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Fuzzy Lyapunov controller: Computing with words  

Fuzzy Lyapunov controller computing with words, this is the lecture 4 of this module 4 

on fuzzy control. As I said in the last class that given the mamdani type of fuzzy logic 

controller, the membership functions are optimized using genetic algorithms. 

But the most important aspect of mamdani type of controller is to generate a proper rule 

base. Here, of course you can also generate rule base using genetic algorithm but today, 

we will be learning how to generate a rule base using the concept of Lyapunov function.  

So this is the topic today, fuzzy Lyapunov controller computing with words.  
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Topics to be covered today are classical Lyapunov synthesis; Fuzzy Lyapunov synthesis; 

rotational proof mass actuator system, this is the physical system on which you will be 

testing our algorithm; construction of rule base for RTAC, the short form is RTAC here, 



RTAC using fuzzy Lyapunov synthesis: regulation problem; controller design for 

regulation; construction of rule base for RTAC using fuzzy Lyapunov synthesis: tracking 

problem; controller design for tracking; and finally, simulation results. 
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Fuzzy Lyapunov synthesis: an introduction- the classical Lyapunov synthesis method is 

extended to the domain of computing with words. This new approach is used to design 

fuzzy controller. Assuming minimal knowledge about the plant be controlled, the 

proposed method enables us to systematically derive the fuzzy rules that constitute the 

rule base of the controller. The objective is in this method, how do we obtain fuzzy rule 

base given the system, some prior in knowledge of the system or approximate model of 

the system, how do we generate a rule base?  

This approach is demonstrated by designing Mamdani-type and Takagi-Sugeno-type 

fuzzy controllers for nonlinear plants.  
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The most difficult aspect in the design of fuzzy controllers is the construction of the rule 

base. Fuzzy Lyapunov synthesis is based on extending the classical Lyapunov synthesis 

method to design of fuzzy controllers. It enables to systematically derive the fuzzy rule 

base. Based on classical Lyapunov synthesis method, we construct a Lyapunov function 

candidate V and then determine the conditions required to make it a Lyapunov function 

of the closed loop system. Since we assume fuzzy knowledge about the plant to be 

controlled, the derived conditions can be stated as fuzzy if then rules. 
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So now let us go to the system description. Consider the following single-input, single-

output system. x dot equal to f x, u, y is h x, u where f and h are nonlinear functions.  

This is n dimensional state space, so f is a n dimensional vector; and u and y they are the 

input and outputs of the system respectively; x n dimensional system x1, this is x1 x2 until 

xn, Rn is the state vector of the system. The control objective is to stabilize the system 

around some operating point x0. Without loss of generality we may assume x0 equal to 0. 
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So Lyapunov stability theory which we have been talking again and again, I am just 

revisiting that, the system x dot equal to f x, u is Lyapunov stable around the operating 

point x equal to 0. If there exists a continuously differentiable function V x which is 

known as Lyapunov function such that the following requirements are met. V x is 

positive definite in the neighborhood of 0 and v dot x is negative definite in the 

neighborhood of 0. If we can ensure that then the system is Lyapunov stable.  
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So fuzzy Lyapunov synthesis- assume that the exact system model is unknown but we do 

have some partial fuzzy knowledge about the system. As in classical case we consider a 

Lyapunov function candidate V, derive an expression for its derivative and then obtain 

the fuzzy rule base for the control input u, so that v dot is negative definite. Based on the 

rule base, a fuzzy controller u is obtained using general inference mechanism and 

defuzzification method. 

 What is the objective here is that we prescribe a Lyapunov function for the system and 

then we construct, find the right derivative of the Lyapunov function, substitute the 

dynamics of the system in that and now we create a rule base in such a way this 

Lyapunov function is qualitatively negative definite, not quantitatively. So what is fuzzy 



Lyapunov synthesis is we are using a qualitative negative definite of v dot. This is the 

difference qualitative negative definiteness of v dot, instead of a quantitative negative. 

The actual Lyapunov function approach to test the stability of the system is to find 

quantitavely v dot is negative definite. But now we are talking about a concept 

qualitatively, if we can make v dot to be negative definite.  
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FLC structures of the rule base, so normal we have two kinds of we can formulate any 

fuzzy logic controller of mamdani type. We can have two categories of fuzzy rule base. 

The representation 1 is if x1 is A1 and or x2 is A2 and or xn is An then u is B where Ai’s 

and B are linguistic variables large or small. So x1 x2 and xn they are either state 

variables or error in state variables. 

Representation 2 is if x1 is A1 and or x2 is A2 and so on or xn is An then u is a definite 

function here the B, u is B are the fuzzy linguistic variable where in the second 

representation u is an exact function. u is f(x1 x2 … xn) where f is a linear function; this 

can be also nonlinear function, f can be also linear function here, normally is a linear 

function. 
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So fuzzy Lyapunov synthesis: motivation- what is the motivation here? In a general fuzzy 

logic controller, the control problem is to design a fuzzy controller using information 

based on some physical intuition even if the exact system dynamics is not known.  

But the main problem is constructing the rule base for the controller. Rule base is 

obtained using the notion of classical PD or PID controller in general for mamdani type 

of fuzzy logic controller. But in a fuzzy Lyapunov synthesis a rule base is obtained using 

the notion of Lyapunov stability. So this is the prime motivation. I can tell you how 

normally we do a fuzzy rule base, if this is my general characteristic of a second order 

system. So what I would like, when I describe this response, this is my t, this is my y 

(Refer Slide Time: 09:29), my output. So you see that if I am here at this zone, so at this 

zone I can say error, error at this zone is very large.  

I would like when I am here I should come very fast to this line, which is my desired 

command signal 1.0. What I will say, when my error is small and the derivative of error, 

the rate of change in error is either small or large whatever it is, when it is small I would 

like it to come fast. My controller must be very large. I can write for this kind of PD or 

PID type of controller the rule base is if e is small in this zone and e dot is small or large 

then u is large. By simple commonsense I can write. 



Similarly, if I say e is small here and if e is small in this zone and e dot is also small then 

u is small because I have already reached almost I am reaching the set point. But if e is 

small and e dot is large, so obviously I must reduce the control action, so that is, in that 

case I have to say u is negative small, instead of positive small. Like that the normal rule 

base is done in case of PD or PID type of controller. 

But today we will see a very systematic method of generating rule base. Actually this 

entire class today is to let you know or we will learn how to generate this rule base 

systematically using Lyapunov stability theory. Before that, I will just explain to you one 

physical system on which will be applying this thing, this is called rotational translational 

proof mass actuator.  
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You can actually see this is my rigid surface to which a cart is bound using a spring. 

Inside the cart there is the pendulum which rotates by the action of the torque and the 

pendulum link length is l and there is an external disturbance f that is applied on the cart. 

See the objective is to control this pendulum the way we like.   

I may like to keep this pendulum at an angle theta or vertically downward vertically 

upward, whatever is the desired thing or it has to follow certain trajectory, so whatever 



may be the requirement this is a typical control system because it is nonlinear and also it 

a bench mark problem.  

The RTAC system, consider the following example rotation translational proof mass 

actuator RTAC. The RTAC system combines a translational oscillator with a rotational 

proof mass actuator. This particular portion now oscillates by the action of the spring. So 

this called combines a transitional oscillator. This oscillates in the x direction with a 

rotational proof mass actuator. This is rotation. The oscillator consists of a cart connected 

to fixed wall by a linear spring. The cart is constrained to move in the x-direction only. 

The proof mass actuator is attached to the cart and is controlled by an applied torque N. F 

is disturbance force that perturbs the cart. F is a disturbance force that gives such a 

disturbance input.  
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The cart position and actual angle is xc and theta respectively, that is the cart which you 

saw here this is xc and this theta already which have already shown. Mass of the cart is 

given 1.36 Kg; proof mass is 0.096 that is the mass of this cart is M and proof mass is 

small m. So small m is 0.096 Kg; distance of the link length of the pendulum is 0.059 

meter; Moment of inertia of the proof mass is I is 0.00022 Kg meter square; Spring 

constant k is given 186.3 Newton per meter.  



Now we define some normalized variables which is zeta is xc root over M plus m upon I 

plus mL square; tau is t k upon M plus m; and u is this is my actual input and M plus m 

upon k into 1 minus mL square; K is the spring constant; and omega is 1 upon k M plus 

m by I plus mL square F.   
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Given that, you see that we can write, we can derive the dynamics of the RTAC system, 

you can easily see that it has four states. x1 is zeta is actually represented xc normalized; 

this is xc dot; the velocity of the cart normalized which is x2; and theta is the pendulum 

angle x3; theta dot is the angular velocity of the pendulum which is x4; and control 

variable is u which is also normalized; n the torque; and disturbance is w, so this one w is 

the disturbance. 

If we look at x dot this is the fourth order system and the expressions are x dot equal to 

x2, the advantage is that we have not kept any parameters associated, this is simplified x2, 

you can see x dot is in this, this I can say, this is simply a function of x, this is another 

function of x may be g x, and this is d x.   

You can say this is a function vector with four dimensions, with function vector with 

another four dimensions and another function vector with four dimensions. You can see 

that system is highly nonlinear if silent is defined as mL upon root over I plus mL square 



into M plus m, you can easily derive this equation, I will not discuss further on this. All 

that I am trying to tell you is that RTAC system has a nonlinear dynamics which has type 

x dot is f x plus g x  plus g x into u plus d x into w, where w is the external disturbance; u 

is actual control input. 
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The fuzzy Lyapunov synthesis of RTAC- the system dynamics now can be written as, as 

we said x dot is f x plus g x u plus d x w. Without knowing f x, g x and d x following 

linguistic statements can be formulated. Even if I do not know what is f x g x d x exactly, 

I can still write the state of the system is described by x1 the cart’s position; x2 equal to 

x1 dot; and x3 is actuator’s angle; and of course x4 is x3 dot. That is x3 is theta, x4 is theta 

dot, x1 is xc normalized, x1 is xc normalized and x2 is x1 dot. This is another important 

thing that I can easily tell you, x4 dot is proportional to the control input u that you can 

easily see here. 
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Because you see that this is the my pendulum and if I assume that there is no friction and 

other things here, then my pendulum, the acceleration of this pendulum, angular 

acceleration obviously is directly proportional to the torque applied N and since my input 

u is normalized value of N and hence I can always say that x4 dot, the acceleration of the 

pendulum is proportional to the control input u. 

Similarly, x2 dot the velocity of the cart is proportional to the negative of x1, you can 

easily see that because the spring is connected so it is like this, spring and this is the 

block mass. You can see that x2 dot the velocity is always, because of spring action, it 

will be always in this direction the velocity. If I move x in this direction, x2 the position 

in this direction, the velocity is in the negative direction. So x2 dot in this is proportional 

to minus x1. 
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The control objective is to find u such that the system is stable around x equal to 0. This 

is the regulation problem. Let V is half x1 square plus x2 square plus x3 square plus x4 

square be the Lyapunov function candidate. Then using S-1, the assumption that we have 

four states V dot is x1, x1 dot and x1 dot is x2. Similarly, this is 2x2 x2 dot, so x2 x2 dot 

plus x3 x3 dot and x3 dot is x4 and similarly, this is x4 into x4 dot. Before this is the 

second step, the first step V dot if you look at here is x1 x1 dot plus x2 x2 dot plus x3 x3 

dot plus x4 x4 dot, because we know already that x2 is x1 dot and x4 is x3 dot, so this 

second step comes. 

Now you see that, we have already said x2 dot is proportional to minus x1. Obviously, 

qualitatively if I put x2 dot is minus x1, these two terms qualitatively cancels off, where 

as only these two terms remain, x3 x4 is remained and I know already that x4 dot is 

proportional to u, so instead of x4 dot I put u.  

You see that, what is the advantage here is that I am designing a rule base but while 

designing rule base I am not utilizing the system dynamics. I am finding how to what V 

dot is equal to x3 x4 plus x4u. While finding this equation, I am not using the system 

dynamics.  This is very important, system dynamics is not used.  



What is used is the simple physics of the system is that, here we use x2 equal to x1 dot 

obviously the velocity x2 and x1 is positioned and similarly, here we use the notion that 

the x4 is x3 dot, so x4 is theta dot and x3 is theta, which is very simple and also we used 

other rule from the systemic connections. 

We know already that the acceleration of the pendulum is proportional to the input and x2 

dot is proportional to minus x1, just by constructional feature. Using these two rules, we 

found V dot to be qualitatively x3 x4 plus x4 into u.  Now, even if you do not know the 

system dynamics, looking at this figure we can create a rule base for which this V dot can 

be qualitatively negative definite. 

So classical Lyapunov synthesis have design of view that will guarantee V dot is negative 

definite. Same idea is applicable here but with the domain of computing with words 

means, this is qualitatively not quantitative. What we are trying to do is we are applying 

Lyapunov synthesis to the system dynamics partially known system dynamics for 

generation of rule base.  
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Now we take the example, when I say so V derived V dot equal to approximately 

qualititatively x3 x4 plus x4 into u. This can be made negative definite if the rule base is 

formed as follows. You see that I will take care that you understand is because this is 



what you should learn how do generate a rule base, you see x3 is negative. If x3 is 

negative and x4 is also negative, that means this quantity is positive. Now x4 is negative 

and if u would be come negative then this whole thing is positive, so no way you can 

make the system is stable. Obviously, the rule base should be u to be positive, that is the 

rule. 

I repeat if x3 is negative and x4 is negative, in that case x3 x4 is positive, this implies x4 

into u should be negative to make these two quantities to be qualitatively negative. So x4 

u should be negative, x4 is already known as negative, so u has to be positive. This is first 

rule. If x3 is negative and x4 is negative then u is positive. Similarly, if x3 is positive and 

x4 is positive. x3 is positive and x4 is positive means again x3 and x4 is positive in this 

case. And this implies again x4 and u should be negative and since x4 is positive so u has 

to be negative which is negative. The second rule is if x3 is positive and x4 is positive 

then u is negative. I hope you are able to follow what I am presenting you. 

Now let us see the other possible combination. If x3 is negative and x4 is positive, in this 

case x3 x4 is negative. If x3 x4 is negative I must ensure that x4 u, since it already negative 

this should be 0 is sufficient, if I make x4 is 0 because x3 x4 is negative is very good. This 

is simple because there are other ways also is x3 x4 is negative I can say x4 u is also 

negative much better. But this is simplest one x4. 

x3 is negative and x4 is positive then u is 0, you can also think another possibility, 

because x4 is positive u is negative, this is also possible. Similarly if x3 is positive and x4 

is negative then again x3 x4 in this case x3 and x4 sorry x3 negative, x3 is positive and x4 

is negative, x3 x4 is negative. So this implies you can make x4 u is 0 or x4 u again 

negative. Since x4 is negative so u is 0 or u is positive, but in this case we have only 

considered this 0.  

I wish this is the most important part of this lecture, first of all using partial knowledge of 

the system and without taking the help of system dynamics we first of all found out the 

rate derivative of the Lyapunov function is approximately qualitatively equal to x3 x4 

plus x4 u and using this expression we computed set of rule base such that V dot can be 

negative definite.  



What we have not until now found out in this is the parameters negative, what are the 

parameter associated with negative. I am assuming this fuzzy linguistic variable to be 

Gaussian functions, which we have taken in this case. Gaussian function is normally 

represented by two parameters- one is mean and another is sigma. If I say sigma is 1 then 

these linguistic variables they are all represented by one parameter that is the mean and 

the u is positive or negative that we have defined here, we have taken them to be single 

term. 

(Refer Slide Time 29:38) 

 

Standard Gaussian membership functions are used to defined the linguistic terms in the 

rule base as mu positive of x is e to the power minus x minus x whole square, this is the 

parameter that we have to identify. Similarly, mu negative membership function of 

negative of the variable x is e to the power minus x plus x whole squared. And mu z x is 

0 e to the power minus x square. 

So x represents mean, x stands for state variable, p, n, z denotes positive, negative and 

zero respectively. Using the product for AND inference and center of gravity method for 

defuzzification the fuzzy controller is given as we have four rules. So for four rules the u 

if you look at here what I will do is that in this I find out the membership function of this, 

the membership function of this. So this is mu x3 into mu x4 so that is the membership 



function for my control action and this is the fuzzy singleton which I define as au, the 

fuzzy singleton, therefore my control action is au. 

mu negative x3, mu negative x4 into au is the output of the first rule. Here, again to let to 

know I will again explain, here how we are actually doing this I do not have to do every 

thing again you can easily understand, what is control action from this rule base? 

Obviously, I find out what is mu and x3, and mu and x4 the membership function of this 

into u is positive and this is a singleton and that is why this is au. 

au is the singleton value associated with this control action au, simply multiplied. This is 

the output of this controller, similarly you can easily see this is output of the rule base, 

this rule and the second rule output will be mup x3 into mup x4 into this is negative, so 

minus au. That is what we doing here. 

So mu and x3, mu and x4 au, mup x3, mup x4 minus au I will not have been considered this 

because we are assuming. Thus you see that this is 0 if I simply say the control action is 

0, because control action is 0 this is sufficient for me to make this rate derivative to be 

negative definite. Simply making that what advantages I am gaining is that, I am not 

reducing the parameters that has to be optimized or heuristically that has to be tuned. This 

is my control action, by using center of gravity method you just add all these individual 

membership functions associated with control action. 
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So there are 4 and finally, you get the value by taking mup x is e to the power minus x 

minus x whole square in mu and x is e to the power minus x plus x whole square, you can 

write u to this function. This is your control law. This is nothing to do because we have 

taken Gaussian function. Finally you can simplify this u, but you also can take any other 

function triangular function or whatever function you want to like, but if you look at this 

control action what are the parameters that you do not know, this one is au, another is 

ax3, another is ax4, all other things x3 x4, these quantities that you are getting feedback 

from the system. So these three parameters they have to be found and we can do any kind 

of optimization algorithm. 
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And particularly we have used genetic algorithm, particularly univarite marginal 

distribution algorithm. We have already described in the previous classes what univarite 

marginal distribution algorithm is.  

This has been used to minimize this cost function and by minimizing that, the optimal 

parameters are found to be the mean of the linguistic variable for x3 is 0.73 and for x4 is 

0.25, this either positive or negative. So this is the mean and au is control action singleton 

is 1.4. This was done, so this is design is over, now we can simulate the system which 

will show the results at the end of the section. 
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But here, before that I will derive again another kind of rule base for the same system. 

The u instead of earlier case u was simply a linguistic variable, but now I am assuming 

this is a state variable technique, where u is minus k1x3 minus k2x4. Of course this is just 

to simplify but actually I should have taken all the x1x2 I am not taking, just to simplify 

because if I am able to control using only two variables, I can only expect that using x1 

and x2 I can improve the performance. So putting expression of u in V dot is already we 

have found out this earlier because we considering same RTAC system. 

So for RTAC system giving the physical principles V dot qualitatively comes out to be 

x3x4 plus x4u. Now this V dot can be written as x3x4 and then x4u is this quantity which 

is minus k1x3 minus k2x4, and this can be again simplified, this is 1 minus k1 into x3x4 

minus k2x4 whole square. So how do I now derive the rule base for this kind of structure? 

I just have to make sure that I have to select k1 and k2 in such a way that this quantity is 

negative definite. This is what, if x3 is negative and x4 is negative then u is, you see that 

x3 is negative and x4 is negative, so this quantity is positive. Since x4 is negative, the x4 

square is positive. All that I have to make sure that 1 minus k has to be negative as well 

as k2 is also a positive. So k2 is positive and 1 minus k1, because this is positive, this has 

to be negative, 1 minus k1 is negative means k1 is greater than 1. This is my first rule. 



The second rule is if x3 is positive and x4 is positive, this quantity is positive, this 

quantity is positive, to make it again negative definite, again I will have the same 

principle whatever I got here I must be that, k2pp greater than 0,  k1pp is greater than equal 

to 1. Same condition, only this nn stands for the rule base when x3 is negative and x4 is 

negative and here pp stands for x3 is positive and x4 is positive.  

In the second rule you saw that, the same condition came but these are different 

parameters you have to remember k1pp. If x3 is positive and x4 is positive then u is equal 

to minus k1pp x3 minus k2pp x4 where I showed you that this has to be positive and k2 has 

to be positive. 

Now let us go to the third one, x3 is negative AND x4 is positive THEN u is minus k1np 

x3 minus k2np x4. How do I find out what is k1 and k2? It is simple; k1np you see that, x3 is 

negative and x4 is positive here, that makes this is negative. This is negative means this 

has to be positive, 1 minus k1 has to be positive, so k1 should be less than 1. That is k1np 

is less than 1 and here this has to be again positive quantity k2x4 because this is negative 

is already there, this x4 is positive so this is always positive whether x4 is negative or 

positive. To make it positive k2 also has to positive, so this is what k2np this has to be 

positive.  

Similarly, if x3 is positive and x4 is negative, again this is negative, this has to be again 

positive, and again k1 should be less than 1. So k1pn is less than 1 and k2pn has to be again 

here this is positive, so k2 has to be always positive. You can easily see that this k2 

always in every case is positive, only in this case, the first one it is positive and the 

second that is negative. What you got an idea that, what should be this value k1 and k2, at 

least the magnitude? 

Now heuristically you have to tune these values what should be k1nn k2nn k1pp k2pp k1np 

k2np and k1pn and k2pn heuristically, or I can use the genetic algorithm or we have done 

that univarite marginal distribution algorithm to optimize this parameter.  

You see that considering the same membership function and using product for AND 

inference and center of gravity method for defuzzification, the fuzzy controller is given is 



like this. Since mup is this and mun is this, which we have already done in the previous 

case, we can write u as like this, we have a controller and by simplifying that we have 

actually ten parameters to identify.  
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Two parameters x3x4, the mean for linguistic variable x3 positive, for x3 positive and x3 

negative the mean is x3 and actually in case of one case mean is positive and in one case 

mean is negative. That is what we are doing that when it is negative, mean is negative, so 

the sign changes that is why you saw that here. 
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In this case this is positive x when it is negative mean is negative, so it is positive 

quantity and mean is positive here in case of positive, so it is negative here. So ax3 is 

0.25 here, doing optimization using univarite marginal distribution ax3 is 0.25 and ax4 is 

0.12 and the parameters, the controller parameters that is k1 and k2 for all the different 

fuzzy rules, four rules are there and for each rule we have two parameters k1 and k2 and 

we have got these values 1.1, 1.4, 0.6, 0.8, 0.35, 0.2, 0.4, 0.25. These parameters we 

derived using univarite marginal distribution algorithm.  
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You see that simulation results x1 converges to 0 with time, what we started with we 

gave some initial disturbance and using the initial disturbance we are showing now, here 

x1, x1 is the position of that cart, you give some little disturbance to the cart finally it 

should come to the rest position. 

What is the meaning of PD? This is the FLC controller where we have used the PD type 

of rule base that is if x3 is positive and x4 is positive then u is negative, in that kind of 

rule base. This is PD; it is actually the rule base that we formulated. That is, we are 

denoting we are saying this is PD and this we are saying state feedback because you see 

that u is a function of states. By doing that you see that, we have got the response that, 

this is in second unit, after 40 seconds almost the oscillation comes to an end. 
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And here x3 is plotted which is the angular position, that also should come to, because the 

cart was disturbed, although the pendulum was in the beginning initial position, but it will 

start oscillating and that oscillation will gradually slow down and it equals in same 

amount of time this is reduced to 0, both the PD type of rule base and state feedback type 

of rule base and this is the control action and this is control action you see that the control 

action is also fairly smooth both for PD and as well as state feedback. 
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Saying that what we did is the regulation that is given the RTAC system we gave some 

disturbance and we showed that this controller is able to stabilize the system. Now the 

tracking controller that we would like that our pendulum should track it as a trajectory. 

For tracking a desired trajectory, what we would like to have is that instead of the 

Lyapunov function which we had half x1 square plus x2 square plus x3 square plus x4 

square for regulation problem, now we will consider e1 square plus e2 square plus e3 

square plus e4 square be the Lyapunov function where er is desired state trajectory minus 

the actual state trajectory. So xi is the higher state and xid is the corresponding desired 

state trajectory.   

The control objective is to find a control action such that the actuator angle will follow 

any given desired trajectory. Hence the Lyapunov function has been changed from x1 

square plus x2 square plus x3 square plus x4 square to in this case e1 square plus e2 

square plus e3 square plus e4 square. I hope this is clear to you.   

Now in the same manner we can also show ei dot is xi dot d minus xi dot is same as xi 

plus 1 d minus xi plus 1 which is ei plus 1. What is xi plus 1? Because we have the 

parameters x1 x2 x3 x4, so when I say xi 1 plus d, when I say xi is this is x1, x1 dot d is 

same as x2d. Obviously, because x2 and x1 the relation is x2 is x1 dot. By that principle 

you are able to see that xi dot d is xi plus 1 d which I am writing here and similarly also I 

can write x3 dot d is x4 d, x3 because x3 dot is x4. So obviously x3 dot d is desired is x4 

desired.   
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For i equal to 1 and 3, that is what I have done, i equal to 1 and 3 and differentiating V 

we had V dot is e1 e2 plus actually this is e1 e1 dot e2 e2 dot e3 e3 dot e4 e4 dot. We 

already know what is e2 is e1 dot and this is retained and e4 is e3 dot. This is our actual 

expression of e1 dot. 

Just like this again x2 dot is  approximately minus x1 and x4 dot is approximately u, thus 

in the same similar logic we can simplify this V dot to be qualitatively e3e4 plus because  

qualitatively this will cancel out this because e2 dot would be minus of e1. This will be 

cancelling out qualitatively, what is remained is e3e4 plus e4 and e4 dot we see that x4 dot 

is directly proportional to u. We can write that this is e4 and e4 dot is V where V is x4 dot 

d minus u. 

This is very simple because e4 dot is x4 dot desired minus x4 dot and since this is x4 dot I 

put this x4 dot to be u, I can replace that by u and x4 d minus u I can write V and that V is 

x4 dot d minus u.   

What we have to do? I can create a rule base from this Lyapunov function assuming V to 

be my control input and from V if I know V then I know u, actual control action, this is 

pseudo control action, my actual control action would be x4 d minus u. 
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In general what we learnt is that for regulation the qualitative equation for right derivative 

of Lyapunov function x3x4 plus x4u for tracking you found out this to be x4V dot is 

qualitatively equal to e3e4 plus e4 into V where V is x4 d minus x4 dot d minus u and u is 

the actual control action and V is the actual control action. 

This V can be designed the same way as that u in the regulation problem; I will not be 

going in detail because this and this has the same structure. The rule base either using the 

PD type of controller or the state feedback controller the two rule base will have same 

form, only thing that I am computing V. After I compute V, V will have the same 

structure that we earlier derived the same way but given V, I find out u to be x4 dot 

desired minus V.  

Doing that and also the parameters in the first case will have three parameters and in the 

second case similarly ten parameters that have to be optimized. 
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By optimizing these parameters, we get this is av not au, av is 1.5, ae3 1.23, ae4 is 0.55 and 

for this tracking controller two you have these parameters .37, .26 and these are the 

parameters for the state feedback controller for four rules.  

So k1nn is 1.3 and k1np is .9, k2nn is .6, k2np is .45 and so on.  
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Given that, the tracking result is x3 is plotted against time desired PD and state feedback 

give the same result here for the tracking. Tracking is not plotted because you see that the 

rule base is very small that we have taken and also we have in this state feedback control 

are also we have rejected in the state feedback the input of x1 and x3 the state feedback 

for x1 and x2. 

The tracking here is not right, some loss here otherwise tracking is properly and the 

control action you can see both PD and state feedback they behave almost similarly. 
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Finally the summary, in this lecture following topics have been covered a classical 

Lyapunov synthesis method is extended to the domain of computing with words that 

means qualitatively how can we use a rate derivative of the Lyapunov function in such a 

way that the rule base can be generated. This new approach is used to design two 

different types of controller actually, the two different types of rule base, controller is 

same fuzzy logic controller mamdani type. 

Rotational proof mass actuator system is presented for simulation. Assuming minimal 

knowledge about the system we have systematically derived fuzzy rules that constitute 

the rule base the controller. Using rule base controller we have design for both regulation 

tracking purposes. Simulation results are presented.  



(Refer Slide Time 55:44) 

 

References in this case are some of the related papers are you can easily see Fuzzy 

Lyapunov based approach to design the fuzzy controllers, Fuzzy sets and system in 1999 

by Margaliot and Langholz and same author also have a paper on fuzzy control of a 

Benchmark problem; computing with words  approach, IEEE transaction Fuzzy Systems, 

2004.  

And also we have a paper some work on the directional intelligent controls schemes for a 

redundant manipulator presented in a conference held in Pune in 2005. 

 Thank you very much.  


