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Module — 4 Lecture -4

Fuzzy Lyapunov controller: Computing with words

Fuzzy Lyapunov controller computing with words, this is the lecture 4 of this module 4
on fuzzy control. As | said in the last class that given the mamdani type of fuzzy logic

controller, the membership functions are optimized using genetic algorithms.

But the most important aspect of mamdani type of controller is to generate a proper rule
base. Here, of course you can also generate rule base using genetic algorithm but today,
we will be learning how to generate a rule base using the concept of Lyapunov function.

So this is the topic today, fuzzy Lyapunov controller computing with words.
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Topics to be covered today are classical Lyapunov synthesis; Fuzzy Lyapunov synthesis;
rotational proof mass actuator system, this is the physical system on which you will be

testing our algorithm; construction of rule base for RTAC, the short form is RTAC here,



RTAC using fuzzy Lyapunov synthesis: regulation problem; controller design for
regulation; construction of rule base for RTAC using fuzzy Lyapunov synthesis: tracking

problem; controller design for tracking; and finally, simulation results.
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Fuzzy Lyapunov synthesis: an introduction- the classical Lyapunov synthesis method is
extended to the domain of computing with words. This new approach is used to design
fuzzy controller. Assuming minimal knowledge about the plant be controlled, the
proposed method enables us to systematically derive the fuzzy rules that constitute the
rule base of the controller. The objective is in this method, how do we obtain fuzzy rule
base given the system, some prior in knowledge of the system or approximate model of

the system, how do we generate a rule base?

This approach is demonstrated by designing Mamdani-type and Takagi-Sugeno-type

fuzzy controllers for nonlinear plants.
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The most difficult aspect in the design of fuzzy controllers is the construction of the rule
base. Fuzzy Lyapunov synthesis is based on extending the classical Lyapunov synthesis
method to design of fuzzy controllers. It enables to systematically derive the fuzzy rule
base. Based on classical Lyapunov synthesis method, we construct a Lyapunov function
candidate V and then determine the conditions required to make it a Lyapunov function
of the closed loop system. Since we assume fuzzy knowledge about the plant to be

controlled, the derived conditions can be stated as fuzzy if then rules.
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So now let us go to the system description. Consider the following single-input, single-
output system. x dot equal to f x, u, y is h x, u where f and h are nonlinear functions.
This is n dimensional state space, so f is a n dimensional vector; and u and y they are the
input and outputs of the system respectively; x n dimensional system x; this is X; X, until
Xn, R" is the state vector of the system. The control objective is to stabilize the system

around some operating point Xo, Without loss of generality we may assume X, equal to 0.
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So Lyapunov stability theory which we have been talking again and again, 1 am just
revisiting that, the system x dot equal to f x, u is Lyapunov stable around the operating
point x equal to 0. If there exists a continuously differentiable function V x which is
known as Lyapunov function such that the following requirements are met. V x is
positive definite in the neighborhood of 0 and v dot x is negative definite in the
neighborhood of 0. If we can ensure that then the system is Lyapunov stable.
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So fuzzy Lyapunov synthesis- assume that the exact system model is unknown but we do
have some partial fuzzy knowledge about the system. As in classical case we consider a
Lyapunov function candidate V, derive an expression for its derivative and then obtain
the fuzzy rule base for the control input u, so that v dot is negative definite. Based on the
rule base, a fuzzy controller u is obtained using general inference mechanism and

defuzzification method.

What is the objective here is that we prescribe a Lyapunov function for the system and
then we construct, find the right derivative of the Lyapunov function, substitute the
dynamics of the system in that and now we create a rule base in such a way this

Lyapunov function is qualitatively negative definite, not quantitatively. So what is fuzzy



Lyapunov synthesis is we are using a qualitative negative definite of v dot. This is the
difference qualitative negative definiteness of v dot, instead of a quantitative negative.

The actual Lyapunov function approach to test the stability of the system is to find
quantitavely v dot is negative definite. But now we are talking about a concept

qualitatively, if we can make v dot to be negative definite.
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FLC structures of the rule base, so normal we have two kinds of we can formulate any
fuzzy logic controller of mamdani type. We can have two categories of fuzzy rule base.
The representation 1 is if x5 is A; and or X, is A, and or X, is A, then u is B where A;’s
and B are linguistic variables large or small. So x; X2 and x, they are either state

variables or error in state variables.

Representation 2 is if x; is A; and or X, is A, and so on or X, is A, then u is a definite
function here the B, u is B are the fuzzy linguistic variable where in the second
representation u is an exact function. u is f(X1 Xz ... X,) where f is a linear function; this
can be also nonlinear function, f can be also linear function here, normally is a linear

function.
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So fuzzy Lyapunov synthesis: motivation- what is the motivation here? In a general fuzzy
logic controller, the control problem is to design a fuzzy controller using information

based on some physical intuition even if the exact system dynamics is not known.

But the main problem is constructing the rule base for the controller. Rule base is
obtained using the notion of classical PD or PID controller in general for mamdani type
of fuzzy logic controller. But in a fuzzy Lyapunov synthesis a rule base is obtained using
the notion of Lyapunov stability. So this is the prime motivation. | can tell you how
normally we do a fuzzy rule base, if this is my general characteristic of a second order
system. So what | would like, when | describe this response, this is my t, this is my y
(Refer Slide Time: 09:29), my output. So you see that if I am here at this zone, so at this

zone | can say error, error at this zone is very large.

I would like when | am here | should come very fast to this line, which is my desired
command signal 1.0. What | will say, when my error is small and the derivative of error,
the rate of change in error is either small or large whatever it is, when it is small I would
like it to come fast. My controller must be very large. | can write for this kind of PD or
PID type of controller the rule base is if e is small in this zone and e dot is small or large

then u is large. By simple commonsense | can write.



Similarly, if I say e is small here and if e is small in this zone and e dot is also small then
u is small because | have already reached almost | am reaching the set point. But if e is
small and e dot is large, so obviously I must reduce the control action, so that is, in that
case | have to say u is negative small, instead of positive small. Like that the normal rule

base is done in case of PD or PID type of controller.

But today we will see a very systematic method of generating rule base. Actually this
entire class today is to let you know or we will learn how to generate this rule base
systematically using Lyapunov stability theory. Before that, | will just explain to you one
physical system on which will be applying this thing, this is called rotational translational
proof mass actuator.
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You can actually see this is my rigid surface to which a cart is bound using a spring.
Inside the cart there is the pendulum which rotates by the action of the torque and the
pendulum link length is | and there is an external disturbance f that is applied on the cart.

See the objective is to control this pendulum the way we like.

I may like to keep this pendulum at an angle theta or vertically downward vertically

upward, whatever is the desired thing or it has to follow certain trajectory, so whatever



may be the requirement this is a typical control system because it is nonlinear and also it
a bench mark problem.

The RTAC system, consider the following example rotation translational proof mass
actuator RTAC. The RTAC system combines a translational oscillator with a rotational
proof mass actuator. This particular portion now oscillates by the action of the spring. So
this called combines a transitional oscillator. This oscillates in the x direction with a
rotational proof mass actuator. This is rotation. The oscillator consists of a cart connected
to fixed wall by a linear spring. The cart is constrained to move in the x-direction only.
The proof mass actuator is attached to the cart and is controlled by an applied torque N. F
is disturbance force that perturbs the cart. F is a disturbance force that gives such a

disturbance input.
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The cart position and actual angle is x. and theta respectively, that is the cart which you
saw here this is X. and this theta already which have already shown. Mass of the cart is
given 1.36 Kg; proof mass is 0.096 that is the mass of this cart is M and proof mass is
small m. So small m is 0.096 Kg; distance of the link length of the pendulum is 0.059
meter; Moment of inertia of the proof mass is | is 0.00022 Kg meter square; Spring
constant k is given 186.3 Newton per meter.



Now we define some normalized variables which is zeta is X root over M plus m upon |
plus mL square; tau is t k upon M plus m; and u is this is my actual input and M plus m
upon k into 1 minus mL square; K is the spring constant; and omega is 1 upon k M plus

m by I plus mL square F.
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Given that, you see that we can write, we can derive the dynamics of the RTAC system,
you can easily see that it has four states. x; is zeta is actually represented x. normalized,;
this is X dot; the velocity of the cart normalized which is x;; and theta is the pendulum
angle xs; theta dot is the angular velocity of the pendulum which is x4; and control
variable is u which is also normalized; n the torque; and disturbance is w, so this one w is

the disturbance.

If we look at x dot this is the fourth order system and the expressions are x dot equal to
X2, the advantage is that we have not kept any parameters associated, this is simplified X2,
you can see x dot is in this, this | can say, this is simply a function of x, this is another

function of x may be g x, and this is d x.

You can say this is a function vector with four dimensions, with function vector with
another four dimensions and another function vector with four dimensions. You can see

that system is highly nonlinear if silent is defined as mL upon root over | plus mL square



into M plus m, you can easily derive this equation, | will not discuss further on this. All
that I am trying to tell you is that RTAC system has a nonlinear dynamics which has type
x dot is f x plus g x plus g x into u plus d x into w, where w is the external disturbance; u

is actual control input.
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The fuzzy Lyapunov synthesis of RTAC- the system dynamics now can be written as, as
we said x dot is f x plus g x u plus d x w. Without knowing f x, g x and d x following
linguistic statements can be formulated. Even if | do not know what is f x g x d x exactly,
I can still write the state of the system is described by x; the cart’s position; x, equal to
X1 dot; and X3 is actuator’s angle; and of course X4 is X3 dot. That is X3 is theta, X4 is theta
dot, x; is X¢ normalized, x; is X normalized and x; is Xy dot. This is another important
thing that | can easily tell you, x4 dot is proportional to the control input u that you can

easily see here.
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Because you see that this is the my pendulum and if | assume that there is no friction and
other things here, then my pendulum, the acceleration of this pendulum, angular
acceleration obviously is directly proportional to the torque applied N and since my input
u is normalized value of N and hence | can always say that x4 dot, the acceleration of the
pendulum is proportional to the control input u.

Similarly, x, dot the velocity of the cart is proportional to the negative of x; you can
easily see that because the spring is connected so it is like this, spring and this is the
block mass. You can see that x, dot the velocity is always, because of spring action, it
will be always in this direction the velocity. If I move x in this direction, x, the position
in this direction, the velocity is in the negative direction. So X, dot in this is proportional

to minus x4
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The control objective is to find u such that the system is stable around x equal to 0. This
is the regulation problem. Let V is half x; square plus x, square plus X3 square plus X4
square be the Lyapunov function candidate. Then using S-1, the assumption that we have
four states V dot is X1, X3 dot and x; dot is X, Similarly, this is 2x, x, dot, so x, X, dot
plus x3 X3 dot and x3 dot is x4 and similarly, this is X4 into x4 dot. Before this is the
second step, the first step V dot if you look at here is x; x; dot plus X, X, dot plus X3 X3
dot plus x4 X4 dot, because we know already that x, is x; dot and X4 is X3 dot, so this

second step comes.

Now you see that, we have already said x, dot is proportional to minus x;. Obviously,
qualitatively if I put x, dot is minus X;, these two terms qualitatively cancels off, where
as only these two terms remain, X3 X4 is remained and | know already that x, dot is

proportional to u, so instead of x4 dot | put u.

You see that, what is the advantage here is that 1 am designing a rule base but while
designing rule base I am not utilizing the system dynamics. | am finding how to what V
dot is equal to x3 x4 plus x4u. While finding this equation, 1 am not using the system

dynamics. This is very important, system dynamics is not used.



What is used is the simple physics of the system is that, here we use X, equal to x; dot
obviously the velocity x, and x; is positioned and similarly, here we use the notion that
the X4 is X3 dot, SO x4 is theta dot and X3 is theta, which is very simple and also we used

other rule from the systemic connections.

We know already that the acceleration of the pendulum is proportional to the input and x;
dot is proportional to minus x;, just by constructional feature. Using these two rules, we
found V dot to be qualitatively x5 x4 plus X4 into u. Now, even if you do not know the
system dynamics, looking at this figure we can create a rule base for which this V dot can

be qualitatively negative definite.

So classical Lyapunov synthesis have design of view that will guarantee V dot is negative
definite. Same idea is applicable here but with the domain of computing with words
means, this is qualitatively not quantitative. What we are trying to do is we are applying
Lyapunov synthesis to the system dynamics partially known system dynamics for
generation of rule base.
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Now we take the example, when | say so V derived V dot equal to approximately
qualititatively x3 X4 plus X4 into u. This can be made negative definite if the rule base is
formed as follows. You see that | will take care that you understand is because this is



what you should learn how do generate a rule base, you see X3 is negative. If X3 is
negative and x4 is also negative, that means this quantity is positive. Now X, is negative
and if u would be come negative then this whole thing is positive, so no way you can
make the system is stable. Obviously, the rule base should be u to be positive, that is the

rule.

I repeat if x3 is negative and X4 is negative, in that case X3 X4 is positive, this implies x4
into u should be negative to make these two quantities to be qualitatively negative. So X4
u should be negative, X4 is already known as negative, so u has to be positive. This is first
rule. If x5 is negative and x4 is negative then u is positive. Similarly, if x3 is positive and
X4 IS positive. X3 is positive and X4 is positive means again xs and X4 is positive in this
case. And this implies again x4 and u should be negative and since x4 is positive so u has
to be negative which is negative. The second rule is if X3 is positive and X4 is positive

then u is negative. | hope you are able to follow what | am presenting you.

Now let us see the other possible combination. If x5 is negative and x4 is positive, in this
case X3 X4 IS negative. If X3 X4 is negative | must ensure that x4 u, since it already negative
this should be 0 is sufficient, if | make x4 is 0 because X3 X4 is negative is very good. This
is simple because there are other ways also is X3 X4 is negative | can say x4 u is also

negative much better. But this is simplest one X4,

X3 IS negative and X4 is positive then u is 0, you can also think another possibility,
because x4 is positive u is negative, this is also possible. Similarly if X3 is positive and X4
is negative then again x3 X4 in this case X3 and X4 Sorry Xz negative, Xz is positive and X4
IS negative, X3 X4 IS negative. So this implies you can make x4 u is 0 or x4 u again
negative. Since X4 is negative so u is 0 or u is positive, but in this case we have only

considered this 0.

I wish this is the most important part of this lecture, first of all using partial knowledge of
the system and without taking the help of system dynamics we first of all found out the
rate derivative of the Lyapunov function is approximately qualitatively equal to X3 X4
plus x4 u and using this expression we computed set of rule base such that V dot can be

negative definite.



What we have not until now found out in this is the parameters negative, what are the
parameter associated with negative. 1 am assuming this fuzzy linguistic variable to be
Gaussian functions, which we have taken in this case. Gaussian function is normally
represented by two parameters- one is mean and another is sigma. If | say sigma is 1 then
these linguistic variables they are all represented by one parameter that is the mean and
the u is positive or negative that we have defined here, we have taken them to be single

term.
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Standard Gaussian membership functions are used to defined the linguistic terms in the
rule base as mu positive of x is e to the power minus x minus X whole square, this is the
parameter that we have to identify. Similarly, mu negative membership function of
negative of the variable x is e to the power minus x plus x whole squared. And mu z X is

0 e to the power minus x square.

So x represents mean, x stands for state variable, p, n, z denotes positive, negative and
zero respectively. Using the product for AND inference and center of gravity method for
defuzzification the fuzzy controller is given as we have four rules. So for four rules the u
if you look at here what | will do is that in this I find out the membership function of this,
the membership function of this. So this is mu X3 into mu X4 so that is the membership



function for my control action and this is the fuzzy singleton which | define as au, the
fuzzy singleton, therefore my control action is au.

mu negative X3 mu negative X4 into au is the output of the first rule. Here, again to let to
know | will again explain, here how we are actually doing this I do not have to do every
thing again you can easily understand, what is control action from this rule base?
Obviously, I find out what is mu and x5 and mu and x4 the membership function of this

into u is positive and this is a singleton and that is why this is ay.

a, is the singleton value associated with this control action a,, simply multiplied. This is
the output of this controller, similarly you can easily see this is output of the rule base,
this rule and the second rule output will be mu, X3 into mu, X4 into this is negative, so

minus au. That is what we doing here.

So mu and X3 mu and X4 &y, Mup X3 Mup Xa Minus a, | will not have been considered this
because we are assuming. Thus you see that this is 0 if I simply say the control action is
0, because control action is 0 this is sufficient for me to make this rate derivative to be
negative definite. Simply making that what advantages | am gaining is that, I am not
reducing the parameters that has to be optimized or heuristically that has to be tuned. This
is my control action, by using center of gravity method you just add all these individual

membership functions associated with control action.
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So there are 4 and finally, you get the value by taking mu, X is e to the power minus x
minus X whole square in mu and X is e to the power minus x plus x whole square, you can
write u to this function. This is your control law. This is nothing to do because we have
taken Gaussian function. Finally you can simplify this u, but you also can take any other
function triangular function or whatever function you want to like, but if you look at this
control action what are the parameters that you do not know, this one is au, another is
axs, another is axy, all other things X3 X4, these quantities that you are getting feedback
from the system. So these three parameters they have to be found and we can do any kind
of optimization algorithm.



(Refer Slide Time 34:29)

an
'Optimal Parameters
el

Toy i med st the optimal controller paramaters, (ha
following cost function is used,

-
Urnevarilea |".h-|l1_:||m1 Dhstnbution .ﬁ.lq]nl“ilhln % used o

fi nd the optimal parameters.

Tha optimal paramalers are lound olfline

And particularly we have used genetic algorithm, particularly univarite marginal
distribution algorithm. We have already described in the previous classes what univarite

marginal distribution algorithm is.

This has been used to minimize this cost function and by minimizing that, the optimal
parameters are found to be the mean of the linguistic variable for x5 is 0.73 and for X4 is
0.25, this either positive or negative. So this is the mean and au is control action singleton
is 1.4. This was done, so this is design is over, now we can simulate the system which

will show the results at the end of the section.
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But here, before that | will derive again another kind of rule base for the same system.
The u instead of earlier case u was simply a linguistic variable, but now I am assuming
this is a state variable technique, where u is minus kixs minus kyx4, Of course this is just
to simplify but actually I should have taken all the x1x, I am not taking, just to simplify
because if | am able to control using only two variables, | can only expect that using X1
and x, I can improve the performance. So putting expression of u in V dot is already we

have found out this earlier because we considering same RTAC system.

So for RTAC system giving the physical principles V dot qualitatively comes out to be
X3X4 plus x4u. Now this V dot can be written as x3X4 and then x,u is this quantity which
is minus kixs minus k,x4 and this can be again simplified, this is 1 minus k; into X3X4

minus k,x4 whole square. So how do | now derive the rule base for this kind of structure?

I just have to make sure that | have to select ky and k» in such a way that this quantity is
negative definite. This is what, if x3 is negative and x4 is negative then u is, you see that
X3 IS negative and X4 is negative, so this quantity is positive. Since x4 is negative, the x4
square is positive. All that | have to make sure that 1 minus k has to be negative as well
as Kk is also a positive. So k; is positive and 1 minus k; because this is positive, this has
to be negative, 1 minus k; is negative means kj is greater than 1. This is my first rule.



The second rule is if x5 is positive and X4 is positive, this quantity is positive, this
quantity is positive, to make it again negative definite, again | will have the same
principle whatever | got here | must be that, ko, greater than 0, kip, is greater than equal
to 1. Same condition, only this nn stands for the rule base when X3 is negative and X4 is

negative and here pp stands for xs is positive and x4 is positive.

In the second rule you saw that, the same condition came but these are different
parameters you have to remember Kipp. If X3 is positive and x4 is positive then u is equal
to minus Kipp X3 minus Kopy X4 Where | showed you that this has to be positive and k, has

to be positive.

Now let us go to the third one, X3 is negative AND x4 is positive THEN u is minus Kinp
X3 minus Konp X4, How do | find out what is k1 and k»? It is simple; K1,p You see that, X3 is
negative and X4 is positive here, that makes this is negative. This is negative means this
has to be positive, 1 minus k; has to be positive, so k; should be less than 1. That is Kinp
is less than 1 and here this has to be again positive quantity kox,4 because this is negative
is already there, this X4 is positive so this is always positive whether x4 is negative or
positive. To make it positive k, also has to positive, so this is what kon, this has to be

positive.

Similarly, if x5 is positive and X4 is negative, again this is negative, this has to be again
positive, and again k; should be less than 1. So k1, is less than 1 and kopy has to be again
here this is positive, so k, has to be always positive. You can easily see that this k;
always in every case is positive, only in this case, the first one it is positive and the
second that is negative. What you got an idea that, what should be this value k; and k;, at
least the magnitude?

Now heuristically you have to tune these values what should be Kinn Konn Kipp K2pp Kinp
Kanp and Kipn and kppn heuristically, or | can use the genetic algorithm or we have done

that univarite marginal distribution algorithm to optimize this parameter.

You see that considering the same membership function and using product for AND

inference and center of gravity method for defuzzification, the fuzzy controller is given is



like this. Since mu, is this and mu, is this, which we have already done in the previous
case, we can write u as like this, we have a controller and by simplifying that we have

actually ten parameters to identify.
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Two parameters X3X4, the mean for linguistic variable x5 positive, for x3 positive and X3
negative the mean is x3 and actually in case of one case mean is positive and in one case
mean is negative. That is what we are doing that when it is negative, mean is negative, so

the sign changes that is why you saw that here.
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In this case this is positive x when it is negative mean is negative, so it is positive
quantity and mean is positive here in case of positive, so it is negative here. So axs is
0.25 here, doing optimization using univarite marginal distribution axs; is 0.25 and ax4 is
0.12 and the parameters, the controller parameters that is k; and k, for all the different
fuzzy rules, four rules are there and for each rule we have two parameters k; and k, and
we have got these values 1.1, 1.4, 0.6, 0.8, 0.35, 0.2, 0.4, 0.25. These parameters we

derived using univarite marginal distribution algorithm.
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You see that simulation results x; converges to 0O with time, what we started with we
gave some initial disturbance and using the initial disturbance we are showing now, here
X1, X1 is the position of that cart, you give some little disturbance to the cart finally it

should come to the rest position.

What is the meaning of PD? This is the FLC controller where we have used the PD type
of rule base that is if X3 is positive and x4 is positive then u is negative, in that kind of
rule base. This is PD; it is actually the rule base that we formulated. That is, we are
denoting we are saying this is PD and this we are saying state feedback because you see
that u is a function of states. By doing that you see that, we have got the response that,

this is in second unit, after 40 seconds almost the oscillation comes to an end.
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And here X3 is plotted which is the angular position, that also should come to, because the
cart was disturbed, although the pendulum was in the beginning initial position, but it will
start oscillating and that oscillation will gradually slow down and it equals in same
amount of time this is reduced to 0, both the PD type of rule base and state feedback type
of rule base and this is the control action and this is control action you see that the control

action is also fairly smooth both for PD and as well as state feedback.
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Saying that what we did is the regulation that is given the RTAC system we gave some
disturbance and we showed that this controller is able to stabilize the system. Now the
tracking controller that we would like that our pendulum should track it as a trajectory.
For tracking a desired trajectory, what we would like to have is that instead of the
Lyapunov function which we had half x; square plus x, square plus X3 square plus X4
square for regulation problem, now we will consider e; square plus e, square plus es
square plus e4 square be the Lyapunov function where e, is desired state trajectory minus
the actual state trajectory. So X; is the higher state and x;d is the corresponding desired

state trajectory.

The control objective is to find a control action such that the actuator angle will follow
any given desired trajectory. Hence the Lyapunov function has been changed from x;
square plus x, square plus x3 square plus X4 square to in this case e; square plus e;

square plus e3 square plus e4 square. | hope this is clear to you.

Now in the same manner we can also show e; dot is x; dot d minus x; dot is same as X;
plus 1 d minus x; plus 1 which is e; plus 1. What is x; plus 1? Because we have the
parameters X; X, X3 X4, SO when | say X1 plus d, when | say X; is this is X1, x; dot d is
same as x,d. Obviously, because x, and x; the relation is x; is x; dot. By that principle
you are able to see that x; dot d is x; plus 1 d which I am writing here and similarly also |
can write x3 dot d is x4 d, X3 because x3 dot is X4 So obviously x3 dot d is desired is X4

desired.



(Refer Slide Time 48:44)

n
-Trar.:king Controller
o o]

The control obyective is 10 find @ » such that the actualor

angia wall nllow any grean dasired rapaciory

Lk 1 b thes Lyapuenay function
candidale, wivera T dlate and rd lha
porraspnnding dasirad rasponea Sinca

fow 1. 5, we can wrile,

Again ry # uny Thrs e can sanphiy the

abcwe axpraseion o

For i equal to 1 and 3, that is what | have done, i equal to 1 and 3 and differentiating V
we had V dot is e; e, plus actually this is e; e; dot e, e, dot e3 e3 dot e4 e4 dot. We
already know what is e, is e; dot and this is retained and e, is e3 dot. This is our actual
expression of e; dot.

Just like this again x, dot is approximately minus x; and x4 dot is approximately u, thus
in the same similar logic we can simplify this V dot to be qualitatively ese4 plus because
qualitatively this will cancel out this because e, dot would be minus of e;. This will be
cancelling out qualitatively, what is remained is ese, plus e4 and e4 dot we see that x4 dot
is directly proportional to u. We can write that this is e4 and e, dot is V where V is x4 dot

d minus u.

This is very simple because e,4 dot is x4 dot desired minus X4 dot and since this is x4 dot |
put this x4 dot to be u, I can replace that by u and x4 d minus u I can write V and that V is

X4 dot d minus u.

What we have to do? | can create a rule base from this Lyapunov function assuming V to
be my control input and from V if I know V then | know u, actual control action, this is

pseudo control action, my actual control action would be x4 d minus u.
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In general what we learnt is that for regulation the qualitative equation for right derivative
of Lyapunov function x3x4 plus x4u for tracking you found out this to be x4V dot is
qualitatively equal to ese4 plus e4 into V where V is X4 d minus x4 dot d minus u and u is

the actual control action and V is the actual control action.

This V can be designed the same way as that u in the regulation problem; I will not be
going in detail because this and this has the same structure. The rule base either using the
PD type of controller or the state feedback controller the two rule base will have same
form, only thing that I am computing V. After | compute V, V will have the same
structure that we earlier derived the same way but given V, | find out u to be x4 dot

desired minus V.

Doing that and also the parameters in the first case will have three parameters and in the

second case similarly ten parameters that have to be optimized.
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By optimizing these parameters, we get this is a, not au, ay is 1.5, ae3 1.23, ae4 is 0.55 and
for this tracking controller two you have these parameters .37, .26 and these are the

parameters for the state feedback controller for four rules.
S0 Kinn is 1.3 and Kinp i .9, Konn 1S .6, Kanp is .45 and so on.
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Given that, the tracking result is x3 is plotted against time desired PD and state feedback
give the same result here for the tracking. Tracking is not plotted because you see that the
rule base is very small that we have taken and also we have in this state feedback control
are also we have rejected in the state feedback the input of x; and x3 the state feedback

for x4 and X,

The tracking here is not right, some loss here otherwise tracking is properly and the

control action you can see both PD and state feedback they behave almost similarly.
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Finally the summary, in this lecture following topics have been covered a classical
Lyapunov synthesis method is extended to the domain of computing with words that
means qualitatively how can we use a rate derivative of the Lyapunov function in such a
way that the rule base can be generated. This new approach is used to design two
different types of controller actually, the two different types of rule base, controller is

same fuzzy logic controller mamdani type.

Rotational proof mass actuator system is presented for simulation. Assuming minimal
knowledge about the system we have systematically derived fuzzy rules that constitute
the rule base the controller. Using rule base controller we have design for both regulation

tracking purposes. Simulation results are presented.
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Lyapunov based approach to design the fuzzy controllers, Fuzzy sets and system in 1999
by Margaliot and Langholz and same author also have a paper on fuzzy control of a
Benchmark problem; computing with words approach, IEEE transaction Fuzzy Systems,
2004.

And also we have a paper some work on the directional intelligent controls schemes for a

redundant manipulator presented in a conference held in Pune in 2005.

Thank you very much.



