
Intelligent Systems and Control

Prof. Laxmidhar Behera

Department of Electrical Engineering

Indian Institute of Technology, Kanpur

Module – 4 Lecture – 2

Mamdani type FLC and parameter optimization

We are on the last module of this course, intelligent control module four. The broad

topics is fuzzy control, in the first class we described this. Then, we took a loop on the

various fuzzy controls schemes that are prevailing in the literature. Today, we will now

be discussing all those schemes in depth. Today, we will be discussing on Mamdani type

fuzzy logic controller and parameter optimization.

(Refer Slide Time: 01:06)

Basic architecture of a Mamdani type fuzzy logic controller, we have already discussed in

the previous, in the second model on fuzzy logic about this we will revisit that. The issue

always with Mamdani type is that, how do you optimize the parameters? Very briefly we

will discuss genetic algorithm, fuzzy logic controller for a single link manipulator. Now,

univariate Marginal Distribution Algorithm, this is another genetic algorithm (01:41)

evolutionary computation approach for optimization. We will compare both this genetic

algorithms, simple genetic algorithm and univariate marginal distribution algorithm in a

generic example of a robot arm control. So how does fuzzy logic controller work?

(Refer Slide Time: 02:00)

Define the control objectives and criteria. Given a system; we have to say what the

control objectives are, what parameters of the system to be controlled, what kind of

response is needed, what the possible system failure modes are. Now, for this system,

determine the input and output relationship and choose a minimum number of variables

for input to the fuzzy logic controller engine, typically error in rate of change of error for

fuzzy PID controller. I hope that you remember in our last class, in fuzzy logic not in the

last class, in previous one of our previous classes. We have discussed that, how the PI or

PID type of controller can be represented in terms of error and change in error or their

function of error or change in error. Using the rule based structure of fuzzy logic

controller, break the control problem down into a series of IF X AND Y THEN Z rules

that define a desired controller output response for a given system input conditions.

Create fuzzy logic controller membership functions that define the meaning values,

linguistic values of input output terms used in the rules because; a fuzzy logic controller

resists the crisp input.

(Refer Slide Time: 03:19)

But, the computation is through linguistic variables and after that the output is again crisp

because, the system which is out there is processing crisp input and crisp output. The next

is the test of the system, evaluate the results, tune the rules and membership function and

continuously simulate until satisfactory results are obtained.

(Refer Slide Time: 03:59)

So, complete architecture of a fuzzy logic controller. This is our plant of process. You

have sensors and then you get the plant feedback through sensors which are converted to

fuzzy linguistic variables which, is known as fuzzification. That goes to the rule base and

then inference mechanism. Then, information mechanism actuates the control signal in

fuzzy variable which is converted to crisp values through defuzzification and the driver

or actuator gives to the control signal the actual process. This is our architecture.

(Refer Slide Time: 04:45)

You see that, normally if say for example, this is my error and this is my membership

function mu and maximum value is 1. You see that, if my change in error, this is in unit,

so we can define here, it shows that, this is positive very large, positive large. This is thus

giving an idea what pvl values is positive very large. Similarly, nvl is negative very large.

So, you say that, this is the way. This are the linguistic values, negative large negative

medium, negative small 0, the 0 is around the value 0, positive small, positive medium,

positive large and positive very large. This way you see that, in this case the variable e

the error has been fuzzy partitioned into 9 fuzzy linguistic variables from negative very

large to positive very large. So, once you fuzzify a crisp variable then we are almost very

clear about the rule base.

(Refer Slide Time: 06:19)

For example here, a rule base for fuzzy PID controller has two input variables, error and

change in error, if each input variable is fuzzy partitioned as negative very large, negative

large, negative medium and so forth until positive very large respectively then, the fuzzy

rule base is that hardly found at the rule. So this is my error and this is my change in error

(Refer Slide Time: 06:49). What I am saying that error is negative very large, negative

large until positive very large and change in error is this is d is differential term. So, that

is also negative very large, negative large, negative medium, d simply refers here to

change in error. That is also fuzzy partitioned into 9. So, 9 into 9 obviously the number of

rules are 81. So, how do I do value is, if I say error is negative very large and change in

error is negative very large then, my control actions will be negative very large.

We can take any other example, let us say positive medium my change in error where

error is a 0. The action should be positive medium. So, this is way. You see that, all 81

rules are possible maximum number of rules given 8 fuzzy partitioning zones, in 2

variables. Then, 9 into 9 total 81 rules, 81combinations are possible. Total is 81 rules.

Once rule is given then, given a situation we see which the rules are. Like you know if

you look at here, given a situation all the things will not fire. For example, you see here if

my crisp values are here. Only 2 rules will fire 0 error and positive small, in that sense,

maximum time only two rules fire, otherwise it all depends how you fuzzify, I cannot say

that only two rules firing. Also you can make rules of only one rule; atleast one rule has

to fire. Otherwise your scheme is not right. You have to design in such a way atleast one

rule will fire, given a situation but in general more than one rule fires. But in general

fuzzy partition is done in such a way that two rules fire. That is why, you are saying two

rules: Rule 1 and rule 2.

(Refer Slide Time: 09:15)

Given this, we find out this is my crisp input. This is rule 1 fires and gives, this is my

control action and rule 2 fires and gives me the control action like this (Refer Slide Time:

09:35). Then, what we do is, the sided portion is the control action. This is given by mean

principle and now we add this to shaded area. Then, we get this complete area and this is

my complete action control action. How do I find out this is fuzzy control action? This

fuzzy control action is converted to the crisp control action using center of gravity

method. This we have already discussed, center of gravity method. In general now I

would like to turn your attention, why we are doing fuzzy logic controller? We are doing

because; fuzzy logic controller was conceived as a better method for sorting and handling

data.

(Refer Slide Time: 10:27)

It has proved to be an excellent choice for many control system applications since, it

mimics human control logic. It can be built into anything from small hand made products

to large computerized process control systems. Fuzzy based control has become highly

competitive due to its better performance, high reliability, robustness, low power

consumption and cheapness. The thinking process involved in fuzzy realm is not complex

it is simple, elegant and easy to apply.

(Refer Slide Time: 10:59)

Fuzzy logic control is one of the methodologies for solving control system problem. It

lends itself for implementation in systems, ranging from simple small embedded micro

controller to large networked multi-channel PC or workstation based data acquisition and

control system. It can be implemented in hardware software combination of both Fuzzy

control directly also can be implemented in fuzzy hardware, fuzzy chips. A fuzzy logic

controller provides the simple way at a definite conclusion based up on vague ambiguous

imprecise noisy or missing input information. Fuzzy logic controller approaches to

control problem, mimics how a person making a decision at a much faster rate.

(Refer Slide Time: 11:51)

It has inherently robust, since it does not require precise noise free inputs. The output

control is a smooth control function, despite a wide range of input variations. Since the

fuzzy logic controller processes user define rules, governing the target control system. It

can be modified and tweaked easily to improve or alter the system performance

drastically. New sensor can easily be incorporated into the system by generating

appropriate governing rules. Fuzzy logic controller is not limited to a few input or

outputs. It allows the sensor to be inexpensive and imprecise. It keeps overall system cost

effective and low complexity.

(Refer Slide Time: 12:36)

Because of the rule based operation, a reasonable number of inputs can be processed and

numerous outputs can be generated. Defining the rule becomes complex if too many

inputs and outputs are chosen for a single implementation. It is better to break control

system into smaller chunks and use several smaller fuzzy logic controllers that can be

distributed on the system. Fuzzy logic controller can be used to control non linear system.

That would be difficult or impossible to model mathematically. This opens doors for

control system designer that would normally be deemed infeasible for automation.

(Refer Slide Time: 13:15)

Finally, fuzzy logic controller provides a different approach to control complex systems.

This method focuses on what the system should do, rather than trying to model how it

works. One can concentrate on solving the problem rather than trying to model the

system mathematically, if that is even possible. On the other hand the fuzzy approach

requires a sufficient expert knowledge for the formulation of the rule based on the

combination of the sets and the defuzzification.

(Refer Slide Time: 13:42)

The drawbacks of the Mamdani types, so now we talked about fuzzy logic controller, it is

in a kind of found the positive aspect of fuzzy logic controller. Now we are only

discussing Mamdani type of fuzzy logic controller. The problem is that, you have rule

base and this is associated with many parameters, the membership parameters. These

membership parameters because; how many rules, how many fuzzy zone portioning and

all those things and membership function, whether you can select… if you are selecting

Gaussian membership function then a Gaussian membership function is characterized by

two parameters. One is the mean another is the sigma.

How do we optimize? Because normally what the engineer does is that he kind of

heuristically tunes his rules. But can there be proper method of tuning? Normally the

genetic algorithm is good technique to update these parameters. But, this is only possible

if you are doing it offline simulation. That is the model that is being controlled. We have

some kind of mathematical form. The system that we are trying to control we have a

mathematical model for it. Then, we can always design a fuzzy logic controller using

Mamdani type. We can optimize the parameters using genetic algorithm. Normally what

is done is that, given a physical system you take some approximate mathematical model

and do offline simulation. Optimize the parameters and take to the real time system and

their heuristically tune the parameters. So, GA’s perform parallel search. What is GA and

GA’s perform parallel search? Find out optimal parameters where each local search does

either a hill climbing or a gradient search.

(Refer Slide Time: 15:55)

A genetic algorithm you see the first initial population means this is when any population

means in the case of a control systems solution random solution space of parameters. If I

know every parameter has certain range. In that range I create random numbers than I

take each solution set and then I take each parameter set and then evaluates the fitness.

Based on the fitness value but in this case what is the fitness obviously it is tracking error.

If the tracking error is minimum in a specific case that as in the top. Similarly, there are

various, so we reorganize, rearrange the population of fitness, in other various methods

selection and specifically for control system, you are very comfortable simply doing

proportional selection. Proportional selection means, according to the fitness the selection

is done. If I say the initial population is 100 and I will always select after every iteration,

only 30% of them. That means 30% of the top best candidates are selected and from

those candidates 30% from this 100. So, I have 100 I categorize then according to their

fitness value and then 30% I take and these 30% through crossover and mutations, are

again converted 100. I started with 100 using fitness, evaluate through fitness I did a

selection in terms of proposal of selection 30% best out of 100 is taken and through

crossover and mutation, I duplicate this 30 to 100 again.

Initial population was 100.We went through the evaluation process using a fitness cross

function. Then, we did the selection using the best values and then using cross over

mutation we again got 100. What is the stopping criterion? Stopping criteria is that how

much tracking error I need. Normally we select a stopping criteria is that what is the

minimal requirement for tracking error or root mean square of the tracking error

something like that. Or you can always say also I do just 100 iterations or 1000 iterations.

One of them, whatever stopping criteria you get out of those solutions, what is the best

you take and that best is your optimal solution. Now we will utilize this concept to

control. We take a very simple example. It is better to learn as subject through simple

example.

(Refer Slide Time: 19:44)

Again consider a single link manipulator is what you are seeing here. This is my link, this

is the motor. I apply the control torque this is my angle theta (Refer Slide Time: 19:54)

and this if I assume this theta is actually from this angle theta. This is angle theta. Then,

ml square theta, double dot plus mgl sin theta is tau. So, m is 1 kg l is 1 meter g is 9.81 kg

per meter square.

(Refer Slide Time: 20:22)

It is desired that the link will follow. We are talking about how to implement for remote

manipulator PD controller. It is desired the link will follow a desired trajectory x d equal

to sin t. What we are saying that this will simply oscillate around its particle position like

this. The PD controller tracking error is obviously sin t. The desired trajectory minus

theta t the PD controller tau equal to Kp plus e (t) plus Kd into e dot t. So this is our PD

controller. Kp into error plus the derivative gain into the differential of the error Kp, is the

proportional gain and Kd is the derivative gain. Although parameter Kp and Kd are

heuristically determined the optimal values can be obtained using genetic algorithm. For

certain purpose, what we did that this is the multi objective function. We want to

minimize the cost function in error as well as the change in error. Here also the total

controls effort the square. We got the quadratic function in error in quadratic function

change in error in the actuated control input. We want to minimize both. So, doing that

running a genetic algorithm for this, we got the Kp value is 74 and Kd value is 3.

(Refer Slide Time: 22:25)

We will see that, for same remote manipulator also can be control a feedback

linearization. For this again the same manipulator ml square plus double dot plus mgl sin

theta tau. It is desired that, it will track sin t again setting the error sin t minus theta t as

the error. We get the derivative of error is cos t minus theta dot(t) and the double

derivative of e error is minus sin t minus theta double dot(t). If I select a filter tracking

error r (t) to be e dot(t) lambda e(t) then, I can write r dot(t) is e double dot(t) plus lambda

e dot(t). This e double dot(t) can be written here minus sin t minus theta double dot t plus

lambda e dot t. So here, this theta double dot(t) (Refer Slide Time : 23:27) can be taken

from here from this expression which is tau minus mgl sin theta upon ml square theta is

theta double dot. This is theta double dot minus lambda e dot is retain here minus sin t is

written here. This is my closed loop error dynamics. So to make, if I take the value of m

equal to 1, l equal to 1, my final close loop dynamic becomes this one r dot(t) r dot(t) is

minus sin t, plus lambda e dot(t) minus tau minus g sin theta. How do I select my control

law tau such that, this is stable? So if the control law is selected, tau is minus sin t plus

lambda e dot plus g sin theta plus kr. Then, the closed loop error dynamics becomes r

dot(t) is minus kr. This is stable, if k is a positive constant. This is a very simple feedback

linearization because it is a non linear system we selected tau, the control law which is

this one. This is the control law.

If we select this control law, we are able to show that, the close loop error dynamics is

given by r dot(t)is minus k dot. This is a stable dynamics.

(Refer Slide Time: 25:16)

What we did is that, we did a feedback linearization. Before that, we did classical PD

controller and also using the earlier fuzzy controller also, we implement a fuzzy

controller. Now let us see the performance. PD controller what is the performance you

see that, this is my solid line is my desired and the broken line is actual. So, this tracking

is not so good which is natural because, simple PD controller and hence the control

access are given here. This is most optimal performance of the PD controller because you

have optimized the parameter of Kp and Kd using genetic algorithm.

(Refer Slide Time: 26:06)

Now feedback, this is FBL is feedback linearization technique. So using this controller

you easily see that the tracking is very good, as well as this is the oscillation in the input

torque is reduced here and it is very smooth torque. Now, we have implemented as fuzzy

logic controller g optimization.

(Refer Slide Time: 26:37)

Using this, when we again did the performance is good with the control actuation is also

very smooth just like Feedback linearization, it is the best achieves, the very good

controller. So, fuzzy logic controller, it was started with this g of optimization also

provide the similar.

(Refer Slide Time: 27:12)

If I want to compare comparative performance, you see that, fuzzy controller is now with

this same. You can see that same controller input effort. You see that, this is the

comparative because; we are almost applying same control input 5.1, 5.1, 4.8 Newton

meter. This is root mean square control source. So, total control at every time. If I have

u(k) or if I have u(t) ut square into dt. Find out and then average it. Then, take the root

means square. I get this control effort and correspondingly you see fuzzy controller has

the order of error is 10 to the power minus 3. But, PD controller has 10 to the power of

minus 2 and linear feedback controller say 10 to the power minus 4, so fuzzy controller is

almost equivalent to linearization feedback controller. You will now of course, this is just

an example. Using some simple example the fuzzy logic controller also can be further

improved. The invariant you will now discuss about another evolutionary computation

approach for optimization the Univariate marginal distribution algorithm.

(Refer Slide Time: 28:59)

UMDA estimates the distribution using mean field approximation. Each string in the

population is represented by a binary factor x. The algorithm generates new points

according to following distribution. This is called mean field approximation. This is the

distribution of a total string and this is the individual bits in the string. So, the UMDA

algorithm that is what is meaning of this is that, if x is a factor of x1, x2 and x3, then, p(x)

is simply p(x)1, p(x)2, p(x)3. This is called mean field approximation in probability

theory. So, probability joint distribution is computed simply multiplication of individual

or marginal distribution. So, the step 1: set t equal to 1 and generate n binary strings

randomly and this binary streams represents certain parameters. Step 2: select m less than

n strings according to a selection method, normally proportional method. Step 3: compute

the marginal frequencies for each one, from the selected strings. Generate new n point

according to this distribution which we have derived. Set t equal to t plus 1. If the

termination criteria not met, go to step 2.

(Refer Slide Time: 30:48)

The example I will say, let us say I have 3…, the consist 3 bits and I have such 3 such

strings. Then, you can easily simply the marginal frequency of 1 in the first bit is 1 upon

3. Marginal frequency of 1 in the second bit is 2 by 3 and marginal frequency of 1 in the

third bit is 2 upon 3. Obviously, the probability join distribution of x1 equal to 1, x2 equal

to 2, and x3 equal to 1 is simple multiplication of this, which is 1 upon 3 into 2 upon 3

into 2 upon 3. Then, easily see this is 4 upon 3 cube or 4 upon 27. How do we do it? New

population is generated according to this marginal frequency distribution. What I do in

the next time when I generate, I generate here. So, I generate, what I had say 10 strings. I

did a selection and I proved to 3 best and this 3 best, are converted again to 10 number of

population to 10 using this. Why I do is that the first strings, they are generated. I will

generate 1 with the probability 1 up on 3 and with probability 1 up on 3 1 is selected

probability 2 up on 3 0 is selected in the first string, first bit and second bit with the

probability 2 up on 3 I select 1, otherwise 0 and similarly third one with probability 2 up

on 3 I selected 1 and with probability 1 up on 3 as select as 0.

(Refer Slide Time: 33:12)

This is the UMDA univariant marginal distributional problem. Now we will show you in

this particular lecture, the application of this particular invariant marginal distribution

algorithm to a robot arm control. The general approach to control a robot arm is to

actuate a feed forward torque which is computed based on inverse dynamics model of the

robot arm and a feedback torque that is computed using position and velocity feedback

terms. The schematic diagrams for such control architecture are as follows: What you are

seeing is here that given a robot control robot arm, this is my robot manipulator. The

normal approach to control a robot arm is that, I have an inverse dynamics which gives

me given the desired trajectory gives me what is the feed forward torque. Given the

desired trajectory using the feedback, actual output feedback I have a PD controller and

that actuator is tau feedback. This is the total tau and the objective is that, the robot

manipulator should follow the desired trajectory. That means q should follow q d. This is

the generic architecture for robot manipulator. This is inversion, this is for stability. Now

you see that, given if I assume that robot manipulator dynamics are not exactly known or

there are uncertainties what I can do is that, I can learn inverse dynamics of robot

manipulator.

I put this inverse dynamics here. I can also design instead of PD controller a fuzzy PD

controller. Now I am controlling the same system using a different approach that is fuzzy

logic controller.

(Refer Slide Time: 35:26)

What is inverse dynamics model? In the absence of dynamic and parameteric

uncertainties the inverse model can be directly computed in terms of desired link position

the velocity and acceleration using forward dynamics of the robot arm. This is very

simple in the general robot dynamics is m theta double dot c theta dot plus g is tau. All

that I have to do is that, if I know mlg. Then, given theta d theta dot d and theta double

dot d. I can compute tau. This is the best way to control the robot manipulator because

this is the inverse dynamics but, unfortunate most of the time the parameters that we

identify m c and g. They may not be exact. However, the inherent uncertainties compile a

control engineer to estimate the model using neural networks or fuzzy logic. The generic

form of the inverse dynamics for a robot manipulator is thus given as tau is the function

of q desired velocity desired and acceleration desired. So, tau is the required torque and

position velocity and acceleration as the link position the velocity acceleration

respectively.

(Refer Slide Time: 37:09)

The fuzzy model of the inverse dynamics you see that, we talked about this model. First

we will solve this one. How to derive a fuzzy logic, fuzzy inverse dynamics of a given

robot manipulator? So, the generic form of the fuzzy model is given as, if x1 is A1 x2 is

A2 and xn is An then, y is B. Where xi is fuzzy input variables for the model Ai is the

fuzzy attribute of xi and y is the fuzzy output and B is the fuzzy attribute of y. For a

single link manipulator, if I take ml square double dot plus mgl cos theta is tau. The fuzzy

inverse dynamics model maps, 2 fuzzy input variables q. This is not q this is theta and

theta double dot to one fuzzy output variable. Sometimes we represent this angular

position and angular velocity and acceleration either in terms of theta or q. So that, we

have 2 variables here, theta and theta double dot.

Because we know the torque does not depend on the other variable whichhis is theta dot.

How many variables then this inverse model are dependent on in this particular example

two input variables. So each input variables are fuzzy partitioned into 6 regions, negative

big, negative medium, negative small, positive small, positive medium and positive big.

Once you have 2 input variables and each input variable is fuzzy partitioned into 6 zones.

Then obviously, we have the rule base that will consist of maximum possible 36 rules.

(Refer Slide Time: 39:12)

To describe the dynamics for simplicity, we assume that, the output fuzzy variable is a

fuzzy singleton. It is a fuzzy singleton means it is like this (Refer Slide Time: 39:30).

This is called fuzzy singleton. But, if the moment I represent than this is triangular

members. We can Gaussian membership. But, singleton means it has a single value. This

is the x1 whatever output is here. This is fuzzy singleton (Refer Slide Time: 39:55) output

of the fuzzy model is computed using center of gravity method which have already

discussed, where r is the index for the rule, R is the total number of rules and mur here is

minimum of all this fuzzy index. That is A1 of x1 of A2 of x2 and Anof xn. When I

fuzzify this given crisp values x1, x2, xn. There corresponding fuzzy values are fuzzy

memberships are computed using define fuzzy membership function A1, A2 and An so

fuzzy parameters optimization. We saw that if I am trying to control a single link robot

manipulator, I have to design two things. One is inverse dynamic model and another is a

fuzzy PD controller. We are now doing fuzzy inverse dynamics. In this we saw that, the

torque, actuating torque is a function of two variables which is angular position and

angular acceleration. The missing element is angular velocity so 2 input fuzzy partitions

into each input is fuzzy partition into 6 variables, 6 linguistic variables. Then, we have 36

rules and if I say that, each membership function is a Gaussian membership function,

which we have actually taken in this case. Then, each membership function is

characterized by 2 parameters. One is mean any Gaussian is by mean as well as then

variants sigma.

(Refer Slide Time: 41:54)

The inverse dynamics of the single link manipulator is described by 2 input variables, and

one output variable. Each input variable is fuzzy partition into 6 regions and each reason

is characterized by 2 parameters mean and variance, because of Gaussian membership

function. The total numbers of parameters in the input space are 24 because I have 6

partitions in the first input variable and another 6 partition in the second input variable,

each input linguistic variable is characterized by 2. So, 6 plus 6 is 12 into 2 is 24 and

there are total number of 36 rules. Each rule is associated with one fuzzy single term. So,

that is 36 parameters means if x1 is A1 x2 is A2. Then, y is a specific value y is 10 unit

and y is 20 units, y is 40 units like that. Singleton value means it is a precise value. There

are 36 singleton parameters in the output space one for each 36 rules. Thus, fuzzy inverse

model consist of 60 parameters 24 plus 36. Since the output is a nonlinear function in

terms of these 60 parameters. The resulting nonlinear optimization problem is a good

candidate within the evolutionary computation approach. What we will do is that, we will

now use simple genetic algorithm as well as UMDA univariant marginal distribution

algorithm to learn this inverse dynamics. Quickly compare which is doing better because,

we have learned. The fuzzy inverse model parameters are optimized using both simple

genetical logarithm and univariate marginal distribution algorithm.

(Refer Slide Time: 44:02)

In simple genetic algorithm and univariate marginal distribution algorithm each

parameter is represented by a binary string that consists of 8 bits and you have 60

parameters. So, 60 into 8 are 480 bits. It is if I have a string in the population these strings

consist of like that. 480 bits and out of that 8 bits represent 1 parameter and total number

of 480 bits will represent 60 parameters. Initially, the population size is kept at 1000. So,

in simple genetic algorithm the proportional selection is adapted multipoint cross over is

done the mutation rate is kept at 0.01; whereas, in univariate marginal distribution

algorithm 20% of the population is selected according to fitness. The univariate

frequency of each bit is computed over the selected strings and a new population is

generated accordingly.

(Refer Slide Time: 45:18)

That has been the universe dynamics as generated in two following position trajectories.

We took in one case desire trajectory to cos 3 t another case the desired trajectory q is 1

up on 3 cos t plus cos 2 t plus cos 3 t. Using this 2 trajectory, we generated 500 data

points. For all this 500 data points with every step we took a parameter set. We computed

the output and we matched whether given these values we can find out tau. Using SGA

and UMDA both simple genetic algorithm and univariate marginal distribution algorithm

are evolved for 100 generations. The cost function is always evaluated for these 500 data

points. If we see that; the learning of UMDA which is the solid line and simple genetic

algorithm which is the broken line, you see that, error convergence in parametric

evolution using univariate marginal distribution algorithm and simple genetic algorithm

while modeling the inverse dynamics we are showing it and the conclusion is UMDA

univariate marginal distribution algorithm is faster than simple genetic algorithm. The

interesting point is that, this univariate marginal distribution algorithm is actually a very

simplified form of a probabilistic approach purely probabilistic approach to evolve the

solution base.

(Refer Slide Time: 47:22)

Now we will test the fuzzy inverse model using simple genetic algorithm. The accuracy

of the predict model is tested by comparing with the desired torque corresponding to two

different trajectories. What you are seeing is that this first trajectory what you are seeing

corresponds this is the desired torque. This is the torque output torque tau and the desired

torque and this is the given trajectories. If you see that this is the desired torque at

different instance along the trajectory cos t is this one desired torque. SGA is estimating

the values like this you see that this is SGA estimation. You see this is not so accurate.

Similarly, the second trajectory corresponding to the tau is computed like this value;

whereas, the predicted through inverse model. There is certainly discrepancy this model

learning is not good.

(Refer Slide Time: 49:04)

But, when you set to univariate marginal distribution algorithm you can check that, the

prediction is much better here, using univariate marginal distribution algorithm here also

the prediction is much better. This is the first trajectory cos 3t and second trajectory is the

summation of 3 different trajectories. The figure clearly shows that the univariate

marginal distribution algorithm does better when compared to the simple genetic

algorithm is not that is a blanket statement. We are only considering the simple genetic

algorithm for there also very advanced genetic algorithms that may also do better than

UMDA. So, we showed until now is an inverse dynamics fuzzy inverse dynamic model.

(Refer Slide Time: 50:04)

Now, would be talking about feedback fuzzy PD controller. The generic form of a rule in

a fuzzy logic controller is again the same if x1 is A1, x2 is A2 and xn is An then, the

control action tau is B. The final control action is computed using center of gravity

method in case of a single link manipulator. 2 input variables are link position and a link

velocity and are fuzzy portioned in 6 reasons as negative big, negative medium, negative

small, positive small, positive medium, and positive big. Also the only control variable is

fuzzy partitioned into 8 reasons: Negative critical, negative big, negative medium,

negative small, positive small, positive medium, positive big and positive critical.

(Refer Slide Time: 50:57)

Each fuzzy variable this is represented by two parameters taking Gaussian membership

function, its mean and variants. Thus, we have 40 variables. However, by fixing means of

some fuzzy attributes not negative small, positive small 0. We reduce the parameters tries

to 30. You have to do little because, we are very sure you can fix certain parameters and

then you reduce those parameters size to 30. As before each parameter is represent by 8

bits so naturally is now consisting of 240 bits. Now we see that, error convergence in

parametric evolution using UMDA and SGA while designing fuzzy PD controller is that,

UMDA is pretty fast compare to simple genetic algorithm.

(Refer Slide Time: 51:54)

Finally, we first design two aspects separately. Now, you will put both of them together

and then, we will design a robot arm control using both inverse dynamic and PD

controller. So, if we do that which proposed earlier.

(Refer Slide Time: 52:20)

See that, the robot arm control is simulated using fuzzy UMDA inverse dynamics and

fuzzy UMDA PD controller. Since, UMDA performance is better than SGA. In the first

case, we used exact inverse dynamics are along with fuzzy PD controller for a set point

tracking. Then, we assumed 20% model uncertain is in the actual model and the control

schemes are implemented using fuzzy PD controller and a conventional PD controller.

The results show that, FLC is robust parametric uncertainties. So, in the beginning you

see that, this solid line which is this one, this particular one (Refer Slide Time: 53:02).

So, this solid lines represents when we have the model is exact for which we have

derived the fuzzy inverse model and we have derived the fuzzy controller. Now

introduced 20% model certainties and doing the model uncertainties, we again are

running on the chain fuzzy logic controller which we derived for the exact model.

Now you took the 20% uncertainties in the parameters, we introduced that, arbitrarily

randomly and then we saw the controller performance has not degraded, the second one

which is inversing this. But, if you do simple the PD controller with the classical PD

controller and assume the 20% model uncertainties obviously, due to model uncertainties

you cannot go to the exact set point. This is your set point desired set point. There is an

error, the actual set point and desired set point. So, desired set point is 1 radian which is

this. What we are saying that, set point response FLC without model uncertainty first one

and this is my third one. FLC with model uncertainties does very nicely and PD with

model uncertainties, you see that, it has some error.

 (Refer Slide Time: 55:03)

Finally, in this lecture following topics have been covered. We covered first of all

Mamdani type of fuzzy logic controller then, parameter optimization using simple genetic

algorithm and UMDA. We demonstrated that, how these two optimization schemes work

for robot arm control. But, we give a caution here the adaptive fuzzy logic control is

possible only if the offline simulation can be carried out. Today, we gave you some idea

about how we do parameter optimization of fuzzy logic controller. In the next class

which will be interesting for you, for which we will show you how to generate rules from

actual crisp data in a manner that, the fuzzy logic controller is stable. Here, we are

optimizing and as long as our performances criteria are limiting then we say system is

stable. But, there is no readymade. We do not actually generate rules such that, system is

stable. Next fuzzy logic controller the type that we will be describing how to generate

rule base using stability concept.

Thank you.

