
Intelligent Systems and Control

Prof. Laxmidhar

Department of Electrical Engineering

Indian Institute of Technology, Kanpur

Module-1 Lecture-2

Multilayered neural networks

This is the second lecture of module-1 on intelligent control. The outline of this lecture is like

this: revision of the previous lecture, multilayer feed-forward network, back propagation learning

algorithm and learning XOR map.

(Refer Slide Time: 00:32)

These are the topics we will be discussing today. These are the summaries that we discussed in

the last class.

What you are seeing is a single neuron. We have multiple inputs that are multiplied with the

weight associated with this connection. They are summed up in this summing junction and then

you have an activation function. In linear neural network, what we consider is that this is simply

a constant. This I can say is linear.

(Refer Slide Time: 00:49)

The batch update law that we said is that new weight vector is old weight vector plus eta into

summation of all error terms due to all the patterns, whereas instantaneous update is done simply

by the back propagation term due to a single input pattern, where delta is the error back

propagated.

(Refer Slide Time: 1:15)

We will take another example today. This example is where we have two poles within the unity

circle, but they are all real poles; minus 0.9 and 0.8. This is my system dynamics and my model

is this. y p k is w1 y k minus 1 w2 y k minus 2 plus w3 u k minus 2.

(Refer Slide Time: 1:41)

I take the same single neuron with three inputs, y k minus 1 y k minus 2 and u k minus 2. When I

do that, I finally get these exact values; w1 is 1.72. w1 converges to 1.7, w2 converges to minus

0.72 and w3 converges to 0.02. This is what Error is minimum at w1 1.72, minus 0.72 is w2, and

w3 is 0.02. This error surface looks like this and finally, here is your global minimum.

(Refer Slide Time: 2:39)

We talked about a single layer linear feed forward network. Now, let us talk about single layer

nonlinear feed forward networks. In this, the activation function becomes non-linear. So, f is a

non-linear function. The question arises as to what kind of nonlinear function we can consider as

an activation function.

(Refer Slide Time: 3:09)

Here is a non-linear activation function. The axis is x and this is f of x and the function is f of x is

equal to 1 by 1 plus e to the power of minus alpha x. By changing alpha value, we can change

the transition from 0 saturation to saturation 1. The function varies from 0 to 1 and alpha

determines either the sharp rise or slow rise from 0 saturation level to 1 saturation level. This is a

non-linear function. Why did we select this activation function?

(Refer Slide Time: 3:22)

If we look at it, you may ask what is the speciality of this activation function? It is very clear

from the previous graph of this function that f of x is always limited or is limited by boundary 0

and 1. f of x is less than 1 greater than 0, but the interesting part of this function is if I

differentiate this function f of x, d f of x upon dx is equal to alpha f of x into 1 minus f of x. We

can see that derivative of such an activation function has a very simple form.

(Refer Slide Time: 04:21)

We had an activation function of this form: f of x is equal to 1 upon 1 plus e to the power of

minus alpha x. I said that the differentiation of this activation function is very simple to compute.

If you do that, you see that I get 1 upon square of this and then you differentiate this. Finally, this

is alpha e to the power of minus alpha x upon 1 plus e to the power of minus alpha x into 1 upon

1 plus e power minus alpha x. You can verify; this function is f of x and this function is alpha

into 1 minus f of x. This f of x becomes f of x into 1 minus f of x and an alpha here. Although it

is a nonlinear function, its computation is very simple because, it is in terms of f of x. That is the

specialty of this activation function.

(Refer Slide Time: 06:45)

We derive for f of x is equal to 1 upon 1 plus e to the power of minus alpha x which normally we

call as sigmoid function. For the sigmoid function, we showed that f of x equal to alpha f of x

into 1 minus f of x. Because of this simple computation, this is one of the reasons also for

making a choice of this activation function.

(Refer Slide Time: 06:51)

Here is another example of an activation function. The previous one was unipolar because the

activation function it has a value, from 0 to 1 as you vary the input x, from minus infinity to plus

infinity.

(Refer Slide Time: 07:39)

But now this activation function when you vary x from minus infinity to plus infinity you have

value minus 1 to 1 and this is a tangent hyperbolic function; the tangent hyperbolic function e to

the power of alpha x minus e to the power minus alpha x upon e to the power of alpha x plus e to

the power of minus alpha x. Again alpha is there just to control the nonlinearity in the function.

(Refer Slide Time: 08:25)

The activation function has a limit from minus 1 to 1. So it is a bipolar activation function and as

we derived earlier, you can derive and you can verify that the differentiation or derivative of this

activation function f of x with respect to x is alpha into 1 plus f of x into 1 minus f of x. Again, it

is a very simple computational form.

(Refer Slide Time: 09:12)

For this, if you use the sigmoid activation function that is, the previous one that is 1 upon 1 plus

e to the power alpha x, then we can go back to the basic principle of gradient descent rule. If we

apply the gradient descent rule for this nonlinear single layer feed forward network and if you

apply the gradient descent rule, you will get batch update. This one is batch update and this is

instantaneous update, where the delta is y p 1 minus y p y d p minus y p. These are all specific to

specific pattern; p refers to a specific pattern. The structure of the update law remains same; what

we had earlier, the same structure. The only difference is that back error propagated delta has

become different.

I will go back now to make a little comparison between linear neural networks and non-linear

neural networks in terms of the similarity and differences.

(Refer Slide Time: 10:26)

I have linear neural network on one side, here; here non-linear network. In a linear network, I

have x1 x2 and xn and then you have the computational unit; linear computational unit, w1 w2 wn

and here y. In case of linear this y is equal to sigma wixi. In case of a non-linear, the same thing;

it is a non-linear activation function. So, y becomes f of x. It the same as 1 upon 1 plus e to the

power minus sigma wixi. This is a non-linear network. What do we do? We apply the gradient

descent rule. wi t plus 1 equal to the wi t minus eta into del E by del wi. This is the gradient

descent rule. This is applicable for both linear neural network as well as a non-linear neural

network.

We have already shown, for linear neural network that this becomes wi t plus eta delta xi, where

delta is the error propagated y desired minus y. We are only considering instantaneous update

because mostly in control system we will deal with the real time implementation. Real time

implementation means instantaneous update, we cannot do a batch update. That is why …… we

will only consider instantaneous update and for this delta is equal to y d minus y, when it is

linear and you can compute the same thing here for non-linear network and you get delta is y 1

minus y y d minus y. Here we saw that delta for linear neural network is y d minus y and we

computed the same delta for non-linear network; y 1 minus y, y d minus y. This is the extra term

that comes because of differentiation of f. You can now appreciate why f has been selected as

sigmoid activation function. This is one of the advantages of computation.

Let me take you through the total process of the update of weights in simple neural network;

linear and non-linear. Here it is your input. Take the input pattern. Allow that pattern to be

processed by the network. Network actuates y. For each input pattern, there is a given y d,

desired output. Compute delta. This delta is y d minus y for linear network and for non-linear

network, it is y 1 minus y y d minus y. So, that error has been transferred and then you look at

here, in this side. This is your back error propagated, delta. This is your input pattern. Each

weight if you look at is simply being updated based on its input, x1 and what is the error being

back propagated. You can look at here the update algorithm is wi t plus eta delta xi. For

everything we can easily check, a very simple rule; the weight update is the original weight plus

eta, the learning rate into the input and the back error propagated.

(Refer Slide Time: 15:15)

Although a single layer linear feed forward network can learn any linear map, the same is not

true with a single layer non-linear feed forward network. We took last class and in today’s class

we showed that any linear dynamical system can be mapped or can be learned or can be

identified using a single layer linear neural network. But this is not the case with non-linear

dynamical function. We cannot identify or we cannot approximate any non-linear function using

a single layer neural network. So that is the bad part, bad news. But it turns out that a single layer

nonlinear feed forward network can only classify those functions which are linearly separable.

We saw the difference between weight updates in case of linear neural network and non-linear

neural network when there is only single layer; simple neural networks. We also showed that any

single layer linear neural network can approximate any linear dynamical system. If we could

have mapped any nonlinear dynamical system using a simple non-linear neural network,

probably we would have been happy, but this is not the case. It turns out that a single layer

nonlinear neural network feed forward network can only map those nonlinear functions that are

linearly separable. Those functions which are not linearly separable cannot be mapped or cannot

be learnt using a single layer non-linear feed forward network. This is the bad news. So, what is

this linear separability?

Let us consider a simple static function. All of you know an OR function, OR network. Any OR

gate has two inputs, x1 and x2, output is yd. These are the truth table. Input is minus 1 minus 1

output is minus 1 and in all other cases, the output is 1. That is the OR network.

(Refer Slide Time: 18:51)

Linearly separable - we want to address this one. We have an OR function. All of you are already

aware of the OR function. The truth table is this becomes minus 1, this becomes minus 1. In all

other cases, this is plus 1. This is your truth table. Given specific input pattern, output is either

minus 1 or plus 1. Now, let us look at graphical map of this function. (Refer Slide Time: 20:06)

Minus 1 minus 1 is here. This is say 1. This is 1, minus 1 and minus 1. This is your point, where

it is minus 1 and all other cases like minus 1 plus 1, you have plus and plus 1 plus 1, you have a

plus. You have plus. You see that if I draw a line here, it is a linear line. It is able to separate a

specific class from another class. For this class of input pattern output is 1 and for this class of

input pattern, output is minus 1.

This particular function that is OR function is known as linearly separable function. This can be

easily mapped using a non-linear single layer neural network; very simple. To conclude, a

linearly separable function - a function is linearly separable if there exists a hyperbola that

distinguishes between one class and another class. Thus linearly separable, but there are many

cases, many functions which are not linearly separable. A very simple example is XOR function.

Let us look at another example XOR map.

(Refer Slide Time: 21:36)

In this function, we have two inputs and one output and the truth table looks like this. This is

your XOR map. For this case, you have plus 1 output and the other two cases you have minus 1

output. Let us look at the graphical map. When you have minus 1, This is your x1, this is your x2.

So, minus 1 and minus 1, you have minus and when you have plus 1 and plus 1, you have again

minus and other two cases you have here plus; that is plus 1 minus 1 and when you have minus 1

plus 1 you have also plus.

In this case, you cannot find a single line that will separate this class from this class. This class

cannot be separated from this class using a single line. There is a function where the function is

not linearly separable, but this is non-linearly separable. I can create a non-linear decision

boundary that separates this class from these two classes. This class, the minus class is separated

from plus class using a non-linear decision boundary. This is called the functions which are not

linearly separable.

Let us summarize what we discussed now. Limitations of a single layer non-linear feed forward

network is a single layer non-linear feed forward network cannot even approximate an XOR

function; that is it can only approximate only those functions which are linearly separable.

(Refer Slide Time: 24:16)

There are many complex functions. They are not linearly separable. You can refer to Minsky and

Papert’s book called “Perceptions” to know more about this linear separability and non-linear

separability. This book is published by Cambridge MIT press, 1969. However, later researchers

found that if we increase the complexity of the network in terms of the number of layers, but we

only consider a single layer network; 2 layer, 3 layer, 4 layer that is multi-layer network, then

such a feed forward network can always approximate any non-linear function.

One of the very key research contributions are by Hornik Stinchcombe and White published in

1989 in Neural Networks, Multilayer Feedforward Networks are universal approximators. The

problem that we faced from single layer neural network for non-linear approximation can be

mitigated or eliminated by increasing the layers to more than 1. It turns out that even a 2 layer

network with 1 hidden layer, consisting of infinite neurons can also approximate a non-linear

function.

(Refer Slide Time: 26:05)

When this neural network becomes complex, can we write the learning algorithm, the region the

way we wrote for single layer network? The answer is yes, little adjustments have to be done, but

implementation-wise it is not difficult. The algorithm that was derived using gradient descent for

nonlinear neural networks with nonlinear activation function is popularly known as back

propagation learning algorithm, although the learning algorithm still is derived using gradient

descent rule.

We will make this point very clear why this learning algorithm is known as back propagation.

We gave some hints in the single layer network that computed error output is back propagated

and based on that, the weights are being updated. Based on that information, the weight update

formula takes a very simple shape, simple structure. Again, for a multi-layer network, is it very

difficult to derive the learning algorithm? We will derive today the learning algorithm for a two

layer network and in the next class we will show, for any number of layers, the hidden layers

may be of any numbers, it can be in capital N, but the learning algorithm derivation is very

simple. But all these learning algorithms that we will derive in this course will be instantaneous

update rule. The reason being, again as I said, control systems are all real; they require real time

implementation and we have to be considerate from that point of view. So, let us summarize

what we are now going to do. This is the focus of today’s class.

(Refer Slide Time: 28:10)

Multilayer feed forward network has more hidden layers and again, when I say feed forward

network, the connections are all allowed only from any layer to its succeeding layer, but the

connections are not allowed from any layer to its preceding layer. The example is you see here

there are four layers. These are all inputs. First hidden layer, second hidden layer, third hidden

layer and this is output layer. When we say the number of layers, we do not count the input layer

as one of the layers. When I say two layered network, then I have only one hidden layer and next

layer becomes output layer.

(Refer Slide Time: 30: 26)

This particular configuration means there are sub-units, sub-neurons here and this particular

configuration, if I connect you will see why I say feed forward network, because I am able to

connect any layer from its preceding layer. That means connections are allowed from the

preceding layer to any layer, but I cannot allow the feedback connection. (Refer Slide Time:

30:54) This is called feedback connection; this is not allowed. This is allowed. From this layer, I

can connect to this layer. This is allowed, but I cannot allow from this layer to connect to this

layer. These are called feedback connections. They are not allowed and that is why this is known

as feed forward network.

Today, we will derive a two-layered feed forward neural network with sigmoid activation

function. We can very easily see that this is 1 layer; this is the only hidden layer and this is the

only output layer; output layer is always only one.

(Refer Slide Time: 31:34)

What will we do? We have a certain convention that we will put while deriving a back

propagation learning algorithm for this. The same simple principle; given training data, we allow

the input to pass through the network, compute the error here, use the gradient descent rule and

the back propagated error are used to modify the weights here that is between output layer and

hidden layer and again another form of back propagated error here has to be used for

modification of the weights between input layer and hidden layer. This is again the convention

that we will use.

 (Refer Slide Time: 32:20)

i is the index for a typical neuron in the output layer. This you can see here (Refer Slide Time:

32:30), i is the index for neurons that are used in this output layer, j is the index for neurons in

the hidden layer and k is the index for the input patterns and the weights for a typical weight, that

is between the hidden layer and the output layer is denoted or represented by wij. i is here and j

refers to this particular layer and here a typical weight between input layer and output layer is

represented by wjk, where j refers to index for middle layer and k is the index for input layer.

This is what we have said here. i, j and k are three different indexes for three different layers;

input, hidden and output. This is the weight; typical weight representation between hidden layer

and output layer and this is the typical weight representation for the weights between input layer

and output layer.

Now, let us see the derivation of the back propagation algorithm.

(Refer Slide Time: 34:03)

First what do we do? As I said, in the network you allow the input to pass through the network

and compute the response y1 y2 yn. To compute y1 y2 yn, we assume that the hidden units had

output also u1 u2 u3 and these output are first computed; the outputs of the hidden units are first

computed and using the output of the hidden units, the output of the output layer are computed.

Just for clarity, again I say, all these neurons are sigmoidally activated. They use sigmoid

activation function. We can say that vj is 1 upon 1 plus e power minus hj, where hj is the total

input reaching the jth neuron of hidden layer. Similarly output of the ith neuron in the output

layer is 1 upon 1 plus e to the power minus si, where si is equal to sigma into wijvj. si is the total

inputs reaching the ith neuron in the output layer. Here we are computing the cost function for

instantaneous update which is this value equal to half summation yi d minus yi squared.

(Refer Slide Time: 35:48)

So, the gradient descent rule is the same. The weight update rule for weights between hidden

layer and output layer, we will have this particular …... That is the principle of gradient descent

wij into t plus 1 equal to wij t minus eta del E divided by del wij. Weight update rule for weights

between the input layer and the hidden layer is wjk t plus 1 equal to wjk t minus eta del E divided

by del wjk.

How do you find now del E by del Wij and del E by del Wjk? This is what we have to find out.

Here we showed this diagram. Again, I drew in the black board for clarity, because I would like

to derive the whole thing in black board. You have input x1, x2 up to xp and output y1 to yn, n

different computational units and you have hidden layer with m hidden neurons, whose outputs

are v1, v2, vn and as I said, wij is the typical weight connecting ith neuron in the output layer

with jth neuron in the hidden layer. Similarly, wjk is the typical weight between hidden layer and

input layer. What will we do is in the first phase we will allow this input to pass through the

network and we compute what is y1. So, let us compute that.

(Refer Slide Time: 37:36)

What we are doing is we are computing the output of a hidden neuron, vj. vj, the output of the jth

neuron of the hidden layer is 1 upon 1 plus e to the power minus hj where hj is the total input

reaching the jth neuron and hj is wjk xk.

(Refer Slide Time: 37:57)

If we go back, you see here vj. Say for example, I want to compute v1. What do I do? I compute

what is h1? h1 is sigma w1k into xk. That is w11 into x1 plus w12 into x2 so on plus w1p into xp.

This way we compute what is v1, v2 and vm and after we computed v1, v2, vm, we will now

compute what is y1 up to yn?

(Refer Slide Time: 38:55)

This computation is yi is 1 upon 1 plus e to the power minus si where si is sigma wij in to vj.

This you can also verify in the previous one.

(Refer slide time: 40:01)

For example, I want to compute y1. First I will compute what s1 is and you can say s1 is w11 v1

plus w12 v2 and so on plus w1m and vm. Once you compute s1, the next …. is y1. y1 is 1 upon 1

plus e power minus si. This is a sigmoidal activation function. We are done with how to compute

y1 to yn given x1, x2 and xp using forward propagation.

(Refer Slide Time: 41:32)

We go to computing the error, error at the output. I am given actually y1 d, y2 d, y3 d and yn d.

This is given. I compute what is y1, y2, y3 and yn? This is computed. The network computes y1,

y2, y3 and yn given y1 d, y2 d, y3 d and yn d. So, I compute the cost function. The instantaneous

cost function is half y d i minus yi square sigma over i. I subtract from y desired y, square it and

add all the output units in the output layer. That is how I compute the cost function. This is

called instantaneous cost function and this instantaneous function is computed for a specific

pattern, for a given pattern I compute this cost function.

Now, I go to the next. Once I compute what is E, I have to compute for the weight, a typical

weight between hidden layer and output layer wij, the weight whatever was in previous iteration

whatever is wij that has to be updated by adding a gradient term.

(Refer Slide Time: 42:50)

This is the weight update for weights between hidden layer and output layer. All that you have to

do is simple derivative principle. How to differentiate given y and you know the function

structure; so, you simply differentiate. All that we have to do is that del E upon del wij. If I can

compute I just have to put it there in this equation. So this is equation 1. I have to put that I

differentiate del by del wij and here I have half sigma over i y d i minus yi whole square. You

can see that only the error contribution due to ith neuron is a function of wij.

Hopefully, you are very clear. If I am considering this particular unit this is my typical weight,

which is w11 and I want to update w11. Then you should be very clear that only the error

computed here at y1 is a function of w11. You can very well see that yn is not a function of w11.

Once you are very clear about that I can write this one as del by del wij half y d i minus yi whole

square. Other terms are not relevant.

(Refer Slide Time: 44:59)

We go again, we continue; del E by del wij, we found out to be del by del wij half y d i minus yi

square. You can check it; y i d minus yi into, here minus, del yi by del wij. Hopefully, you are

now clear with this expression. This is, I can say, equation number 2. From equation number 2,

we have to find out what is del yi by del wij? What is yi? yi is 1 upon 1 plus e to the power of

minus si. So, del yi by del wij has to be written like this; del yi upon del si into del si by del wij.

(Refer Slide Time: 46:13)

We go to the next step. If yi is 1 upon 1 plus e to the power minus si, we have already discussed

this kind of activation function, if I differentiate si then I find the answer is yi 1 minus yi. This

we have already said. The rest is left is del si by del wij. To find out del si by del wij, I must write

down del by del wij and si is sigma wij into vj. This is simply vj because this is simply

summation of terms. So, with respect to wij, only vj comes out. If we want to differentiate with

respect to wij vj comes out.

(Refer Slide Time: 47:33)

We have finally reached this solution that is del E by del wij is minus y d i minus yi into del yi

upon del wij which was equation number 2. That reduces to minus y d i minus yi into yi 1 minus

yi into vj. This is the final expression; third. This term comes from del yi upon del si and this

term comes from del si upon del wij. What was our earlier update equation? wij t plus 1 equal to

wij t plus, this was actually minus, I am making plus because I am getting here minus eta del E

upon del wij. That was minus; here the term is minus so, this becomes plus eta y i d minus yi into

yi 1 minus yi into vj. This is your final equation for the weight update law for weights between

hidden layer and output layer.

(Refer Slide Time: 49:24)

Finally, I write down the weight update equation for the weights between the hidden layer and

output layer is eta delta i vj where deltai is yi 1 minus yi ……. This should not be surprising to

you, because for single layer neural network also for non-linear neural network we found delta to

be of this form and the input is vj. I will not now derive the next update equation that is required

for the weights between hidden layer and input layer which is wjk t plus 1, which also has this

similar formula that is wjk t. You can take just little pain to find out. This is deltaj xk. You say

that it is a very nice formula where deltaj is vj 1 minus vj sigma deltai wij over i. I give this as an

exercise for you to derive this weight update equation.

(Refer Slide Time: 51:30)

We are done with the derivation of the back propagation learning algorithm. I will just explain in

the figure; we pass the information from here to here. We have a general weight update

algorithm for these weights here and another general weight update algorithm for the layers here.

So, that is the summary of the weight update algorithm.

What you learnt today is the gradient descend algorithm. The derivation of this algorithm for

multilayered neural network, we will apply that derivation for learning the XOR map which you

could not solve using single layer feed forward network using non-linear activation function.

There as usual this is our cost function and this is our model of XOR network.

(Refer Slide Time: 52:39)

We have two inputs x1 and x2. These are our weights and we have put two bias units. This is the

bias weight. That is one, I have a fixed input 1 and weight is t1, here is t2. You can also say this

is If you consider this 1 to be here and another input, external input then you can also easily say,

this is w13 and this is w23. This is w13. It has been represented by t1 here and w23 is represented

by t2 here and these weights just for clarity, we have kept w 1 0 and w 2 0 and the bias weight is

kept as t0. That is input is 1 and the weight is t0 and the output is y. Now, you update the weight.

This is t0, w 2 0 and w 1 0 using the weight update algorithm for wij and t2, t1, w11, w12, w22,

you update using the weight update algorithm for wjk.

 (Refer Slide Time: 54:01)

We do that. To start with all these weights you initialize between minus 0.1 to 0.1 and eta has

been taken as 0.75 and let us take the number of iterations as 50,000. What is iteration? I take all

these patterns sequentially. I have four patterns and 50,000 means I have taken these four

patterns again and again until 50,000 iterations are over. If you do that, you see the weight vector

that is obtained between hidden layer and input layer is this one.

(Refer Slide Time: 54:58)

This is the output layer, the weight between the output layer and the hidden layer. These are the

bias weights t1 and t2. Again, you consider this is for hidden layer and input layer and this is for

output layer, the bias.

(Refer Slide Time: 55:20)

After training if you give this input, this is x1 and this is x2. This is my desired output and actual

output is very close to desired output. You can say this is almost exact.

(Refer Slide Time: 55:38)

This is your error plot. You can easily see that although we have taken 50,000 actually within

5000, the training is over. It is not necessary actually to go up to this and in subsequent lecture

we will say why we should not train further after training is over because after 5000 literally

there is no training and this causes the problem of over generalization and that will be discussed

in the next class.

Now here is assignment for you. The first one; please note down this linear dynamical system

where the coefficients are minus 0.75.

(Refer Slide Time: 56:27)

This is second order system minus 0.65 and here 1.25 your law that This is w1, w2 and w3.

Assume w1, w2, w3 to be very small random number. Use the training data using this model

where u is a random number uniformly generated between 0 to 1 and apply this input data, use

this input data to train linear neural network and you should finally get the answer; w1 should be

minus 0.75, w2 should be minus 0.65 and w3 should be 1.25. This answer you should get.

The second one maybe little difficult for you; this you have to use a multilayered neural network,

feed forward network. I suggest you use around 10 hidden neurons. You have one output; the

output layer has only 1 neuron, input also has only 1 u k. Take only 1 neuron in the input layer.

So, the input layer has only one input. You can include one bias input. You generate the data for

this, using this actual model taking u k again randomly generated number from 0 to 1 and then

normalize this values y k and u k between 0 to 1 because your neural network has an activation

function whose output is between 0 to 1.

You have to normalize output also between 0 to 1 and after that, you train. After training just like

you could correlate in case of linear dynamical system, you cannot correlate, because your neural

network becomes a black box; we will discuss this more but what you can verify is you give new

data to this actual model, new input data and for that new input data find out what is the output.

Giving this new input data to your trained neural network, you should be able to get what is the

desired output. Good bye. We will meet again in next class.

