantity.  
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The norm bound of input disturbance is, which is h2 u t you see h2 u t given here is this 

one and this sigmaj bar Bj bar u t. This was actually sigmaj Bj bar u t j equal to 1 to r. 

This can be written in triangular inequality as j equal to 1 to r sigmaj and norm of B bar j 

into u t norm and we can write now B bar j norm the maximum norm. I can put here the 

maximum norm of induce norm of B bar j is alpha u j alpha u j is the norm of B bar j that 

means this is maximum singular value of B bar j. This inequality gives a disturbance 

measure for this quantity where we already know alpha u j, we know sigmaj. Similarly, 

the norm bound of unmatched state disturbance which is F x t the previous one is 

unmatched. This is unmatched one F x t and F x t is sigmaj A1j x t, so this whole norm 

can be written as again less than equal to this A1j alphaf is norm of A1j induced second 

norm A1j this is alphaf.  

I wish that you have understood now what we have been talking about the disturbance 

measure so once the disturbance measure I define, we will be now telling a theorem 

which says that: if I design a state feedback controller, if I have a state feedback 

controller for the system, what is the system now, my system is: x dot is Ax plus Bu plus 

f x plus B h1 x plus B h2 u. This is my system which my original system is simply sigmaj 

Aj x plus Bj u sigma j equal to 1 to r. This is same as this quantity we said we 

approximated and then we found out the measure upper bound of effects h1 x and h2 u 



and then, we are saying that, the system will be stable if this u control input u is given by 

minus sigma j equal to 1 to r sigmaj gammaj B transpose B x t this is my control law and 

gammaj satisfies this particular condition where alpha h x j and alpha u and alpha m 

alpha f they are all disturbance measure as we define just recently. (Refer Slide Time: 

20:19)  
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 Now, this can be only valid if the two conditions are satisfied and that is alpha f is less 

than equal to lambdamin the minimum eigen value of Q and lambdamax is the maximum 

eigen value of P where, A transpose P PA is equal to minus 2Q. You know that is my A 

is nominal plant model and for a nominal plant model A, I can always find out AQ for 

such that, I have also P which satisfies A transpose P plus PA equal to minus 2Q and so 

given this P and Q the alphaf which is here, this alphaf is the induce norm.  

You see alphaf is the induce norm of A1j and this A1j is coming from our term Aj minus 

A this can be written as A1j plus A2j this is what we have shown earlier Aj minus A is A1j 

plus BA2j. So Aj minus A A1j plus so this A1j is the induce norm is alphaf means the 

maximum singular value A1j. This is the theorem and we will just prove this theorem 

again repeat what is this theorem implies that means, if I propose a control law u t where 

the gammaj satisfies this condition then, the system will be stable provided alphaf is less 



than this identity as well this identity is true. Now, consider the Lyapunov candidate v 

equal to x transpose Px this is the theorem one proving, we trying to prove the theorem 

one. Now, the time derivative of v is given by v dot is two x transpose is P x dot (Refer 

Slide Time: 23:13). 
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My x dot, as I have already told you is Ax Bu plus f x plus B h1 x plus B h2 u and u is we 

have already given u to be so u is we just define u is here this is our u and if I write down 

that u is sigma minus j equal to 1 to r sigmaj gammaj B transpose P x. This is my u so 

before I introduce u inside what I will do is that, this is my V dot is 2 x transpose P x dot 

and I can write this expression by introducing this x dot inside here. If I do that what I 

will get 2x transpose P x dot. So, there is A x so what I get is that 2 x transpose P A x so 

this two and we know that A transpose P plus P A is minus 2Q this combined with the 

knowledge that 2x transpose P A x this can be written as x transpose A transpose P plus P 

A x. You see that A transpose P plus PA is equal to minus T Q then, I can write 2x 

transpose P A x transpose A transpose P plus P A into x and this quantity is now minus 

2Q. We have already said that given a we achieve this A transpose P plus B transpose P 

A equal to minus 2Q if you can write. This writing that this first term 2x transpose P A x 

can be written as minus 2x transpose Q X, so, this is minus 2x transpose Q X, the first 

one. So, from x dot I took care of it AX. Now, let me take care of Bu so Bu is this 



quantity, so how do I write it is B u if I put it here, so 2x transpose P Bu, so 2x transpose 

P B and u has B transpose P x this one and the other quantity is that sigma j equal to 1 to 

r sigmaj gammaj. So because, we have already j inside so j we have k equal to 1 to r 

sigmak gammak, so this quantity is given by 2X transpose P B u and again we have 

multiplied here f x here x dot has also another component f s, so that is 2 x transpose P 

into f x. Similarly, B h1 x 2 transpose P B h1 x similarly 2 x transpose P B h2 u. So, all 

that here what we have done instead of x dot, we have replace this and we can write the 

equation like this. Here, further what we can do we can rewrite this term as kind of a 

using the properties of matrices that is x transpose Q x. It can be bounded by two 

quantities the lower bound is lambda minimum that means the minimum eigen values of 

Q x norm square and the upper bound is lambdamax singular value of lambda eigen value 

of Q norm square because, Q and P there are symmetric matrices. Hence, the singular 

value maximum singular value is same as maximum eigen value and therefore minus x 

transpose Q x, if I write this minus I can write minus x Q x transpose Q x is less than 

equal to minus lambdamin Q x norm square.  

For the symmetric positive definite matrix P that induces 2-norms is P norm is we can say 

induce norm is lambdamax P. So, this is my maximum value of P and further more if I 

look at this expression That this is not capital x this is small x bold x, x is a vector small 

x. So, x transpose P B x transpose P is 2 x transpose 2 x transpose P. This is not capital x. 

So, x transpose P B transpose B x is this quantity, this can be written as x transpose P B 

again x transpose P B transpose which is B transpose x. In this I can write this is a norm 

noun x transpose P B norm square, this is matrix theory. Taking all the relation to this 

account and using norm bounds on certain elements. We get, norm earlier V dot is this so 

using the norm bound using norm bound means this is less than this quantity. Similarly, 

we can find this is less than this quantity, this less than its norm bound; this is less than its 

own norm bound; this is less than own norm bound. 
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V dot can be written as a less than some quantity and that quantity is here V dot is less 

than minus 2 lambdamin Q x norm square. This is the norm bound of the second term; this 

is the norm bound of the third term; this is norm bound for the fourth term and this is 

norm bound of the fifth term, we have five terms. By putting that, this particular 

expression, so what we did is that, we first derived what is the direct derivative of 

Lyapunov function and then we expressed that in terms of norm bound using the sine less 

than equal to and then this particular quantity can be written as: minus 2 x bar transpose 

Q bar x bar where, x bar is this two quantity x norm and x transpose P B. This you can 

say one element and another element this x bar is a vector norm, this is first element and 

this is a second element and Q bar has four element q11 q12 q21 q22 where q11 is given by 

this quantity that is minimum eigen value of Q minus alpha f lambdamax of P the 

maximum eigen value of P. Similarly, q12 q21 is half of this quantity and q22 is this 

quantity and you may be wondering how we got this but, I will just explain to you in a 

very simple understand you can easily see that, I can now add all x norms square together 

so that, if r that you can see that, this x norm square if I take common, I get here two 

lambdamin 2 and 2 alpha x lambda x P. So, if I combine them I can get lambdamin Q 

minus alpha x lambda x and lambda alpha f lambdamax. This is my q11 so you see that, if I 

write this expression as this and I have taken 2 out, 2 is common here. So, if I take 2 

common out so I have also taken negative outside, so this becomes lambdamin Q minus 



alpha f lambdamax P which is this quantity q11 into so the point is that, you can easily see 

this quantity and with definition x bar and this and this is we can write out q11 x norm 

square plus q22 norm x transpose P B square and you can easily see q12 plus q21 x norm 

and x transpose P V.  

What you saw that, V dot is less than this five terms and I am trying to represent five 

terms in terms of minus 2 x bar transpose Q bar x bar. If I define x bar is this two terms 

vector of two terms and Q bar is vector matrix of 2 by 2 then, this x bar transpose Q bar x 

bar is this quantity q11 x bar x norm square q22 x transpose P V norm square plus q12 q21 

x norm into x transpose P V norm. So, you can easily see here that, obviously I have to 

find out this is x bar transpose Q bar x y is this quantity. So, minus 2 if I take common 

here, what I get is that easily by comparing the coefficient of qc q11 will be the total 

coefficient of x1 bar. That is lambdamin x minus alpha f lambdamax p which is here q11.  

q22 is the coefficient of x transpose P V norm square, so this is one term x transpose P V 

square and another term is x transpose P V square. If I take minus 2 common here I get 

here minus 2 common k equal to 1 to r k equal to 1 to r sigmak gammak sigmak gamma k. 

This is the first term and second term is here where, this is sigmaj alpha u j j is equal to 1 

and sigmak gammak k equal to 1 to r. So, this is q22 and then q12 plus q21 is the 

coefficients half x bar and x transpose P V you see that, this all one term. Since we have 

q12 and q21 the coefficient is simply j equal to 1 sigmaj alpha H x j, so this is my 

coefficient and I have two term, so I can easily do that by dividing them equally and 

making q12 equal to q21 so q12 to equal to q21 which is minus half because, here if I take 

minus 2 common I am getting minus half here minus j. So, minus half sigmaj alpha H x j 

equal to 1 to r, so I wish that you understood how we finally wrote V dot in terms of a 

quadratic function x transpose Q bar x bar and instead V dot what is the advantage of this 

is we can write V dot is x bar transpose Q bar then, if this is Q bar is positive definite if Q 

bar is positive definite since there is negative sign here, V dot is negative definite hence 

the system is stable. We can find the positive definite of Q bar using Sylvester criterion 

all principal minor should be positive. So, lambdamin Q minus alpha lambda x mean P is 

greater than zero and determinant of Q bar which is this quantity determinant of Q bar is 

greater than 0. So, this quantity the first minor for first alignment for this q11 actually, so 



this q11 has to be greater than 0, so this quantity gives you if you go back to theorem one 

this identity and by equating this identity determinant of Q bar has to be greater than 

zero.  
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Then by doing some manipulation Q bar; this is the Q bar quantity and then if satisfied, 

you get this quantities greater than this, comparing the coefficient both sides, you can 

write: gammak is greater than this for all k. The above equation gives constraint on the 

controller parameter for kth subsystem as the controller parameter is the positive one it 

results in the second constraint in theorem one which is gammak.  
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We actually prove that, the theorem is correct and in the controller I the salient points are: 

the linear system considered as a nominal plant, may not fire at all operating results as 

system is traversing from one point to another point x1 to xf x to xf. Then all the nominal 

plant, we have selected one of the system matrices a and b of specific system to be 

nominal plant. It may not fire all the time as it moves. Unmatched disturbance is measure 

for the entire fuzzy system considering the above fact controller II is designed such that, 

the nominal plant changes with the operating region thus reducing the norm bound on 

unmatched disturbance. What we are trying to say here in the controller this one this 

desired criteria before that we can implement the controller, the alphaf is less than 

lambdamin Q by lambdamax P because, this nominal plant is the norm bound on the 

nominal plant.  

Because, distance between the nominal plant and the actual plant where, the system rule 

is fire a specific rule is fired corresponding to that in a plant and this alphaf kind of 

measure distance measure between the nominal plant and actual fuzzy the plant 

associated with fuzzy rule that has been fired. Hence this condition becomes little too 

harsh. To make that relaxed what we are doing is we are now talking about second 

controller that, the nominal plant changes with the operating result. As operating zone 

changes so which ever rule is fired from that rule we take the plant if I have two rule fire 



so I consider each of them as a nominal plant and so what I am trying to do in the second 

controller that, let us think that two rules are fired: rule i and rule j. So, rule j is … rule i 

is x dot is Ai x plus Bi u and rule j is x dot is Aj x plus Bj u so this is i. In this second 

controller what we are aiming is that, we consider all of them to be nominal plant. This is 

my nominal plant and also this is my nominal plant, so I design a controller u around this 

plant and then the fuzzy blending of the controller for both the plants is the overall 

controller gain. That is the idea for second controller which we did not do for the first 

controller considering kth subsystem to the nominal plant the T-S fuzzy system can be 

written as this particular one where x dot t is represented around kth plant associated with 

the kth rule. Similarly, where we did the disturbance term, so Fk can be written has in 

terms of three disturbance term as we saw for the controller I. All the approaches are 

same only thing little bit difference will be there.  
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A controller problem given a set of r representative dynamics compute uk such that, each 

represented dynamics is locally stable so that, fuzzy blending of these individual actions 

defined as u makes T-S fuzzy model Lyapunov stable. That is what I said here, r 

represented dynamics mix two represented dynamics mix if two rules are fired or all rules 

can be fired actually in principle. That is why, r represented dynamics compute vk for 

each subsystem and then fuzzy blending of u k equal to 1 to r sigmak uk makes the T-S 



fuzzy model Lyapunov stable. This is the idea which comes from our the first class the 

last class we discussed and again the disturbance measure the way it has to be computed 

for h1k x t u t and fk x t.  
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Then theorem two the controller II is suppose that, Ak is the asymptotically stable and Pk 

is the positive definite matrix that is fine Ak transpose Pk plus PkAk is minus 2Qk for 

some symmetric positive representation Qk. Suppose also that alphafk is less than this 

quantity and alphau is less than one then the state feedback controller u t is equal to 

minus gamma k equal to 1 to r sigmak B transpose Pk x t where, gamma is greater than 

this quantity asymptotically stabilizes the uncertain fuzzy model. So, here you see that, 

this is called k equal to 1 to r sigmak B transpose Pk x t and this is called fuzzy blending 

of the controller where, we find the gamma has to be greater than for this system to be 

stable. We also relaxed the minimum condition that is required for implementing this 

controller where alphafk is the distance between kth plant and the corresponding jth plant 

which is also fired and normally the distance would be less. The proof is similar to the 

theorem one so I will not explain that in this class you can this is an exercise for you that, 

how this theorem can be proved an exercise. It is similar just like we moved to theorem 

one theorem two can be also proved.  
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This is our theorem two we define two controllers and the salient point difference 

between controller I and controller II: An arbitrary subsystem is selected as a nominal 

linear plant from the set of all linear subsystems. The nonlinear disturbance system at 

each operating point is computed derivation of actual dynamics from the selected 

nominal point. As the dynamics moves from one operating point to another operating 

point the disturbance also varies accordingly; whereas, in controller II, each linear 

subsystem is considered as a nominal plant. The disturbance is modeled for each nominal 

plant by considering the effects of its neighbor subsystems. The implementation 

constraint is relaxed in case of controller II.  
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This is our controller I where the structure is minus gamma B transpose P x gamma is 

given by this and this gamma makes this controller time varying the gain is time varying, 

x is my state so minus gamma B transpose P is the time variable quantity it is not a 

constant quantity because gamma is varying. In controller II if you look at here gamma is 

a constant quantity but here sigmai Pi makes this again variable quantity but, the design 

principle between Q1 controller I and controller II are different; whereas, the same 

principle of robust control has been used to design controller I and controller II.  
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This is our two link manipulator and this is our dynamics we have already discussed a lot 

about this. I will not discuss a lot about how we find a two link manipulator dynamics. 

Theta1 double dot and theta2 double dot these are the two link angular accelerations and 

tau1 tau2 minus v1 v2 where v1 is given by the quantity and v2 is given by this quantity 

and theta1 and theta2 are shoulder and elbow angle, tau1 and tau2 box applied to shoulder 

and elbow manipulator and these are the m11 m12 m21 and m22.  
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Here we do a little changes little transformation that is two link planar mechanism needs 

finite torque at x equal to 0 0 0. That means if I have a robot manipulator like this and if I 

want to keep this robot manipulator; this is my 0 0 0 position or due to gravity it will fall 

down so hangs at every joint; this joint and this joint (Refer Slide Time: 48:19) I have to 

keep some finite torque I have to apply so that the manipulator remains stable. But, you 

see that, other case the vertical position if I keep the manipulator here the torque required 

is zero. That is when the no torque requirement the torque is not require for balancing at 

vertical operating point. If I keep two link one above the other this is called vertical 

operating position which is state wise pie by 2 0 0 0 then, you see the system does not 

require at equilibrium in any control action. The control input if I assume my u is minus 

Kx so you see that, we will give zero input at origin and because it will give zero input 

around origin. If I define this as origin I require finite torque it is not possible but here, I 

require zero torque hence I can define this to be origin and I can implement u equal to 

minus Kx. To do that the origin is shifted to vertical upright position by co ordinate 

transformation phi1 is equal to pie by 2 minus theta1. So, theta1 has been transferred to 

theta phi1 by pie by 2 and we make this as the origin, this reversed.  
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Doing that transformation what we do so is we have this transformation and then the rule 

base: Considering the states as: x1 equal to phi1 x2 equal to phi1 dot this is transformed 



theta1 and transformed theta1 dot x3 is theta3 and x4 is theta2 dot, two did not change 

that. The system is linearized around the operating point with zero input both x1 x3 are 

fuzzified into seven equally specified reasons in range minus phi by six the operating 

point of the state x2 and x4 are always considered as 0. Thus we have 49 fuzzy rules and 

a linear subsystem corresponding to each rule. So, one rule is given as follows: this is just 

taking an example so we have 49 fuzzy rules you understand because what I am trying to 

do is that we are keeping here because we have 4 states.  

But what we are trying to do is that linearizing x2 and x4 we are always making a 0. So, 

hence x1 and x3 they are varying and x1 is fuzzy partition into seven as well as x3 is 

fuzzy partition into seven equally specified reasons. By doing that we have 49 rules, so if 

x is around 0 0 0 by linearizing using taylor series expansion you had x dot equal to this 

quantity A x plus v tau. Similarly, I can linearize using this dynamic I am giving this 

dynamics. I can use this dynamics to linearize and then I get this, so you can just do it 

given the plant model. Once done that, this is my linear subsystem around the equilibrium 

point around the vertical upright position.  
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Done that, you see that in the beginning I have to stabilize the nominal plant. To stabilize 

the nominal plant, we place the poles at minus 2 minus 3 minus 2 minus 3 and we got 



these are the state feedback. You can use any mat lab program or (52:14) formula or pole 

plus technique then you get this gain. So, for controller I upper norm bound is the 

disturbance alphahx is bound to be 23.3854 and for controller II the input matrix for rule 

one taken as common input matrix. The closed loop poles for all nominal subsystem are 

selected as minus 2 minus 3 minus 2 minus 3 minus 2 minus 3 and the preliminary 

feedback is given accordingly. Then maximum norm bound of matched state disturbance 

alphahx computed as 8.44536 this is for controller II and the constraint on parameter 

gamma is found to be greater than 27.9 and gamma is selected as 30.  
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Controllers are proposed for stabilization. To achieve to tracking those the overall control 

input tau is given as: tau is minus K x plus u where, minus K is the stabilizing control 

input and u equal to u1 and u2 is the tracking controller yet to be designed. We can easily 

design the stabilized fuzzy system dynamics has a form this particular form and we have 

to give now the tracking controller u1 u2 so that, it tracts any desired trajectory. The 

output equation y is my theta1 position and theta2 position and this using this equation the 

y double dot which is x2 dot and x4 dot if x1 dot and x4 dot by y then x2 dot and x4 dot 

you know that x2 is x1 dot and x4 is x3 dot. Using that principle I can write y double dot 

is a1y plus a2y dot plus bu where, a1 is given by the matrices given by a21 a22 and a41 a43 

a21 a22 a41 a43 a21 a23 a41 a43. Similarly, a2 is a24 a42 a44 and b is similarly here b21 b22 



b41 b42. So, let the decided output vector be yd and the error vector is defined as e equal 

to y minus yd.  
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]  

Then I can say u is this is my tracking control and if I design this tracking controller I get 

the closed loop error dynamics as this. If I take kp and kd and this is a stable dynamics 

and tracking is possible.  
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Two link manipulator trajectories tracking you can easily see that, desired trajectory and 

controller I and controller II they are very much following; whereas, this other one which 

is not following is actually proposed by Jack which is a fixed gain controller for T-S 

fuzzy model and it is performing very badly. Similarly here also at a tracking at this joint 

1 and this is joint 2. This joint 1 position tracking for both control one and control two is 

very good and here also for both controller I and controller II is very good. But, Jack 

which is we compare with another algorithm given by Jack as I said is not able to do 

properly.  
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Control input this is the control input tau1 and tau2 which is very smooth.  
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Controller parameter you see that, how the controller is varying at different operating 

zones theta1 theta2. If you see that is not a flat surface it is constant it is varying so 

variation in gain K11 controller II you see that, how it is varying over a range.  
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Performance comparison controller I RMS error is 0.016 and 0.049 and controller II 

0.013 and 0.036 the performance has been improved.  
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Similarly we can simulate the system for ball beam system. What is the ball beam system 

is, I have a beam and on this I place a ball and the ball like it is like this beam and I place 

a ball here and the ball will roll over the beam and the controller is that I do up and down 

this beam. That means this beam is made up or down such that, the ball always remains 

in the center point and this is the dynamics and for that also we have designed the 

controller. I will not go in details of this. You see that, this controller for ball beam 

system we could not implement controller I as well as Jack controller. We could 

implement only controller II because of the relaxation that this controller provided.  



Refer Slide Time (57: 25) 

 

This is called the relaxation and this was not satisfied for ball beam system whereas it is 

satisfied for controller II for ball beam system. None of the system satisfies the non beam 

system non bound for controller I. Hence, it cannot be implemented for the subsystem. 

What I am trying to show is I am trying to show you another system for which the 

controller I cannot be implemented but controller II can be implemented; control two 

satisfied norm bound condition. Hence, it can be implemented for the system.  
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You see that for ball position the desired and actual very perfect tracking and this is the 

tracking error. Similarly beam angle you see that and controller input.  
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Summary in this lecture, we have covered the following topics: T-S fuzzy model 

representations of nonlinear systems. T-S fuzzy model is represented as linear plants with 

nonlinear disturbance terms. Two variable gain controllers have been designed using 

robust control approach. Simulation results are represented for two nonlinear systems 

showing the comparison. For the references you can see that, we have two papers here, 

the first paper is Zak paper that is there in IEEE Transactions Fuzzy Systems in 1999. 

The second is our paper which is in IEEE Transaction Systems Man Cyber net in 2006 

which is called variable gain controller nonlinear system using T-S fuzzy model. Thank 

you very much. 


