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Module – 4 Lecture – 1 
Fuzzy Control: A Review 

Today, we will be starting on a new subject on intelligent control. The subject is on fuzzy 

control. This is module 4 and we will be having the first lecture on this module on fuzzy control. 

Before we go in depth on how to design fuzzy controllers, we will have a review today. 

(Refer Slide Time: 00:59) 

 

The topics that we will be covering today are fuzzy logic controllers – Mamdani type and 

Takagi–Sugeno type, some important works in Mamdani type FLC – fuzzy PD/PI/PID 

controller, fuzzy Lyapunov controller, parameter optimization, and some important works in 

Takagi–Sugeno type of FLC – fuzzy controller with common input matrix, linear controller 

using robust control approach and fuzzy controller using LMI techniques. 
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Mainly two types of fuzzy logic based controllers are available in literature. The first is the 

Mamdani type of fuzzy logic controller. The Mamdani type of fuzzy logic controllers are direct 

adaptive type, where controllers are designed directly based on the fuzzy rule base. Explicit 

system identification is not done in this case; whereas Takagi–Sugeno type fuzzy logic 

controllers are normally indirect adaptive type fuzzy logic controllers, but the system to be 

controlled is identified using T-S fuzzy model and the controller is designed based on the 

identified model.  
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A Mamdani type of fuzzy logic controller would look like this. You have the process, sensors 

and crisp-to-fuzzy interface fuzzification. Process sensors means the process output are fed back 

through sensors. Whatever the feedback is, it is actually a crisp value and so we have a 

fuzzification model that converts from crisp variable to fuzzy variable. So you have 

fuzzification. Then, they have a fuzzy rule base. Using the fuzzy linguistic variables that are used 

in the rule base and the present status of the process in terms of linguistic variable, you have an 

inference mechanism or rule evaluation, which actually tells us what should be the control action 

in fuzzy linguistic variable.  

That control action is defuzzified to get a crisp control action and is fed to the actuator back to 

the process. This is a Mamdani type of fuzzy logic controller. Here, the heart of this controller is 

this fuzzy rule base. Maximum research in Mamdani type of fuzzy logic controllers is regarding 

fuzzy rule base – how we generate the rule base and how do we optimize the parameters of the 

rule base. Its controller is simply expressed in terms of a fuzzy rule base.  
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Some important works are…. As you know, Zedeh is the founder of fuzzy logic concepts – A 

fuzzy-algorithmic approach to the definition of complex or imprecise concepts, International 

Journal of Man-Machine Studies in 1976. Mamdani is the pioneer in terms of proposing the 

fuzzy logic controller and that is why the direct adaptive type of fuzzy logic controllers are 

Mamdani type – Application of Fuzzy Algorithms for the Control of a Dynamic Plant, (Refer 

Slide Time: 04:46) IEEE, volume 121, number 12, 1974.  

Kickert and Mamdani – Analysis of a fuzzy logic controller, Fuzzy Sets and Systems, volume 1, 

1978. CC Lee's Fuzzy Logic in Control Systems is actually a survey paper – Fuzzy Logic 

Controller, parts I and II, IEEE Transactions on Systems, Man, and Cybernetics, volume 20, 

number 2. This is in 1990 and I would recommend all of you to study it. Of course, this paper 

deals basically with Mamdani type of controllers – you will not get anything about T-S fuzzy 

model in this paper. Then, Mizumoto's Realization of PID controls by fuzzy control methods, 

Fuzzy Sets and Systems, volume 70, 1995.  
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As I said, research issues are always…. Formation of the rule base. How do we form various 

rules? The papers that would be worth noting or the ones we should go into in detail are Mann, 

Bao-Gang Hu and Gosine – Analysis of direct action fuzzy PID controller structures. This was 

published in 1999. Lopez and Martin's A simplified version of Mamdani's fuzzy controller: the 

natural logic controller, IEEE Transactions on Fuzzy Systems, volume 14, number 1, 2006. 

Margaliot and Langhoiz's Fuzzy Lyapunov-based approach to design fuzzy controllers is 

something that we will be focusing on in our future classes – how to design a rule base using 

Lyapunov-based function or Lyapunov-based approach, Fuzzy Sets and Systems, volume 106 in 

1999.  
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Parameter optimization is another research issue, parameter optimization of fuzzy rule base 

membership functions – the parameters that are contained in a fuzzy logic controller. Karr and 

Gentry – Fuzzy Control of pH, Using Genetic Algorithms, IEEE Transactions on Fuzzy Systems, 

volume 1, number 1, 1993. Homaifar and McCormick's Simultaneous Design of Membership 

Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms, IEEE Transactions on 

Fuzzy Systems, volume 3, number 2, 1995. This is one of our own works – Sastry, Behera and 

Nagrath's Differential evolution based fuzzy logic controller for nonlinear process control, 

Fundamenta Informaticae in 1999. Here also, we use another technique called differential 

evolution to optimize the parameters of the fuzzy logic controller and we have implemented to a 

pH reactor in real time.  
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As I said, the rule base formation can be done in three types. One is using the idea of PI/PD/PID 

controller response – the generic idea that we have of how the normal response of a PI/PD/PID 

controller would look like. Another analysis is the Fuzzy Lyapunov concept – Fuzzy Lyapunov 

controller concept. Here, the rule base is formed using stability notion and the self-organizing 

rule base, where all the parameters of the fuzzy logic controller are generated using the 

optimization concept.  
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Now let us look at the fuzzy PI/PD/PID controller and how it would behave when the normal 

rule base is formed. This shows the general characteristics of a response of a system, given a step 

command. The system is at the origin and we give a step command – unity step command 1. 

Then, we would like our system to behave like this. What we would like to see is whether we can 

now guess our rules such that our system would follow a behavior of this kind.  

(Refer Slide Time: 10:15) 

 



Let us denote the error, change in error as e and e dot and the control input as u respectively. 

Looking at the output response curve, the following rules can be formed. If e is large error and e 

dot the change in error is small - it can be small and it can also be medium; then u is large. If e, 

the error is medium and the derivative of the error is medium, then control action is medium. 

This is a PD type of controller. If error is small and change in error is large, then u is negative 

small. This means my control action should be negative so that the overshoot is not there. Fuzzy 

PI/PID controller…. 

This is how the rules are generated for a PD/PID type of controller. This is how the fuzzy PI/PID 

controller rules are generated using the normal notion – normal notion of a response of the 

system to a unity step command. The normal type structure of the controller v in case of a PID 

controller - I write the control equation as: the present control action is the previous control 

action plus incremental change in control action and this incremental change in control action is 

computed from the rule base; whereas, if it is a fuzzy PD controller, the control input u is directly 

computed from the rule base. 

(Refer Slide Time: 12:12) 

 

In a general fuzzy logic controller, the control objective is to design a fuzzy controller using 

information based on some physical intuition even if the exact system dynamics are not known, 

but the main problem is constructing the rule base for the controller. In general, Mamdani type of 



fuzzy logic control, the rule base is obtained using the notion of classical PD, PI or PID 

controller, but in fuzzy Lyapunov controller, the rule base is formed using the notion of 

Lyapunov stability.  
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What is Lyapunov stability? The Lyapunov stability is: A general single input single output 

nonlinear system x dot f x, u is Lyapunov stable around the operating point x equal to 0, if there 

exists a continuously differentiable function V x known as a Lyapunov function, such that the 

following requirements are met: V x is positive definite in the neighborhood of the origin and V 

dot x, the rate derivative of the Lyapunov function, is negative definite in the neighborhood of 

the origin.  
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Fuzzy Lyapunov controller: assume that the exact system model is unknown, but we have some 

partial knowledge about the system. Then as in classical case, we consider a Lyapunov function 

candidate V, derive an expression for its derivative, and then obtain the fuzzy rule base for the 

control input u so that V dot is negative definite. Everything is qualitative; I will just show you 

how it is.  

Based on the rule base, a fuzzy controller u is obtained using general inference mechanism and 

defuzzification method.  
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I will just explain to you now. You see that we will take two different structures of the controller 

for rule base formation. The first is representation 1. My FLC rule looks like this: If x1 is A1 

and/or x2 is A2 and so on and/or xn is An, then my control action is B, where Ai’s and B are 

linguistic variables, like large and small; whereas in the representation 2, I say if x1 is A1 and/or 

x2 is A2 and so on and/or xn is An, then u is a function of x1, x2 and xn, where f is a linear 

function. I will just show you. What I am trying to tell you here is that I would like to generate 

either of these two types of rules. How do I generate this type of rules? How do I define a1 and 

a2 apriori? This can be done in a very simple manner.  
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Let us think of a single link manipulator. This is my motor, this is my link whose mass is given 

by capital… this is actually not capital but small m (Refer Slide Time: 15:18) and the angle is 

actually theta and this angle is actually theta. I can write the dynamic equation of this is m l 

square theta double dot plus m g l sin theta equal to tau. My states are theta and x2 is theta dot – 

this is my apriori knowledge. Another apriori knowledge is I can say my tau is directly 

proportional to (Refer Slide Time: 16:04) normal because of the second law of Newtonian 

mechanics. My acceleration is directly proportional to the applied force or the way you like to 

know, whatever it is. If I write like this, if I know this kind of knowledge, this much knowledge 

is sufficient for me to generate the rule base. This is the interesting thing – I do not have to know 

exact dynamics. I do not require this knowledge: m l square theta double dot plus m g l sin theta 

equal to tau. I will show you just now.  
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Without knowing the complete dynamics of the system, the following statements can be made 

about the single link manipulator. The relevant state variables are x1 is equal to theta, x2 is equal 

to theta dot, and x2 dot which is actually theta double dot, is proportional to tau. Now let us take 

a Lyapunov function candidate V is half x1 square plus x2 square. The time derivative of V is V 

dot is…. This is my Lyapunov function for the system I can always think. Then if I differentiate, 

V dot is x1 x dot plus x2 x2 dot. So, x1 dot is x2. Here, x1 dot is x2 and I can say x2 dot is 

proportional to tau; hence, we can write qualitatively V dot, the rate derivative is x1 x2, and x2 

and x2 dot is replaced by tau – approximately. This is a qualitative statement and not a 

quantitative statement because, we do not say that x2 dot is exactly tau – no, it is just 

proportional to tau. But looking at this expression, I can always say… because there can be some 

constant here (Refer Slide Time: 18:03) – we do not worry about that.  

Now, I am interested in defining a rule base and I am trying to do a qualitative analysis – not a 

quantitative analysis. Had I been doing a quantitative analysis, I would have liked to put some 

kind of constant here, but since I am doing a qualitative analysis…. What is qualitative analysis? 

I am trying to develop a fuzzy rule base from this equation, because, the objective is that my V 

dot – rate derivative of the Lyapunov function – should be negative definite. How do I design a 

fuzzy controller rule base such that this expression is qualitatively negative definite? That is the 



objective. What I should write is find FLC rules such that V dot is qualitatively negative definite;  

this is the objective.  
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V dot is x1 x2 plus x2 tau. This can be made negative definite if the rule base is formed as 

follows. If I say x1 is negative and x2 is negative, this quantity is positive (Refer Slide Time: 

00:19:27 to 00:19:52 min); if this is positive, this has to be negative, so tau has to be negative 

because x2 is negative. x1 is negative and x2 is negative, making this quantity positive. Hence, 

this quantity has to be negative and more than this – qualitatively. To make it negative, since x2 

is already negative, tau has to be positive, so tau is positive big. This is one way the first rule is 

formed.  
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The second rule is x1 is positive and x2 is positive. That means this quantity (Refer Slide Time: 

20:09) is again positive and this quantity has to be negative now, because, this is positive. To 

make it negative, x2 is already positive, so tau has to be negative. Then tau is negative big. 

(Refer Slide Time: 20:24) 

 

Similarly, if x1 is negative and x2 is positive, then this quantity is negative, so V dot is required 

to be negative. Now if my control action tau is 0, then also this is negative. tau is 0 – I can make 



tau as 0 because this is already negative. Similarly, if x1 is positive and x2 is negative, then this 

(Refer Slide Time: 00:20:47 min) is already negative. Hence again, tau can be made 0 and my 

control action is 0.  

You see how we are generating rules in such a way that the rate derivative of the Lyapunov 

function V is a negative definite qualitatively. Once I formulate the rules, the next thing I have 

do is that I have to find out the parameters and I have to optimize the parameters. Parameter 

optimization is the next thing, but the most important is the rule base formation. This process of 

rule base formation is very comprehensive and in fact, it is very interesting for fuzzy logic 

controller. We will be having at least one class on this particular topic – how to generate the rule 

base using Lyapunov concept.  
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Now, parameter optimization: parameter optimization is that, once I have formulated the rules, 

how do we fix the parameters or how do we tune the parameters? My rules are….  
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For example, here, If x1 is negative…. But when I say x1 is negative, how do I define this x1 is 

negative? This is my x1(Refer Slide Time: 22:14 to 00:23:05 min) and I have to fuzzify x1. 

Negative can be like this, the negative also can be like this, this is one type and this is another 

type. From this side, this is negative. How do I define this negative? Where should I put it? For 

example, the membership function for negative here is1. In this particular case, this is my 

membership function and maximum membership function 1 is here – for negative; similarly, for 

x2 also. How do I (Refer Slide Time: 00:23:10 min) the fuzzification of each variable such that 

my performance is optimized?  
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Normally, the first case is heuristically updated. We take the help of heuristics – some kind of a 

trial and error method. Nowadays, the normal practice has been genetic algorithms or 

evolutionary computation. What are the GAs? The genetic algorithms perform parallel search to 

find out optimal parameters, where each local search does either a hill climbing or a gradient 

search. 

 In this lecture series, we will show three types of…. One is a simple genetic algorithm, another 

is univariate marginal distribution algorithm and another is differential evolution. We will be 

covering all these three algorithms to optimize the parameters of a fuzzy logic controller.  



Now, we go to the next part of our topic, which is called Takagi–Sugeno type of fuzzy logic 

controller. 
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Here, we will outline various research issues that are involved in designing Takagi–Sugeno type. 

Actually, I would not say that this is Takagi–Sugeno type of fuzzy logic controller. We will say 

FLC using T-S fuzzy model. What is the meaning of that? We want to design a fuzzy logic 

controller using T-S fuzzy model, Takagi–Sugeno Fuzzy model. That means any nonlinear 

system can be represented by or approximated by T-S fuzzy model.  

In general, Takagi-Sugeno type of fuzzy logic controller is an example of indirect adaptive 

control. The main steps are identifying the nonlinear systems in terms of T-S fuzzy model and 

designing the controller based on the identified T-S fuzzy model. We have a T-S Fuzzy model of 

the plant. I utilize the T-S Fuzzy model to design my controller. In different control approaches 

using T-S Fuzzy model, we will be discussing these three techniques. One is controller design 

with common input matrix, then linear controllers using robust control approach and then 

controller design using LMI techniques.  

All these three approaches are very much prevalent in control research. I will just give you a hint 

of these different types of control research or what are the different control problems these three 



types of systems would define. What I am saying is that… what is the meaning of common input 

matrix and using that, controller design and linear controller using robust control; these are all 

the different control research issues.  

(Refer Slide Time: 27:00) 

 

These are the important works in the T-S fuzzy model. First of all, Takagi and Sugeno proposed 

the T-S fuzzy model. That is in IEEE Transactions on Systems, Man, and Cybernetics way back 

in 1985 – Fuzzy identification of systems and its application to modeling and control. One of our 

works is among the other works that are relevant in terms of fuzzy controller using T-S model – 

On Identification and Stabilization of nonlinear plants using Fuzzy Neural Network, IEEE 

Conference on Systems, Man, and Cybernetics, 2005.That was the work of Zak. In this work, the 

second work (Refer Slide Time: 27:54), we are taking about common input matrix.  

Zak's Stabilizing fuzzy system models using linear controller appeared in Transactions on Fuzzy 

Systems in 1999. In this, you see how to design linear controllers using the fuzzy T-S model, but 

in this case, Zak's approach, the controller parameters, the controller gains are fixed. That means 

he has a fixed gain controller. We have another paper by Prem, Indhrani and I – Variable Gain 

Controllers for Nonlinear Systems using T-S Fuzzy model. That is in IEEE Transactions on 

Systems, Man, and Cybernetics, part b in 2006. In this, we are also designing linear controllers, 

but the gains are varying – variable gain controller.  



Tanaka proposed a notion of Stability and Stabilizability of Fuzzy-Neural-Linear control systems 

using the linear matrix inequality approach – LMI. That work appeared in IEEE Transactions on 

Fuzzy Systems, 1995. Lam, Leung and Tam A Linear Matrix Inequality Approach for the 

Control of Uncertain Fuzzy Systems appeared in IEEE Control Systems Magazine in 2002. You 

already know that, this of course, is being solved using linear matrix inequality – LMI.  

Now, we will go a little deeper into understanding these problems – what are the control 

problems and how the control problem is formulated for each case.  
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Let us consider a class of discrete nonlinear dynamical systems described by x k plus 1 is f x k u 

k and y k is h x k u k. You see that this is the complete nonlinear plant and these are vector 

equations. x is an n-dimensional state vector, u is a p-dimensional input vector, and y is an m-

dimensional output vector. So, f is a vector and h is a vector. The above system can be 

effectively modeled by fuzzy merging of equivalent linear systems in different operating regions 

using the Takagi–Sugeno fuzzy model. What does it mean?  
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A T-S fuzzy model is composed of r rules where the j th rule has the following form. What you 

say is if x1 k is F1 j and so on and xn k is Fn j, then my x k plus 1 is a linear system Aj x k plus 

Bj u k and y k is Cj x k plus Dj u k, where x is the system's n states x1 to xn and the rule here j…. 

This is the j th rule. So I have r rules. Given a current state vector x k and input vector u k, the T-

S fuzzy model infers x k plus 1 as x k plus 1 is sigma j equal to 1 to r muj Aj x k plus Bj u k 

upon sigma j equal to 1 r muj. 

What is this muj? muj is actually sigma muj xi product i equal to 1 to n. muj is muj x1, muj x2 

until muj because when I say x1 k is F1 j, given the crisp value of x1, I get a specific membership 

function here. Similarly, given a crisp value of x and k, I get a specific muj xn. The muj 

associated with the entire rule is normally computed by the product principle; that is, I multiply 

each membership function and find out what is muj. 



(Refer Slide Time: 32:38) 

 

This is our muj, the product principle. y k is similarly muj into associated with the rule j and my 

y is Cj x k plus Dj u k and you sum over j equal to 1 to r, r rules and divided by sum j equal to 1 

to r muj. So, muj i xi is the membership function of the fuzzy term Fi j. I explained this. 

(Refer Slide Time: 33:14) 

 



Pay a little attention here because, we will be discussing more and more about this kind of 

structure; because, we will be going deeper into the control system aspect in this particular model 

on fuzzy control.  

(Refer Slide Time: 33:30) 

 

We had this rule and we have r such rules.  

(Refer Slide Time: 33:38) 

 



Given these r rules, now we can write the overall fuzzy system, the fuzzy dynamics that the 

nonlinear system we described. What was the nonlinear system? The nonlinear system was x k 

plus 1 is f x k u k and y k is h x k u k. This is my nonlinear system and in the T-S fuzzy model, 

the nonlinear system would look like this. (Refer Slide Time: 00:34:23 min) You represented the 

same nonlinear system as x k plus 1 and here instead of this nonlinearity, we represent in a very 

convenient format, which is A bar x k plus B bar u k. It looks linear. It is not linear, but looks 

linear: A bar x k plus B bar u k – very convenient notation, and y k is C bar x k plus D bar u k, 

where A bar is equal to j equal to 1 to r sigmaj Aj, B bar is j equal to 1 to r sigmaj Bj, C bar is 

sigmaj Cj and D bar is sigmaj Dj, where sigmaj is a normalized membership function and it is 

muj over sigmaj equal to 1 to r muj.  

You must know that from j equal to 1 to r, sigmaj is 1. This is always satisfied and always true 

(Refer Slide Time: 00:35:28min). The overall system looks linear, but it is not linear; this is 

nonlinear. Why? The overall system is nonlinear since A bar is a function of sigmaj and this 

sigmaj is a function of x k because, the sigmaj defines the fuzzy membership function of a state 

variable x k. Hence, the system is nonlinear.  

(Refer Slide Time: 36:01) 

 

Continuous time T-S fuzzy model: The continuous time counterpart of the overall fuzzy system 

is…. Just like we said this is discrete time (Refer Slide Time: 00:36:11min), the continuous time 



is also similar. x dot is A bar x plus B bar u, y is c bar x plus D bar u, where again A bar is 

sigmaj Aj, j equal to 1 to r and B bar is sigmaj Bj, j equal to 1 to r. C bar is sigmaj Cj, j equal to 1 

to r and D bar is …. You should know how you are finding this. We wrote down x dot is sigma i 

equal to 1 to r muj into Aj x plus Bj u divided by sigma i equal to 1 to r muj.  

(Refer Slide Time: 37:15) 

 

 

When I divide this muj by this quantity (Refer Slide Time: 00:37:18min) and represent by 

sigmaj, where sigmaj is muj by sigma i equal to 1 to r muj, then this representation becomes x 



dot is simply sigma j equal to 1 to r sigmaj Aj x plus Bj u. You can easily see now that if I write 

in terms of x dot equal to A bar x, so sigmaj Aj j equal to 1 to r. Similarly, B bar is sigmaj Bj j 

equal to 1 to r sigmaj Bj. Be very clear that once I say T-S fuzzy model, then my system 

dynamics in continuous time looks like x dot equal to A bar x plus B bar u, which looks very 

similar to linear system but they it is not linear because A bar is a function of sigmaj and sigmaj 

is a function of x and hence, this is nonlinear. Similarly, we also talked about discrete time 

system (Refer Slide Time: 00:38:48min) which also looks linear, but it is not linear. x k plus 1 is 

A bar x k plus B bar u k, where A bar and B bar are functions of x k because they are function of 

sigmaj.  
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Once we understood what the T-S fuzzy model is, the next step is to derive the T-S fuzzy model. 

We can derive the T-S fuzzy model by direct system identification or by linearization of an 

actual nonlinear plant. I will just explain to you, how we linearize a plant. 

 Given a nonlinear system, you see that x dot is F x, u which is x plus x square plus u and I want 

to linearize this. We can use Taylor's series expansion but I can only apply that when x is equal 

to 0 and u is equal to 0. If I am trying to linearize around x is equal to 0 and u is equal to 0, then I 

can write the expression as this approximation (Refer Slide Time: 00:40:00 min) A x plus B u, 

where A is dow F upon dow x and B is dow F upon dow u.  



If I am linearizing around x is equal to 0, u is equal to 0, it means origin. But if x is not equal to 

0, then you can follow the book - Systems and Control by Zak;  there are other books also, where 

there is a method how to linearize a nonlinear system around some other points that are not the 

origin. There is a formula here. Given x dot equal to f x plus g x u, we can find out the A matrix. 

In that case, Ai transpose denotes the i th rule of A where Ai is computed by this formula and B 

is g x0. There are various ways – you just have to learn how to linearize a nonlinear system 

around various points. This is not a difficulty. You just try to understand that we can linearize 

nonlinear systems around various operating points.  

(Refer Slide Time: 41:24) 

 

Using two rules of T-S fuzzy model, we can say….  



(Refer Slide Time: 41:27) 

 

This is a scalar differential equation – x dot is x plus x square plus u. We can write two rules for 

this (Refer Slide Time: 00:41:39min). If x is equal to  0, x dot is x plus u and if x is equal to 1, x 

dot is equal to 2 x plus u, where the corresponding matrices A1 is 1 and B1 is 1, A2 is 2 and B2 is 

1. These are all scalar values because, the differential equation is scalar. I just demonstrated this 

for a scalar differential equation. You can also do it for a vector differential equation. In that 

case, these will come (Refer Slide Time: 42:12).  

This is one approach. The other approach is that we directly use fuzzy neural network. From the 

input-output data of the system using a fuzzy neural network, we can also estimate these 

parameters very easily. Using gradient descent algorithm or various kinds of algorithms, you can 

do that. What we try to do in this case is that we represent a neural network where these rules 

(Refer Slide Time: 00:42:53min) are encoded in terms of neural network parameters. Then, the 

neural network parameters are updated using input-output data using the gradient descent rule.  
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We are now very clear that we can write any nonlinear system using either a discrete time T-S 

Fuzzy model or a continuous time T-S fuzzy model. This is a discrete time T-S fuzzy model and 

this is my continuous time T-S fuzzy model, where we have already defined what is A bar and 

what is B bar. Now I assume that the system will have a common input matrix. When we say 

common input matrix, it means that for all fuzzy zones, for every rule, the associated control 

matrix… because for each rule in T-S fuzzy model, we have a linear system dynamics, that is, x 

dot is Ai x plus Bi u.  

If this control matrix Bi is the same for all rules, then this is called common input matrix. This is 

what I say: Bj is equal to B for all j, B is a constant matrix. In that case, this is called common 

input matrix. What is the utility of this common input matrix? Suppose we design individual 

linear controllers for individual subsystems, the control action corresponding to the j th 

subsystem is denoted by uj k. What do we do? If I have a common input matrix, I compute what 

is uj for individual subsystems such that the individual subsystem is stable.  

Once I compute uj, my control action u k, which is a fuzzy blending of all control actions is 

sigma j uj k over j equal to 1 to r. This ensures that individual subsystems are excited by their 

respective control inputs, which is uj k. That means if I am giving to the actual plant uk, to the 

actual plant I am actuating the control signal uk, it means apparently that each individual 



subsystem if they are they are in reality they are being excited by the control action uj. This is a 

very important notion. This is a theorem that we will prove in one of the coming classes.  
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Making use of common input matrix, various theorems have been presented to make the overall 

system stable; in fact, we have done extensive work in this area. For example, suppose the 

individual control input has a form uj k is minus Kj x k. For discrete time T-S fuzzy model, the 

overall system can be made stable if there exists a common input matrix B for all subsystems and 

the individual gain matrices Kj’s are designed such that Aj dash is equal to Aj minus B Kj’s have 

singular values less than unity. 

If this is the case, then we can say my T-S fuzzy model, my controller which is this one (Refer 

Slide Time: 46:31) my controller where uj k is designed by this formula where uj k is minus Kj x 

k and then my system is stable provided Aj minus B Kj have singular values less than unity for 

each subsystem. How many subsystems do you have? You have r rules and that means you have 

r subsystems. For r subsystems, each of these quantities has maximum singular values and if less 

than unity, then the system is stable. The proof and other things will be shown in the following 

classes.  
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Similarly, another interesting result about this common input matrix is - for continuous time T-S 

fuzzy model, the overall system can be made stable, if there exists a common input matrix B for 

all subsystems and the individual gain matrices Kj’s are designed such that… This is called 

Hermitian part of the matrices Aj dash. If this term has stable Eigen values, where Aj dash is Aj 

minus B Kj; that is, if I am designing a controller uj is minus Kj x and my overall controller is 

sigma j uj, sigmaj equal to 1 to r; this is my overall controller for a continuous time system; then 

the system is stable provided the Hermitian part of this Aj dash, which is this one – the 

Hermitian part (Refer Slide Time: 48:14) has stable Eigen values.  
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You can look at Takagi and Sugeno's Fuzzy identification of systems and its application to 

modeling and control and you get the idea of T-S fuzzy model. For the common input matrix, 

you can get the idea from this paper – On Identification and Stabilization of nonlinear plants 

using Fuzzy Neural Network, IEEE Conference on Systems, Man, and Cybernetics in 2005.  
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Now, we go to the linear controller using robust control method. In this, the T-S fuzzy model is 

written in terms of single linear plant and the rest of the linear models are expressed as a 

disturbance to this. The norm bound on the disturbance is computed. Based on the norm bound, 

the controller is designed, which makes the overall system Lyapunov stable.  

(Refer Slide Time: 49:07) 

 

What does it mean? I have the i th rule as I said earlier. If x1 t is F1 i and so on and xn t is fn i, 

then x dot t is Ai x t plus Bi u t and mui is the associated membership function with the i th rule. 

Then, we saw that the overall fuzzy dynamics x dot t is sigmaj Aj x t plus Bj u t, where sigma j is 

defined like this.  
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This overall fuzzy T-S model can be expanded, x dot is as a nominal plant A x t plus B u t and 

these are we can say disturbance term and this disturbance term (Refer Slide Time: 00:49:53min) 

can be again further categorized into three categories. This is B h2 u t, B h1 x t and f x t and these 

two (Refer Slide Time: 00:50:06 to 00:50:15 min) take care of this part and this one takes care of 

this part and then we define norm bounds on these quantities. By defining the norm bounds, we 

can design the controller around this nominal plant. 

There are various methods to the design controller, which we will not discuss in detail. 

Computing the norm bounds of f, h1 and h2, controllers are designed that makes the T-S fuzzy 

model Lyapunov stable. This is the problem formulation. What is the problem? Given a T-S 

fuzzy model, express this T-S fuzzy model as x dot t around a nominal plant and then 

disturbance (Refer Slide Time: 00:50:51min). Then, using the robust control theory and 

Lyapunov stability theorem, we can design the controller. 
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For reference, we have a paper in IEEE Transactions on Systems, Man, and Cybernetics, 2006. 

Zak also has a paper on this – Stabilizing Fuzzy system models using linear controllers, IEEE 

Transactions on Fuzzy Systems, 1999. You can refer these papers for more, and of course, we 

will be discussing this aspect in this class later.  
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We talked about common input matrix and we talked about robust control theory – how to design 

controller using the T-S fuzzy model. Now, we will talk about LMI technique.  

 

(Refer Slide Time: 51:43) 

 

Again in LMI technique, as we said, the rule is given; given rule i, we have a T-S fuzzy model. 

This is our T-S fuzzy model. You remember this; because you should learn this model by heart. 

T-S fuzzy model means x dot t is sigmai equal to 1 to r sigmai Ai x t plus Bi u t; you should 

learn this by heart because, we have to be very clear. When we design a control system, the 

model should be very clear to us – what it means. This is not a linear model; although it looks 

linear, this is a nonlinear model. This approximates the system. The nonlinear system x dot is f x 

and u. This is a nonlinear system. It approximates any nonlinear system.  

Now, given this T-S fuzzy model, for each rule, for each subsystem, I compute a control action u 

t which is minus Ki x t.  
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If I do that, my overall control action u t is given as minus sigmai Ki x t, i equal to 1 to r. The 

individual control action ui was minus Ki x t for individual and the overall was this one. (Refer 

Slide Time: 00:53:02 min) Then, the closed loop system is Ai x t plus Bi into u. u is minus this 

quantity. So minus will come here (Refer Slide Time: 00:53:17 to 00:53:33 min)) and sigmai Ki 

x t k, sorry, this is j, so sigmaj Kj x t, j equal to 1 to r. If you put this quantity like this, after 

simplification, you get this quantity. x dot t is sigmai square Hii where Hii is Ai minus Bi Ki and 

2 sigmai sigmaj Hij plus Hji by 2 x t where Hij is Ai minus Bi Kj. We can rewrite this expression 

in this form.  
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Once we do that, we take a Lyapunov function because, we have to analyze this particular x dot 

equal to we can write this term plus this term into x t (Refer Slide Time: 00:54:16min). I want to 

investigate the stability of this system. The best way to investigate stability of the system, you 

take a Lyapunov function V equal to x transpose Px. V dot is x dot transpose Px plus x transpose 

Px dot and x dot is given by this expression V. The actual dynamics x dot t is given by this 

expression (Refer Slide Time: 00:54:40min).  

If I replace x dot here, I get V dot finally in this particular format. You see if I put that, I get 

sigmai square x transpose Hii transpose P plus PHi x. Similarly, here (Refer Slide Time: 

00:54:49min) I can write x transpose Hij plus Hji by 2 transpose P, P Hij plus Hji by 2 x. What 

does it mean? You know that V dot has to be negative definite. That means this quantity has to 

be negative definite and these quantities also have to be negative definite.  
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That gives us the condition that Hii transpose P plus P Hii has to be negative definite. Similarly, 

this Hij plus Hji by 2 transpose P plus P Hij plus Hji by 2 also has to be negative definite. This 

also can be negative or equal to 0 because, we have already said that this is negative definite. The 

above expressions are basic stability conditions and these are actually LMI equations – linear 

matrix inequality. You see that this is a linear matrix inequality equation. The controller 

parameter Ki’s are hidden in these expressions.  

These can be further re-expressed in different suitable forms and the controller parameters Ki’s 

can be obtained by solving these expressions. There are various methods – we will not be 

discussing now. I am just presenting how to stabilize the fuzzy state feedback controller using 

linear matrix equality.  

In the beginning, we said the individual control action uj is Kj x. Then we said u is sigmaj uj, j 

equal to 1 to r, where sigmaj is the normalized membership function associated with rule j. This 

is my overall control action u.  
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If I give this overall control action, then I said that my overall system dynamics for the closed 

loop, this is closed loop system dynamics, becomes like this(Refer Slide Time: 00:57:12min) 

.(Refer Slide Time: 57:14) 

 

That results in using Lyapunov stability theory to linear matrix inequality equations. If I solve, 

then I properly find out, finally what should be my kj. This is minus kj.  
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Similarly, for a discrete time case, we can follow the same method. The linear matrix inequality 

equations would look like this: Hii transpose P Hii minus P less than 0, and this quantity is less 

than or equal to 0. This gives you an idea of how the T-S fuzzy model based controller can be 

designed using LMI.  
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Some of the important works on this are by Wang, Tanaka and Griffin – An Approach to Fuzzy 

Control of Nonlinear Systems: Stability and Design Issues, IEEE Transactions on Fuzzy 

Systems, 1996; then Kim and Kim's Stability Analysis and Synthesis for an Affine Fuzzy System 

via LMI and ILMI: Discrete case, IEEE Transactions on Systems, Man, and Cybernetics, 2001; 

and Lam, Leung and Tam's A Linear Matrix Inequality Approach for the Control of Uncertain 

Fuzzy Systems, IEEE Control Systems Magazine, 2002. 
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Other works were by Tanaka, Ikeda, Wang – Fuzzy Regulators and Fuzzy Observers: Relaxed 

Stability Conditions and LMI-based Designs, IEEE Transactions on Fuzzy Systems, May 1998; 

then Kim and Lee's New Approaches to Relaxed Quadratic Stability Condition of Fuzzy Control 

Systems, IEEE Transactions on Fuzzy Systems, October 2000; and Fang, Liu, Kau, Hong and 

Lee's A New LMI-based Approach to Relaxed Quadratic Stabilization of T-S Fuzzy Control 

Systems, IEEE Transactions on Fuzzy Systems, June 2006.  
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Finally, we end this class by saying what we did in this class; we had an overview of different 

fuzzy control systems. We said that fuzzy rule base can be generated using the concept of 

PD/PI/PID type of response or using the notion of Lyapunov stability concept; tuning of fuzzy 

controller parameters through optimization using genetic algorithms, univariate marginal 

distribution algorithm or differential evaluation – any kind of evolutionary computation approach 

we can use to optimize the FLC parameters. When we express a nonlinear system using T-S 

fuzzy model, the controllers can be designed in three different cases, when each subsystem has a 

common input matrix, or in a generic case, we use the robust control theory to design the 

controller, or we can also use linear matrix inequality approach to design the fuzzy controller. 

Thank you very much.  


