Intelligent Systems and Control
Prof. Laxmidhar Behera
Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Module - 4 Lecture — 6
Fuzzy Model

This will be lecture six on fuzzy control. The topic that we will be discussing today is
linear controllers using T-S fuzzy model. In the last class, we discussed how to design
controllers for T-S fuzzy model when the input matrix is common for all subsystems.
Now, we will consider the generic T-S fuzzy model and how do we design linear

controllers for it.
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We will just revise our notion of T-S fuzzy model representation of nonlinear systems. ,
The approach of Controller design linear controller design. We will give two controllers
for this, stabilizing controller design robust controller approach; we will propose
controller I and as well as controller 11 - two different types of controller, simulation

results: two-link manipulator, ball beam system and summary.
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The T-S fuzzy model is expressed in terms of r fuzzy rules where ith fuzzy rules has the
following form: if x;t is F1 i and X,t is a F i and so on until nx,t is an F,l then x dot t is
ais Aix t plus Bju t. This is my ith fuzzy rule consisting of n states and each state is fuzzy
variable and where the fuzzy variable F;l is the jth fuzzy set of the ith rule. Then, the
fuzzy index mu, associated with the ith fuzzy rule is given by this (Refer Slide Time:
02:27) formula where mu; j x; is the membership function of the fuzzy set F; i. i equal to
ltor.
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Given an input output pair x t u t the fuzzy variable around this operating point is
constructed as the weighted average of the local model as x dot t equal to summation j
equal to 1 to r sigma i Ajx t plus Bju t. This is jth local model and with jth local model
associated membership function is actually sigma;, so sigma; is a normalized fuzzy index
associated with jth local model. The summation of such local model multiplied with
fuzzy index over j equal to 1 to r gives me the complete fuzzy dynamics in terms of T-S
fuzzy model. A T-S fuzzy model approximates a nonlinear system as a cluster of a linear
system. This is my linear system; this is my jth linear system, sigma; is the normalized
fuzzy index associated with jth linear system. When the cluster of such a linear system if
there are there, then if | fuzzy cluster these r number of linear systems then, | get the
approximation of a non linear system. The advantage of the fuzzy system is more
informative in terms of local dynamics because | can look at a nonlinear system in terms
of linear system. Dynamics is governed by subsystems fired at each operating point. In

this class we will talk about variable gain controller using single nominal plant.
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This is the first type of controller will be talking today and in this we expressed the fuzzy
systems as a linear system with non linear disturbance. Our fuzzy system which is x dot
sigma j equal to 1 to r sigma; Ajx plus Bju, this is my T-S fuzzy model approximation of
nonlinear system using T-S fuzzy model you can easily see that this has a very
convenient form. It looks as very convenient form easy to handle and | can write this as
AX plus Bu plus disturbance term. This is my disturbance term (Refer Slide Time: 05:43),
this is worst part | am saying here; express the fuzzy system is the linear system with
nonlinear disturbance. Then design a controller to stabilize in the linear system in the
presence of disturbance. The original plant was x dot is sigma; A;x plus Bju j equal to 1

to r. So, this is my original plant.
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I can always write this plant you see as: A x t plus B u t this is the nominal plant. Once |
separate from this as a nominal plant how do I write that this sigma; A; X in that | have to
subtract A x t which is here. So sigma; A; minus A x t, | subtract that and j equal to 1 to I.
Similarly, if | subtract b because, B;j is there | subtract b here. How can | do? You must
know sigma j equal to 1 to r sigma; A is A, because, j equal to 1 to r sigma j equal to 1.
You may worried that | should have only subtracted A outside no, this is one and this is
equal to A so | can subtract this quantity here. Similarly, about B so x dot t is written in
the particular form; this is my original dynamics; this can be written in this particular
form. This can be finally written A x t plus B ut F x t u t and this is my disturbance term
around this nominal plant where, A x t B u t is the linear system and F X t is a nonlinear
disturbance given by. | represent this nonlinear system in terms of three different
components. So, this is simply F xt B h; x t B h, ut. You can easily see that, Bxtutis
obviously taken into account of this. This one is actually B h, u t you can easily see that
this is a nonlinear term and that is given by B X, u t, we can express that. Similarly, these
two terms combined represents this one. If | say this is the second term this is my second
term. This term is represented by this. I wish that you understood what we are trying to
do my original plant was given by this particular thing x dot is sigma A;x plus Bju this
one | am representing this same dynamics as this. There is no difference between (Refer

Slide Time: 09:30) this and this. | am representing this whole thing as A x t plus B u t is



the first plant nominal plant and this F x t is disturbance and this has three component
which the first component here I is this one. Sigma; Bj minus B u t sigma; equal to 1 to r
and the second component is F x t plus B h; x t this component here. Always in
controller design whenever we say any disturbance, we are not interested in exact
represent of disturbance rather an upper bound. This is the principle of robust control; we
want to know the upper bound of this disturbance. That means if | am designing
controller for the worst case naturally the controller also will be a stable for the other

cases. This is the robust control design principle is design the controller for worst case.
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That is why we will represent first of all disturbance terms more elaborately, we will
define the upper bound. Let us see the first disturbance B h, u t the component one as |
said which is: sigma; B; minus u t j equal to 1 to r. We can write this equation as, | have
to write in terms of B here multiplied sigma; B; bar t u t and this B; bar is obviously such
that the b B; bar is v j minus v. This identity has to be satisfied, so B B; bar is B; minus B

Similarly, F x t plus B hy x t is this term, the second term, j equal to 1 to r sigma; A;
minus x t and then this can be written in terms of two. Looking at this you can easily
sigma;j A1 j x tis F x t and sigma Bj plus x t is | can take of B and I can write this as B h;
X t. So, here A; minus A has to be written in terms of Ay plus BAy where, the Ay;



represents the unmatched disturbance, unmatched means you see that, this disturbance is
not magnified by u, means this is not with there with the control input. This is matched
you see the b in to this and you see our normal plant is A x x dot is Ax plus Bu. So,
anything with B means you can say that, this term is like an excitation because anything
multiplied with B is kind of excitation to the system and this term is not with b. It is
separate term unmatched disturbance and this is matched disturbance means this is
disturbance excitation that is exciting system because, we say b is the control matrix. In

that sense, A1j is the unmatched disturbance and this is the matched disturbance.
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Now, we will talk about the control problem. The T-S fuzzy model approximates a
nonlinear system as a fuzzy cluster of r linear subsystems. Since each sub system is
linear, linear control theory can be applied to design fixed gain controller for each system
design fixing controller for each subsystem. Since the desired system output traverses a
specific trajectory system states traverse across different fuzzy zones. It is thus expected
that, the controller will be characterized by variable gain instead of fixed gain which |

have already discussed.

The control problem is given a T-S fuzzy model representation design a variable state
feedback controller u t equal to minus kx t where, k is the variable such that, the T-S



fuzzy model is Lyapunov stable. Here, the matrix k represents variable state feedback
gain it is not a constant gain as in case of a linear system. Now, we will be talking about
this disturbance measure. Since the nominal plant is linear while disturbance term is
nonlinear one can possibly solve the control problem using the principles of robust

control theory.
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For that the norm bounds of uncertainties have to be computed first. The norm bound of
unmatched state disturbance which is hix t. I will show you which is h; x t is 1 this one is
matched state disturbance. Matched state disturbance h; x t is alpha j you see h; x t we
have represented hy X tis this is hy x t. You can easily say sigma;j A, X t sigma j equal to
1tor. So that is what we have written here: hy X tis sigma; Az X t known from j equal to
1 to r overall norm. | can represent this particular term using a triangular in a quality as
less than equal to sigma; and this is the induced norm of Ay; is alpha h x j, alpha h X j
represent the maximum singular value of A, and the norm of x, x t separately. This is a
triangular in equality and what we are saying is that the kind of this disturbance is

represented in terms of a major disturbance which is less than this quantity.
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The norm bound of input disturbance is, which is h, u t you see h, u t given here is this
one and this sigma; bar B; bar u t. This was actually sigma; B;j bar u t j equal to 1 to r.
This can be written in triangular inequality as j equal to 1 to r sigma; and norm of B bar j
into u t norm and we can write now B bar j norm the maximum norm. | can put here the
maximum norm of induce norm of B bar j is alpha u j alpha u j is the norm of B bar j that
means this is maximum singular value of B bar j. This inequality gives a disturbance
measure for this quantity where we already know alpha u j, we know sigma;. Similarly,
the norm bound of unmatched state disturbance which is F x t the previous one is
unmatched. This is unmatched one F x t and F x t is sigma; Ay X t, so this whole norm
can be written as again less than equal to this Ay; alphas is norm of Ay induced second

norm Ag; this is alphas.

I wish that you have understood now what we have been talking about the disturbance
measure so once the disturbance measure | define, we will be now telling a theorem
which says that: if | design a state feedback controller, if | have a state feedback
controller for the system, what is the system now, my system is: x dot is Ax plus Bu plus
f x plus B hy x plus B hy u. This is my system which my original system is simply sigma;
Aj X plus Bj u sigma j equal to 1 to r. This is same as this quantity we said we

approximated and then we found out the measure upper bound of effects hy x and h, u



and then, we are saying that, the system will be stable if this u control input u is given by
minus sigma j equal to 1 to r sigma; gamma; B transpose B x t this is my control law and
gamma; satisfies this particular condition where alpha h x j and alpha u and alpha m
alpha f they are all disturbance measure as we define just recently. (Refer Slide Time:
20:19)
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Now, this can be only valid if the two conditions are satisfied and that is alpha f is less
than equal to lambdani, the minimum eigen value of Q and lambdamax is the maximum
eigen value of P where, A transpose P PA is equal to minus 2Q. You know that is my A
is nominal plant model and for a nominal plant model A, I can always find out AQ for
such that, I have also P which satisfies A transpose P plus PA equal to minus 2Q and so

given this P and Q the alphas which is here, this alphas is the induce norm.

You see alphas is the induce norm of Ay and this Ayj is coming from our term A; minus
A this can be written as Ay plus Ay; this is what we have shown earlier A; minus A is Ay;
plus BAyj. So A; minus A Ay plus so this A4j is the induce norm is alphas means the
maximum singular value Ajj. This is the theorem and we will just prove this theorem
again repeat what is this theorem implies that means, if | propose a control law u t where
the gamma; satisfies this condition then, the system will be stable provided alphas is less



than this identity as well this identity is true. Now, consider the Lyapunov candidate v
equal to x transpose Px this is the theorem one proving, we trying to prove the theorem
one. Now, the time derivative of v is given by v dot is two x transpose is P x dot (Refer
Slide Time: 23:13).
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My x dot, as | have already told you is Ax Bu plus f x plus B h; x plus B h, uand u is we
have already given u to be so u is we just define u is here this is our u and if | write down
that u is sigma minus j equal to 1 to r sigma; gamma; B transpose P X. This is my u so
before I introduce u inside what | will do is that, this is my V dot is 2 x transpose P x dot
and | can write this expression by introducing this x dot inside here. If | do that what |
will get 2x transpose P x dot. So, there is A x so what | get is that 2 x transpose P A X so
this two and we know that A transpose P plus P A is minus 2Q this combined with the
knowledge that 2x transpose P A x this can be written as x transpose A transpose P plus P
A X. You see that A transpose P plus PA is equal to minus T Q then, I can write 2x
transpose P A x transpose A transpose P plus P A into x and this quantity is now minus
2Q. We have already said that given a we achieve this A transpose P plus B transpose P
A equal to minus 2Q if you can write. This writing that this first term 2x transpose P A x
can be written as minus 2x transpose Q X, so, this is minus 2x transpose Q X, the first

one. So, from x dot | took care of it AX. Now, let me take care of Bu so Bu is this



quantity, so how do | write it is B u if | put it here, so 2x transpose P Bu, so 2x transpose
P B and u has B transpose P x this one and the other quantity is that sigma j equal to 1 to
r sigma; gamma;. So because, we have already j inside so j we have k equal to 1 to r
sigmax gammay, so this quantity is given by 2X transpose P B u and again we have
multiplied here f x here x dot has also another component f s, so that is 2 x transpose P
into f x. Similarly, B hy x 2 transpose P B h; x similarly 2 x transpose P B h; u. So, all
that here what we have done instead of x dot, we have replace this and we can write the
equation like this. Here, further what we can do we can rewrite this term as kind of a
using the properties of matrices that is x transpose Q x. It can be bounded by two
quantities the lower bound is lambda minimum that means the minimum eigen values of
Q x norm square and the upper bound is lambdamax singular value of lambda eigen value
of Q norm square because, Q and P there are symmetric matrices. Hence, the singular
value maximum singular value is same as maximum eigen value and therefore minus x
transpose Q X, if | write this minus | can write minus x Q x transpose Q X is less than

equal to minus lambdan,in Q X norm square.

For the symmetric positive definite matrix P that induces 2-norms is P norm is we can say
induce norm is lambdamax P. So, this is my maximum value of P and further more if |
look at this expression That this is not capital x this is small x bold x, x is a vector small
X. S0, X transpose P B x transpose P is 2 x transpose 2 x transpose P. This is not capital x.
So, x transpose P B transpose B x is this quantity, this can be written as x transpose P B
again x transpose P B transpose which is B transpose x. In this | can write this is a norm
noun x transpose P B norm square, this is matrix theory. Taking all the relation to this
account and using norm bounds on certain elements. We get, norm earlier V dot is this so
using the norm bound using norm bound means this is less than this quantity. Similarly,
we can find this is less than this quantity, this less than its norm bound,; this is less than its

own norm bound:; this is less than own norm bound.
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V dot can be written as a less than some quantity and that quantity is here V dot is less
than minus 2 lambdamin Q X norm square. This is the norm bound of the second term; this
is the norm bound of the third term; this is norm bound for the fourth term and this is
norm bound of the fifth term, we have five terms. By putting that, this particular
expression, so what we did is that, we first derived what is the direct derivative of
Lyapunov function and then we expressed that in terms of norm bound using the sine less
than equal to and then this particular quantity can be written as: minus 2 X bar transpose
Q bar x bar where, x bar is this two quantity x norm and x transpose P B. This you can
say one element and another element this x bar is a vector norm, this is first element and
this is a second element and Q bar has four element qi11 12 21 g22 Where g1 is given by
this quantity that is minimum eigen value of Q minus alpha f lambdan.x of P the
maximum eigen value of P. Similarly, qi2 Q21 is half of this quantity and g, is this
quantity and you may be wondering how we got this but, I will just explain to you in a
very simple understand you can easily see that, I can now add all x norms square together
so that, if r that you can see that, this x norm square if | take common, | get here two
lambdanmi, 2 and 2 alpha x lambda x P. So, if I combine them | can get lambdamin Q
minus alpha x lambda x and lambda alpha f lambdanax. This is my q11 so you see that, if |
write this expression as this and | have taken 2 out, 2 is common here. So, if | take 2

common out so | have also taken negative outside, so this becomes lambdami, Q minus



alpha f lambdamax P which is this quantity qi; into so the point is that, you can easily see
this quantity and with definition x bar and this and this is we can write out ;1 X norm
square plus g2, norm x transpose P B square and you can easily see g2 plus g1 X norm

and x transpose P V.

What you saw that, V dot is less than this five terms and | am trying to represent five
terms in terms of minus 2 x bar transpose Q bar x bar. If | define x bar is this two terms
vector of two terms and Q bar is vector matrix of 2 by 2 then, this x bar transpose Q bar x
bar is this quantity g1 X bar X norm square gz, X transpose P VV norm square plus qi2 g21
X norm into x transpose P V norm. So, you can easily see here that, obviously | have to
find out this is x bar transpose Q bar x y is this quantity. So, minus 2 if | take common
here, what | get is that easily by comparing the coefficient of g. qi1 will be the total

coefficient of x; bar. That is lambdami, x minus alpha f lambdana p which is here q1;.

Q22 Is the coefficient of x transpose P VV norm square, so this is one term x transpose P V
square and another term is x transpose P V square. If | take minus 2 common here | get
here minus 2 common k equal to 1 to r k equal to 1 to r sigmax gammay sigmayx gamma K.
This is the first term and second term is here where, this is sigma; alpha u j j is equal to 1
and sigmayx gammag k equal to 1 to r. So, this is g2 and then qi» plus g2; is the
coefficients half x bar and x transpose P V you see that, this all one term. Since we have
g2 and Qa1 the coefficient is simply j equal to 1 sigma; alpha H x j, so this is my
coefficient and | have two term, so | can easily do that by dividing them equally and
making g1 equal to gz S0 qi2 to equal to g1 which is minus half because, here if | take
minus 2 common | am getting minus half here minus j. So, minus half sigma; alpha H x j
equal to 1 to r, so | wish that you understood how we finally wrote V dot in terms of a
quadratic function x transpose Q bar x bar and instead V dot what is the advantage of this
is we can write V dot is x bar transpose Q bar then, if this is Q bar is positive definite if Q
bar is positive definite since there is negative sign here, V dot is negative definite hence
the system is stable. We can find the positive definite of Q bar using Sylvester criterion
all principal minor should be positive. So, lambdami, Q minus alpha lambda x mean P is
greater than zero and determinant of Q bar which is this quantity determinant of Q bar is

greater than 0. So, this quantity the first minor for first alignment for this qi; actually, so



this g11 has to be greater than 0, so this quantity gives you if you go back to theorem one
this identity and by equating this identity determinant of Q bar has to be greater than

Zero.
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Then by doing some manipulation Q bar; this is the Q bar quantity and then if satisfied,
you get this quantities greater than this, comparing the coefficient both sides, you can
write: gammay is greater than this for all k. The above equation gives constraint on the
controller parameter for kth subsystem as the controller parameter is the positive one it

results in the second constraint in theorem one which is gammay.
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We actually prove that, the theorem is correct and in the controller | the salient points are:
the linear system considered as a nominal plant, may not fire at all operating results as
system is traversing from one point to another point x; to X¢ X to X¢. Then all the nominal
plant, we have selected one of the system matrices a and b of specific system to be
nominal plant. It may not fire all the time as it moves. Unmatched disturbance is measure
for the entire fuzzy system considering the above fact controller Il is designed such that,
the nominal plant changes with the operating region thus reducing the norm bound on
unmatched disturbance. What we are trying to say here in the controller this one this
desired criteria before that we can implement the controller, the alphas is less than
lambdamin, Q by lambdam.x P because, this nominal plant is the norm bound on the

nominal plant.

Because, distance between the nominal plant and the actual plant where, the system rule
is fire a specific rule is fired corresponding to that in a plant and this alphas kind of
measure distance measure between the nominal plant and actual fuzzy the plant
associated with fuzzy rule that has been fired. Hence this condition becomes little too
harsh. To make that relaxed what we are doing is we are now talking about second
controller that, the nominal plant changes with the operating result. As operating zone

changes so which ever rule is fired from that rule we take the plant if I have two rule fire



so | consider each of them as a nominal plant and so what | am trying to do in the second
controller that, let us think that two rules are fired: rule i and rule j. So, rule jis ... rule i
is x dot is Aj x plus B; u and rule j is x dot is Aj x plus Bj u so this is i. In this second
controller what we are aiming is that, we consider all of them to be nominal plant. This is
my nominal plant and also this is my nominal plant, so I design a controller u around this
plant and then the fuzzy blending of the controller for both the plants is the overall
controller gain. That is the idea for second controller which we did not do for the first
controller considering kth subsystem to the nominal plant the T-S fuzzy system can be
written as this particular one where x dot t is represented around kth plant associated with
the kth rule. Similarly, where we did the disturbance term, so Fy can be written has in
terms of three disturbance term as we saw for the controller 1. All the approaches are

same only thing little bit difference will be there.
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A controller problem given a set of r representative dynamics compute uy such that, each
represented dynamics is locally stable so that, fuzzy blending of these individual actions
defined as u makes T-S fuzzy model Lyapunov stable. That is what | said here, r
represented dynamics mix two represented dynamics mix if two rules are fired or all rules
can be fired actually in principle. That is why, r represented dynamics compute vy for

each subsystem and then fuzzy blending of u k equal to 1 to r sigmag ux makes the T-S



fuzzy model Lyapunov stable. This is the idea which comes from our the first class the
last class we discussed and again the disturbance measure the way it has to be computed

forhy xtutand fg xt.
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Then theorem two the controller Il is suppose that, Ak is the asymptotically stable and Py
is the positive definite matrix that is fine Ay transpose Py plus PcAx is minus 2Qy for
some symmetric positive representation Q. Suppose also that alphag is less than this
quantity and alpha, is less than one then the state feedback controller u t is equal to
minus gamma k equal to 1 to r sigmay B transpose Py x t where, gamma is greater than
this quantity asymptotically stabilizes the uncertain fuzzy model. So, here you see that,
this is called k equal to 1 to r sigmay B transpose Py x t and this is called fuzzy blending
of the controller where, we find the gamma has to be greater than for this system to be
stable. We also relaxed the minimum condition that is required for implementing this
controller where alphas is the distance between kth plant and the corresponding jth plant
which is also fired and normally the distance would be less. The proof is similar to the
theorem one so | will not explain that in this class you can this is an exercise for you that,
how this theorem can be proved an exercise. It is similar just like we moved to theorem

one theorem two can be also proved.
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This is our theorem two we define two controllers and the salient point difference
between controller | and controller 11: An arbitrary subsystem is selected as a hominal
linear plant from the set of all linear subsystems. The nonlinear disturbance system at
each operating point is computed derivation of actual dynamics from the selected
nominal point. As the dynamics moves from one operating point to another operating
point the disturbance also varies accordingly; whereas, in controller I, each linear
subsystem is considered as a nominal plant. The disturbance is modeled for each nominal
plant by considering the effects of its neighbor subsystems. The implementation

constraint is relaxed in case of controller II.
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This is our controller I where the structure is minus gamma B transpose P x gamma is
given by this and this gamma makes this controller time varying the gain is time varying,
X IS my state so minus gamma B transpose P is the time variable quantity it is not a
constant quantity because gamma is varying. In controller 11 if you look at here gamma is
a constant quantity but here sigma; P; makes this again variable quantity but, the design
principle between Q; controller 1 and controller Il are different; whereas, the same

principle of robust control has been used to design controller 1 and controller 11.
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This is our two link manipulator and this is our dynamics we have already discussed a lot
about this. I will not discuss a lot about how we find a two link manipulator dynamics.
Theta; double dot and theta, double dot these are the two link angular accelerations and
tau; tau, minus vi v, where vy is given by the quantity and v, is given by this quantity
and theta; and theta, are shoulder and elbow angle, tau; and tau, box applied to shoulder

and elbow manipulator and these are the my; mi2 my; and mo,.
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Here we do a little changes little transformation that is two link planar mechanism needs
finite torque at x equal to 0 0 0. That means if | have a robot manipulator like this and if |
want to keep this robot manipulator; this is my 0 0 0 position or due to gravity it will fall
down so hangs at every joint; this joint and this joint (Refer Slide Time: 48:19) | have to
keep some finite torque | have to apply so that the manipulator remains stable. But, you
see that, other case the vertical position if | keep the manipulator here the torque required
is zero. That is when the no torque requirement the torque is not require for balancing at
vertical operating point. If | keep two link one above the other this is called vertical
operating position which is state wise pie by 2 0 0 0 then, you see the system does not
require at equilibrium in any control action. The control input if I assume my u is minus
Kx so you see that, we will give zero input at origin and because it will give zero input
around origin. If I define this as origin | require finite torque it is not possible but here, I
require zero torque hence | can define this to be origin and | can implement u equal to
minus K. To do that the origin is shifted to vertical upright position by co ordinate
transformation phi; is equal to pie by 2 minus theta;. So, theta; has been transferred to

theta phiy by pie by 2 and we make this as the origin, this reversed.
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Doing that transformation what we do so is we have this transformation and then the rule

base: Considering the states as: x; equal to phiy x, equal to phi; dot this is transformed



theta; and transformed theta; dot X3 is thetas and x4 is theta, dot, two did not change
that. The system is linearized around the operating point with zero input both x; x5 are
fuzzified into seven equally specified reasons in range minus phi by six the operating
point of the state x, and x4 are always considered as 0. Thus we have 49 fuzzy rules and
a linear subsystem corresponding to each rule. So, one rule is given as follows: this is just
taking an example so we have 49 fuzzy rules you understand because what | am trying to

do is that we are keeping here because we have 4 states.

But what we are trying to do is that linearizing x, and x4 we are always making a 0. So,
hence x; and x5 they are varying and x; is fuzzy partition into seven as well as X3 is
fuzzy partition into seven equally specified reasons. By doing that we have 49 rules, so if
x is around 0 0 O by linearizing using taylor series expansion you had x dot equal to this
quantity A x plus v tau. Similarly, | can linearize using this dynamic | am giving this
dynamics. | can use this dynamics to linearize and then | get this, so you can just do it
given the plant model. Once done that, this is my linear subsystem around the equilibrium

point around the vertical upright position.
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Done that, you see that in the beginning | have to stabilize the nominal plant. To stabilize

the nominal plant, we place the poles at minus 2 minus 3 minus 2 minus 3 and we got



these are the state feedback. You can use any mat lab program or (52:14) formula or pole
plus technique then you get this gain. So, for controller I upper norm bound is the
disturbance alphany is bound to be 23.3854 and for controller 11 the input matrix for rule
one taken as common input matrix. The closed loop poles for all nominal subsystem are
selected as minus 2 minus 3 minus 2 minus 3 minus 2 minus 3 and the preliminary
feedback is given accordingly. Then maximum norm bound of matched state disturbance
alphapx computed as 8.44536 this is for controller Il and the constraint on parameter

gamma is found to be greater than 27.9 and gamma is selected as 30.
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Controllers are proposed for stabilization. To achieve to tracking those the overall control
input tau is given as: tau is minus K x plus u where, minus K is the stabilizing control
input and u equal to u; and u, is the tracking controller yet to be designed. We can easily
design the stabilized fuzzy system dynamics has a form this particular form and we have
to give now the tracking controller u; u, so that, it tracts any desired trajectory. The
output equation y is my theta; position and theta, position and this using this equation the
y double dot which is x, dot and x4 dot if x; dot and x4 dot by y then x, dot and x4 dot
you know that X is x5 dot and X4 Is X3 dot. Using that principle | can write y double dot
is a1y plus ayy dot plus bu where, a; is given by the matrices given by az; az; and as; ass

ap1 Az A1 Q43 Q21 Apz As1 Agz. Similarly, a, is az as2 ag4 and b is similarly here by; by,



b1 b42. SO, let the decided output vector be y4 and the error vector is defined as e equal
to y minus yyg.
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Then | can say u is this is my tracking control and if I design this tracking controller | get
the closed loop error dynamics as this. If | take k, and kg and this is a stable dynamics
and tracking is possible.
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Two link manipulator trajectories tracking you can easily see that, desired trajectory and
controller I and controller 11 they are very much following; whereas, this other one which
is not following is actually proposed by Jack which is a fixed gain controller for T-S
fuzzy model and it is performing very badly. Similarly here also at a tracking at this joint
1 and this is joint 2. This joint 1 position tracking for both control one and control two is
very good and here also for both controller I and controller 11 is very good. But, Jack

which is we compare with another algorithm given by Jack as | said is not able to do

properly.

(Refer Slide Time: 55:43)
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Control input this is the control input tau; and tau, which is very smooth.
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Controller parameter you see that, how the controller is varying at different operating
zones theta; theta,. If you see that is not a flat surface it is constant it is varying so

variation in gain Ky; controller Il you see that, how it is varying over a range.
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Performance comparison controller I RMS error is 0.016 and 0.049 and controller II

0.013 and 0.036 the performance has been improved.
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Similarly we can simulate the system for ball beam system. What is the ball beam system
is, | have a beam and on this | place a ball and the ball like it is like this beam and | place
a ball here and the ball will roll over the beam and the controller is that | do up and down
this beam. That means this beam is made up or down such that, the ball always remains
in the center point and this is the dynamics and for that also we have designed the
controller. 1 will not go in details of this. You see that, this controller for ball beam
system we could not implement controller 1 as well as Jack controller. We could

implement only controller Il because of the relaxation that this controller provided.
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This is called the relaxation and this was not satisfied for ball beam system whereas it is
satisfied for controller Il for ball beam system. None of the system satisfies the non beam
system non bound for controller 1. Hence, it cannot be implemented for the subsystem.
What | am trying to show is | am trying to show you another system for which the
controller I cannot be implemented but controller Il can be implemented; control two

satisfied norm bound condition. Hence, it can be implemented for the system.
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You see that for ball position the desired and actual very perfect tracking and this is the

tracking error. Similarly beam angle you see that and controller input.
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Summary in this lecture, we have covered the following topics: T-S fuzzy model
representations of nonlinear systems. T-S fuzzy model is represented as linear plants with
nonlinear disturbance terms. Two variable gain controllers have been designed using
robust control approach. Simulation results are represented for two nonlinear systems
showing the comparison. For the references you can see that, we have two papers here,
the first paper is Zak paper that is there in IEEE Transactions Fuzzy Systems in 1999.
The second is our paper which is in IEEE Transaction Systems Man Cyber net in 2006
which is called variable gain controller nonlinear system using T-S fuzzy model. Thank

you very much.



