Intelligent Systems and Control
Prof. Laxmidhar
Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Module-1 Lecture-2

Multilayered neural networks

This is the second lecture of module-1 on intelligent control. The outline of this lecture is like
this: revision of the previous lecture, multilayer feed-forward network, back propagation learning
algorithm and learning XOR map.

(Refer Slide Time: 00:32)

Revision of previous lecture
Multdaver feed=forvward network

Back propagation lcarming algonthm

Learning XOR map

These are the topics we will be discussing today. These are the summaries that we discussed in

the last class.

What you are seeing is a single neuron. We have multiple inputs that are multiplied with the
weight associated with this connection. They are summed up in this summing junction and then
you have an activation function. In linear neural network, what we consider is that this is simply

a constant. This I can say is linear.

(Refer Slide Time: 00:49)

The batch update law that we said is that new weight vector is old weight vector plus eta into
summation of all error terms due to all the patterns, whereas instantaneous update is done simply
BY the back propagation term due to a single input pattern, where delta is the error back

propagated.

(Refer Slide Time: 1:15)

Batch Update

Instantancous Update ;

1 e armor back propagaled

We will take another example today. This example is where we have two poles within the unity
circle, but they are all real poles; minus 0.9 and 0.8. This is my system dynamics and my model

is this. y p kiis wy y k minus 1 w, y k minus 2 plus w3z u k minus 2.

(Refer Slide Time: 1:41)

| take the same single neuron with three inputs, y k minus 1 y k minus 2 and u k minus 2. When |
do that, I finally get these exact values; w; is 1.72. w; converges to 1.7, w, converges to minus
0.72 and w3 converges to 0.02. This is what Error is minimum at w; 1.72, minus 0.72 is w», and

w3 is 0.02. This error surface looks like this and finally, here is your global minimum.

(Refer Slide Time: 2:39)

i indml Forror b5 sHimdmenm ai
ulr:];mlu

We talked about a single layer linear feed forward network. Now, let us talk about single layer
nonlinear feed forward networks. In this, the activation function becomes non-linear. So, f is a
non-linear function. The question arises as to what kind of nonlinear function we can consider as
an activation function.

(Refer Slide Time: 3:09)

Here is a non-linear activation function. The axis is x and this is f of x and the function is f of x is
equal to 1 by 1 plus e to the power of minus alpha x. By changing alpha value, we can change
the transition from O saturation to saturation 1. The function varies from 0 to 1 and alpha
determines either the sharp rise or slow rise from 0 saturation level to 1 saturation level. This is a

non-linear function. Why did we select this activation function?

(Refer Slide Time: 3:22)

If we look at it, you may ask what is the speciality of this activation function? It is very clear
from the previous graph of this function that f of x is always limited or is limited by boundary 0
and 1. f of x is less than 1 greater than O, but the interesting part of this function is if |
differentiate this function f of x, d f of x upon dx is equal to alpha f of x into 1 minus f of x. We

can see that derivative of such an activation function has a very simple form.

(Refer Slide Time: 04:21)

dounipalar cinee 05 (vyd)

[burms oud Ut the derivutive of such an Activition

lungton has 3 very simple [om

We had an activation function of this form: f of x is equal to 1 upon 1 plus e to the power of
minus alpha X. | said that the differentiation of this activation function is very simple to compute.
If you do that, you see that | get 1 upon square of this and then you differentiate this. Finally, this
is alpha e to the power of minus alpha x upon 1 plus e to the power of minus alpha x into 1 upon
1 plus e power minus alpha x. You can verify; this function is f of x and this function is alpha
into 1 minus f of x. This f of x becomes f of x into 1 minus f of x and an alpha here. Although it
is a nonlinear function, its computation is very simple because, it is in terms of f of x. That is the

specialty of this activation function.

(Refer Slide Time: 06:45)

We derive for f of x is equal to 1 upon 1 plus e to the power of minus alpha x which normally we
call as sigmoid function. For the sigmoid function, we showed that f of x equal to alpha f of x
into 1 minus f of x. Because of this simple computation, this is one of the reasons also for
making a choice of this activation function.

(Refer Slide Time: 06:51)

What 1s the spectalty about an
\ehvaton lunchon?

|
J LX) = m—
|+

Thid activation fncton i4 unipolar tinee 0 Fivy4]

[t torms oot that the derivative of such an Activation
lungion has 3 very simple [om

df (X}
(%) - af(xil=rix)
oy

Hence the chovice!

Here is another example of an activation function. The previous one was unipolar because the
activation function it has a value, from 0 to 1 as you vary the input x, from minus infinity to plus

infinity.

(Refer Slide Time: 07:39)

But now this activation function when you vary x from minus infinity to plus infinity you have
value minus 1 to 1 and this is a tangent hyperbolic function; the tangent hyperbolic function e to
the power of alpha x minus e to the power minus alpha x upon e to the power of alpha x plus e to

the power of minus alpha x. Again alpha is there just to control the nonlinearity in the function.

(Refer Slide Time: 08:25)

o st have potseed, tin schivabion functon s Hipolar

The activation function has a limit from minus 1 to 1. So it is a bipolar activation function and as
we derived earlier, you can derive and you can verify that the differentiation or derivative of this
activation function f of x with respect to x is alpha into 1 plus f of x into 1 minus f of x. Again, it

is a very simple computational form.

(Refer Slide Time: 09:12)

witith activanon 1 Nonlinear the werrhl update law anll mamiams

fikre except that o, ermor hack propapatid, Chamne

Bach Update

Instantaneous Update

For this, if you use the sigmoid activation function that is, the previous one that is 1 upon 1 plus
e to the power alpha x, then we can go back to the basic principle of gradient descent rule. If we
apply the gradient descent rule for this nonlinear single layer feed forward network and if you
apply the gradient descent rule, you will get batch update. This one is batch update and this is
instantaneous update, where the deltaisy p 1 minusy py d p minus y p. These are all specific to
specific pattern; p refers to a specific pattern. The structure of the update law remains same; what
we had earlier, the same structure. The only difference is that back error propagated delta has

become different.

I will go back now to make a little comparison between linear neural networks and non-linear

neural networks in terms of the similarity and differences.

(Refer Slide Time: 10:26)

F LAY . ErEEEEE

L (hasa Newnd "‘*‘:‘
§ ¥

e

I have linear neural network on one side, here; here non-linear network. In a linear network, |
have x; X, and x, and then you have the computational unit; linear computational unit, w; w, wy
and here y. In case of linear this y is equal to sigma w;Xx;. In case of a non-linear, the same thing;
it is a non-linear activation function. So, y becomes f of x. It the same as 1 upon 1 plus e to the
power minus sigma w;X;. This is a non-linear network. What do we do? We apply the gradient

descent rule. w; t plus 1 equal to the w; t minus eta into del E by del w;. This is the gradient

descent rule. This is applicable for both linear neural network as well as a non-linear neural

network.

We have already shown, for linear neural network that this becomes [iiIPINS eta delta x;, where
delta is the error propagated y desired minus y. We are only considering instantaneous update
because mostly in control system we will deal with the real time implementation. Real time
implementation means instantaneous update, we cannot do a batch update. That is why we
will only consider instantaneous update and for this delta is equal to y d minus y, when it is
linear and you can compute the same thing here for non-linear network and you get deltaisy 1
minus y y d minus y. Here we saw that delta for linear neural network is y d minus y and we
computed the same delta for non-linear network; y 1 minus y, y d minus y. This is the extra term
that comes because of differentiation of f. You can now appreciate why f has been selected as

sigmoid activation function. This is one of the advantages of computation.

Let me take you through the total process of the update of weights in simple neural network;
linear and non-linear. Here it is your input. Take the input pattern. Allow that pattern to be
processed by the network. Network actuates y. For each input pattern, there is a given y d,
desired output. Compute delta. This delta is y d minus y for linear network and for non-linear
network, it isy 1 minus y y d minus y. So, that error has been transferred and then you look at
here, in this side. This is your back error propagated, delta. This is your input pattern. Each
weight if you look at is simply being updated based on its input, x; and what is the error being
back propagated. You can look at here the update algorithm is w; t plus eta delta x; For
everything we can easily check, a very simple rule; the weight update is the original weight plus

eta, the learning rate into the input and the back error propagated.

(Refer Slide Time: 15:15)

Adtbough o single layer hngar lood lorwird pgiwork can
lcarn any hinear map. the same 1= not mue with a anple
Tiver nonlinear feed forwand nefwork

I furms ounl that & sangle layer nonhnear leed lonward

erwark can only ¢ladgify those fancthons which are

limeurly sepurable

What 15 linear separahiliry”

Comsuler this OR functon

Although a single layer linear feed forward network can learn any linear map, the same is not
true with a single layer non-linear feed forward network. We took last class and in today’s class
we showed that any linear dynamical system can be mapped or can be learned or can be
identified using a single layer linear neural network. But this is not the case with non-linear
dynamical function. We cannot identify or we cannot approximate any non-linear function using
a single layer neural network. So that is the bad part, bad news. But it turns out that a single layer

nonlinear feed forward network can only classify those functions which are linearly separable.

We saw the difference between weight updates in case of linear neural network and non-linear
neural network when there is only single layer; simple neural networks. We also showed that any
single layer linear neural network can approximate any linear dynamical system. If we could
have mapped any nonlinear dynamical system using a simple non-linear neural network,
probably we would have been happy, but this is not the case. It turns out that a single layer
nonlinear neural network feed forward network can only map those nonlinear functions that are
linearly separable. Those functions which are not linearly separable cannot be mapped or cannot
be learnt using a single layer non-linear feed forward network. This is the bad news. So, what is

this linear separability?

Let us consider a simple static function. All of you know an OR function, OR network. Any OR
gate has two inputs, x; and X, output is y4. These are the truth table. Input is minus 1 minus 1

output is minus 1 and in all other cases, the output is 1. That is the OR network.

(Refer Slide Time: 18:51)

L [e——

.-’"1 ’ ; EEREEEE E'EEER

Linesd, Separable
5 Y 515 op 1(,,

HEJ‘IM

Linearly separable - we want to address this one. We have an OR function. All of you are already
aware of the OR function. The truth table is this becomes minus 1, this becomes minus 1. In all
other cases, this is plus 1. This is your truth table. Given specific input pattern, output is either
minus 1 or plus 1. Now, let us look at graphical map of this function. (Refer Slide Time: 20:06)
Minus 1 minus 1 is here. This is say 1. This is 1, minus 1 and minus 1. This is your point, where
it is minus 1 and all other cases like minus 1 plus 1, you have plus and plus 1 plus 1, you have a
plus. You have plus. You see that if | draw a line here, it is a linear line. It is able to separate a
specific class from another class. For this class of input pattern output is 1 and for this class of

input pattern, output is minus 1.

This particular function that is OR function is known as linearly separable function. This can be
easily mapped using a non-linear single layer neural network; very simple. To conclude, a
linearly separable function - a function is linearly separable if there exists a hyperbola that
distinguishes between one class and another class. Thus linearly separable, but there are many
cases, many functions which are not linearly separable. A very simple example is XOR function.

Let us look at another example XOR map.

(Refer Slide Time: 21:36)

EEEEEEE PrEEAm

XOR w4

A7)

7

In this function, we have two inputs and one output and the truth table looks like this. This is
your XOR map. For this case, you have plus 1 output and the other two cases you have minus 1
output. Let us look at the graphical map. When you have minus 1, This is your Xy, this is your X,
So, minus 1 and minus 1, you have minus and when you have plus 1 and plus 1, you have again
minus and other two cases you have here plus; that is plus 1 minus 1 and when you have minus 1

plus 1 you have also plus.

In this case, you cannot find a single line that will separate this class from this class. This class
cannot be separated from this class using a single line. There is a function where the function is
not linearly separable, but this is non-linearly separable. |1 can create a non-linear decision
boundary that separates this class from these two classes. This class, the minus class is separated
from plus class using a non-linear decision boundary. This is called the functions which are not

linearly separable.

Let us summarize what we discussed now. Limitations of a single layer non-linear feed forward
network is a single layer non-linear feed forward network cannot even approximate an XOR

function; that is it can only approximate only those functions which are linearly separable.

(Refer Slide Time: 24:16)

singtle layer nonlimear leed lorward netwiork cannot ¢ven

'|'il'.l‘\.I||"|‘.' Wil '\:l B thinchiom

I or more detmls, you may hke o reler the lollowmnge book

MLL Mumsky und S Papert { 19%9) Peroeptivis

{ sl '-I'."." (U NILK

Hwever of turms oul thal @ mulnlayer network walth nonhimear

WHVATAE MINCTOm Lan AP ITRAEE N o Hmear Rinetion

For mooe detutls refer - K. Honek, M. Stocheombe ad H
whitel 1989}, Multilaver Feedlorward Metworks are Usnsversil

Approimatore. Noewrad Nomeorks T 159300

There are many complex functions. They are not linearly separable. You can refer to Minsky and
Papert’s book called “Perceptions” to know more about this linear separability and non-linear
separability. This book is published by Cambridge MIT press, 1969. However, later researchers
found that if we increase the complexity of the network in terms of the number of layers, but we
only consider a single layer network; 2 layer, 3 layer, 4 layer that is multi-layer network, then

such a feed forward network can always approximate any non-linear function.

One of the very key research contributions are by Hornik Stinchcombe and White published in
1989 in Neural Networks, Multilayer Feedforward Networks are universal approximators. The
problem that we faced from single layer neural network for non-linear approximation can be
mitigated or eliminated by increasing the layers to more than 1. It turns out that even a 2 layer
network with 1 hidden layer, consisting of infinite neurons can also approximate a non-linear
function.

(Refer Slide Time: 26:05)

[he leaming algonthm for 3 mulnlavered feed forward

network with nonlincar sctivation Tunction is pepularly
known as Back propagation algorithm, although the

.Ill"l.”'”llll = I.]..'Fi‘\. L'II AT \.‘rlll.il...'llt Li\"ﬂ,.'\."ll' ru|u ||'II:\

will be clear 1o vou shortly

As siid earlier, weight update can be done ¢ither in
hattech mode or instanianenns mode Sinee the contml
system design involves real-time computation, we will

imly focus on mstanmtaneons weight updaie

When this neural network becomes complex, can we write the learning algorithm, the region the
way we wrote for single layer network? The answer is yes, little adjustments have to be done, but
implementation-wise it is not difficult. The algorithm that was derived using gradient descent for
nonlinear neural networks with nonlinear activation function is popularly known as back
propagation learning algorithm, although the learning algorithm still is derived using gradient

descent rule.

We will make this point very clear why this learning algorithm is known as back propagation.
We gave some hints in the single layer network that computed error output is back propagated
and based on that, the weights are being updated. Based on that information, the weight update
formula takes a very simple shape, simple structure. Again, for a multi-layer network, is it very
difficult to derive the learning algorithm? We will derive today the learning algorithm for a two
layer network and in the next class we will show, for any number of layers, the hidden layers
may be of any numbers, it can be in capital N, but the learning algorithm derivation is very
simple. But all these learning algorithms that we will derive in this course will be instantaneous
update rule. The reason being, again as | said, control systems are all real; they require real time
implementation and we have to be considerate from that point of view. So, let us summarize

what we are now going to do. This is the focus of today’s class.

(Refer Slide Time: 28:10)

Mulnlaver Feed-torward Network

Has one or more hidden layers of computation
units {or nodes)

In feed-forward neural networks connections are
allowed between any layer to 1t's succeeding

layer and no connection is allowed between any

layer to it's preceding layer

Hidden layer gets impul from inpul layer and gives
output to next hidden layver or output layer afler
inicmal computation

Multilayer feed forward network has more hidden layers and again, when | say feed forward
network, the connections are all allowed only from any layer to its succeeding layer, but the
connections are not allowed from any layer to its preceding layer. The example is you see here
there are four layers. These are all inputs. First hidden layer, second hidden layer, third hidden
layer and this is output layer. When we say the number of layers, we do not count the input layer
as one of the layers. When | say two layered network, then I have only one hidden layer and next

layer becomes output layer.

(Refer Slide Time: 30: 26)

This particular configuration means there are sub-units, sub-neurons here and this particular
configuration, if I connect you will see why | say feed forward network, because | am able to
connect any layer from its preceding layer. That means connections are allowed from the
preceding layer to any layer, but | cannot allow the feedback connection. (Refer Slide Time:
30:54) This is called feedback connection; this is not allowed. This is allowed. From this layer, |
can connect to this layer. This is allowed, but | cannot allow from this layer to connect to this
layer. These are called feedback connections. They are not allowed and that is why this is known

as feed forward network.

Today, we will derive a two-layered feed forward neural network with sigmoid activation
function. We can very easily see that this is 1 layer; this is the only hidden layer and this is the

only output layer; output layer is always only one.

(Refer Slide Time: 31:34)

What will we do? We have a certain convention that we will put while deriving a back
propagation learning algorithm for this. The same simple principle; given training data, we allow
the input to pass through the network, compute the error here, use the gradient descent rule and
the back propagated error are used to modify the weights here that is between output layer and
hidden layer and again another form of back propagated error here has to be used for
modification of the weights between input layer and hidden layer. This is again the convention

that we will use.

(Refer Slide Time: 32:20)

« The following conventions are uded while processing the

nctwork Iy

I i e index for o typical neuron in the output layer

1% the index for a typacal neuron in the hadden layer

1> the mndex lor a ypicul neuron in the input layer

is a typical weight connecting j* neuron in the

ladden layer o 1™ neuron s the vutput layer

1 @ Wyprcal waght connecting K* neuron m the
mput layer to ™ neuron i the hadden layer

I is the index for a typical neuron in the output layer. This you can see here (Refer Slide Time:
32:30), i is the index for neurons that are used in this output layer, j is the index for neurons in
the hidden layer and k is the index for the input patterns and the weights for a typical weight, that
is between the hidden layer and the output layer is denoted or represented by wj;. i is here and j
refers to this particular layer and here a typical weight between input layer and output layer is
represented by wjc, where j refers to index for middle layer and k is the index for input layer.
This is what we have said here. i, j and k are three different indexes for three different layers;
input, hidden and output. This is the weight; typical weight representation between hidden layer
and output layer and this is the typical weight representation for the weights between input layer

and output layer.

Now, let us see the derivation of the back propagation algorithm.

(Refer Slide Time: 34:03)

Dermvanon of Back propagation algonithn

Lompuls the nespwmnag

8, =W

LHREL L & RUERE (8L i] ¥ LS -
Compule the ol lunchon [Insanansous updale)

; 1%)
F =XV =y)
L h

First what do we do? As I said, in the network you allow the input to pass through the network
and compute the response y1 Y2 Yn. TO compute y; Y, yn, We assume that the hidden units had
output also u; u, uz and these output are first computed; the outputs of the hidden units are first
computed and using the output of the hidden units, the output of the output layer are computed.
Just for clarity, again | say, all these neurons are sigmoidally activated. They use sigmoid
activation function. We can say that v; is 1 upon 1 plus e power minus h;, where h; is the total
input reaching the jth neuron of hidden layer. Similarly output of the ith neuron in the output
layer is 1 upon 1 plus e to the power minus s; where s; is equal to sigma into w;;v;. s; is the total
inputs reaching the ith neuron in the output layer. Here we are computing the cost function for
instantaneous update which is this value equal to half SURIMEEHON y; d minus y; squared.

(Refer Slide Time: 35:48)

Wereht |.|I-|.'!,'.'r rile for werghts between the hadden laver am
the vutpul layer v
O
wir+l)=wr)=n=
0

i E ki - . n - N
Wenght updaie rule fon werghts between the mpot bover and

e hadden layer

ik
Wl +=w, ()= -

LW

i
nuse o Ill' '.!I.'II'\--l"..u

So, the gradient descent rule is the same. The weight update rule for weights between hidden
layer and output layer, we will have this particular That is the principle of gradient descent
wij; into t plus 1 equal to w;j; t minus eta del E divided by del w;;. Weight update rule for weights
between the input layer and the hidden layer is wj t plus 1 equal to wjk t minus eta del E divided
by del wi.

How do you find now del E by del Wj; and del E by del Wy? This is what we have to find out.
Here we showed this diagram. Again, | drew in the black board for clarity, because | would like
to derive the whole thing in black board. You have input X1, X2 up to X, and output y; to yn, n
different computational units and you have hidden layer with m hidden neurons, whose outputs
are vi, Vo, vy and as | said, wj; is the typical weight connecting ith neuron in the output layer
with jth neuron in the hidden layer. Similarly, wij is the typical weight between hidden layer and
input layer. What will we do is in the first phase we will allow this input to pass through the
network and we compute what is y;. So, let us compute that.

(Refer Slide Time: 37:36)

What we are doing is we are computing the output of a hidden neuron, vj. v;, the output of the jth
neuron of the hidden layer is 1 upon 1 plus e to the power minus h; where h; is the total input
reaching the jth neuron and hj is wik X«.

(Refer Slide Time: 37:57)

If we go back, you see here v;j. Say for example, | want to compute v, What do | do? | compute

what is h1? hy is sigma w1k into xi. That is wis into X3 plus wi, into Xz so on plus wy, into Xp.

This way we compute what is vi, v, and vy, and after we computed v, Vo, Vi, we will now

compute what is y; up to y,?

(Refer Slide Time: 38:55)

This computation is y; is 1 upon 1 plus e to the power minus s; where s; is sigma w;; in to vj.

This you can also verify in the previous one.

(Refer slide time: 40:01)

EEEEEEET FOoOEEEE

For example, I want to compute y; First I will compute what s; is and you can say S; IS W11 Vi
plus w2 v, and so on plus wiy, and v, Once you compute s; the next isy1 yi is 1 upon 1
plus e power minus s;. This is a sigmoidal activation function. We are done with how to compute

y1 t0 yn given Xy, X2 and X, using forward propagation.

(Refer Slide Time: 41:32)

k
Cost Amnchnv
{j’ﬁaw

We go to computing the error, error at the output. | am given actually y; d, y, d, y3 d and y, d.
This is given. | compute what is y1, Y2, Y3 and y,? This is computed. The network computes yi,
Y2, Yz and y, giveny; d, y, d, y3 d and y, d. So, | compute the cost function. The instantaneous
cost function is half y d i minus y; square sigma over i. | subtract from y desired y, square it and
add all the output units in the output layer. That is how | compute the cost function. This is
called instantaneous cost function and this instantaneous function is computed for a specific

pattern, for a given pattern | compute this cost function.

Now, | go to the next. Once | compute what is E, | have to compute for the weight, a typical
weight between hidden layer and output layer wij;, the weight whatever was in previous iteration
whatever is wj; that has to be updated by adding a gradient term.

(Refer Slide Time: 42:50)

F £oa EEEEENEE EEEEE

w{’:} @fD = E-JU-,{_U"" %E_LJ -@

This is the weight update for weights between hidden layer and output layer. All that you have to
do is simple derivative principle. How to differentiate given y and you know the function
structure; so, you simply differentiate. All that we have to do is that del E upon del w;;. If I can
compute | just have to put it there in this equation. So this is equation 1. | have to put that |
differentiate del by del w;; and here | have half sigma BYEE i v d i minus y; whole square. You

can see that only the error contribution due to ith neuron is a function of wij;.

Hopefully, you are very clear. If I am considering this particular unit this is my typical weight,
which is wy; and | want to update wii. Then you should be very clear that only the error
computed here at y; is a function of wiy;. You can very well see that y, is not a function of wi;.
Once you are very clear about that | can write this one as del by del wj; half y d i minus y; whole

square. Other terms are not relevant.

(Refer Slide Time: 44:59)

F AN - ..llllll EEEEE

We go again, we continue; del E by del wj;, we found out to be del by del wj; half y d i minus y;
square. You can check it; y i d minus y; into, here minus, del y; by del wj;. Hopefully, you are
now clear with this expression. This is, | can say, equation number 2. From equation number 2,
we have to find out what is del y; by del w;? What is y;? y;i is 1 upon 1 plus e to the power of

minus s;. So, del y; by del wj; has to be written like this; del y; upon del s; into del s; by del wj;.

(Refer Slide Time: 46:13)

"‘jl
&

(i'jr')

We go to the next step. If y; is 1 upon 1 plus e to the power minus s;, we have already discussed
this kind of activation function, if | differentiate s; then I find the answer is y; 1 minus y; This
we have already said. The rest is left is del s; by del wj;. To find out del s; by del wj;, | must write
down del by del wj and s; is sigma w;; into vj. This is simply v; because this is simply
summation of terms. So, with respect to wij;, only v; comes out. If we want to differentiate with
respect to wj; vj comes out.

(Refer Slide Time: 47:33)

. lf.__ 'a:]:
g;ﬂ L :*) .

We have finally reached this solution that is del E by del wj; is minus y d i minus y; into del y;
upon del wj; which was equation number 2. That reduces to minus y d i minus y; into y; 1 minus
yi into vj. This is the final expression; third. This term comes from del y; upon del s; and this
term comes from del s; upon del w;;. What was our earlier update equation? wj; t plus 1 equal to
wij t plus, this was actually minus, | am making plus because | am getting here minus eta del E
upon del wj;. That was minus; here the term is minus so, this becomes plus eta y i d minus y; into
yi 1 minus y; into v;j. This is your final equation for the weight update law for weights between

hidden layer and output layer.

(Refer Slide Time: 49:24)

[T N——

F AT 3 EEEEENE EiEEEN

0 (41)= Wi D0 b ¢)
Sare O = qws)(ﬂf ?)

Finally, | write down the weight update equation for the weights between the hidden layer and
output layer is eta delta i vj where delta; is y; 1 minus y; This should not be surprising to
you, because for single layer neural network also for non-linear neural network we found delta to
be of this form and the input is v;. | will not now derive the next update equation that is required
for the weights between hidden layer and input layer which is wjk t plus 1, which also has this
similar formula that is wj t. You can take just little pain to find out. This is deltaj xx. You say
that it is a very nice formula where delta; is v; 1 minus v; sigma delta; wi; over i. | give this as an

exercise for you to derive this weight update equation.

(Refer Slide Time: 51:30)

We are done with the derivation of the back propagation learning algorithm. I will just explain in
the figure; we pass the information from here to here. We have a general weight update
algorithm for these weights here and another general weight update algorithm for the layers here.

So, that is the summary of the weight update algorithm.

What you learnt today is the gradient descend algorithm. The derivation of this algorithm for
multilayered neural network, we will apply that derivation for learning the XOR map which you
could not solve using single layer feed forward network using non-linear activation function.

There as usual this is our cost function and this is our model of XOR network.

(Refer Slide Time: 52:39)

We have two inputs x; and X, These are our weights and we have put two bias units. This is the
bias weight. That is one, I have a fixed input 1 and weight is t;, here is t,. You can also say this
is If you consider this 1 to be here and another input, external input then you can also easily say,
this is wiz and this is wos. This is wis. It has been represented by t; here and w3 is represented
by t, here and these weights just for clarity, we have kept w 1 0 and w 2 0 and the bias weight is
kept as to. That is input is 1 and the weight is to and the output is y. Now, you update the weight.
This is to, w 2 0 and w 1 0 using the weight update algorithm for wj; and tz, t1, Wi1, Wiz, Wap,

you update using the weight update algorithm for wi.

(Refer Slide Time: 54:01)

sl random valess m e micrval

A fixed leaming cate of 0 7Y fivre al

= Adlgr 20,000 plerabons b

We do that. To start with all these weights you initialize between minus 0.1 to 0.1 and eta has
been taken as 0.75 and let us take the number of iterations as 50,000. What is iteration? | take all
these patterns sequentially. | have four patterns and 50,000 means | have taken these four
patterns again and again until 50,000 iterations are over. If you do that, you see the weight vector
that is obtained between hidden layer and input layer is this one.

(Refer Slide Time: 54:58)

6.1353 7.3731

W' = |
63113 -7.1885

e

H"'F.|Ii 7255 -11 |ﬂ'-)?|
hias t, = 3.2888 , 1, =-3.6033

and t =-5.3166

This is the output layer, the weight between the output layer and the hidden layer. These are the
bias weights t; and t,. Again, you consider this is for hidden layer and input layer and this is for
output layer, the bias.

(Refer Slide Time: 55:20)

000587
LA R T
ERID R

TXIER|

After training if you give this input, this is x; and this is x. This is my desired output and actual
output is very close to desired output. You can say this is almost exact.

(Refer Slide Time: 55:38)

This is your error plot. You can easily see that although we have taken 50,000 actually within
5000, the training is over. It is not necessary actually to go up to this and in subsequent lecture
we will say why we should not train further after training is over because after 5000 literally
there is no training and this causes the problem of over generalization and that will be discussed

in the next class.

Now here is assignment for you. The first one; please note down this linear dynamical system

where the coefficients are minus 0.75.

(Refer Slide Time: 56:27)

nevrnl petwork, Plol the crmr surlage

-

0TS vk = D= 0.63v(k - 2)+ 1. 250k

= ldennly the lollowimng nonlingar sysiem uwang mulinlryered

This is second order system minus 0.65 and here 1.25 your law that This is wj, w, and wg,
Assume wi, Wy, W3 to be very small random number. Use the training data using this model
where u is a random number uniformly generated between 0 to 1 and apply this input data, use
this input data to train linear neural network and you should finally get the answer; w; should be

minus 0.75, w, should be minus 0.65 and w3 should be 1.25. This answer you should get.

The second one maybe little difficult for you; this you have to use a multilayered neural network,
feed forward network. | suggest you use around 10 hidden neurons. You have one output; the
output layer has only 1 neuron, input also has only 1 u k. Take only 1 neuron in the input layer.
So, the input layer has only one input. You can include one bias input. You generate the data for

this, using this actual model taking u k again randomly generated number from O to 1 and then

normalize this values y k and u k between 0 to 1 because your neural network has an activation

function whose output is between 0 to 1.

You have to normalize output also between 0 to 1 and after that, you train. After training just like
you could correlate in case of linear dynamical system, you cannot correlate, because your neural
network becomes a black box; we will discuss this more but what you can verify is you give new
data to this actual model, new input data and for that new input data find out what is the output.
Giving this new input data to your trained neural network, you should be able to get what is the

desired output. Good bye. We will meet again in next class.

