Intelligent Systems and Control
Prof. Laxmidhar Behera
Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Module — 4 Lecture -1
Fuzzy Control: A Review

Today, we will be starting on a new subject on intelligent control. The subject is on fuzzy
control. This is module 4 and we will be having the first lecture on this module on fuzzy control.

Before we go in depth on how to design fuzzy controllers, we will have a review today.
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The topics that we will be covering today are fuzzy logic controllers — Mamdani type and
Takagi-Sugeno type, some important works in Mamdani type FLC - fuzzy PD/PI/PID
controller, fuzzy Lyapunov controller, parameter optimization, and some important works in
Takagi—Sugeno type of FLC — fuzzy controller with common input matrix, linear controller

using robust control approach and fuzzy controller using LMI techniques.
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Mainly two types of fuzzy logic based controllers are available in literature. The first is the
Mamdani type of fuzzy logic controller. The Mamdani type of fuzzy logic controllers are direct
adaptive type, where controllers are designed directly based on the fuzzy rule base. Explicit
system identification is not done in this case; whereas Takagi—-Sugeno type fuzzy logic
controllers are normally indirect adaptive type fuzzy logic controllers, but the system to be
controlled is identified using T-S fuzzy model and the controller is designed based on the

identified model.
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A Mamdani type of fuzzy logic controller would look like this. You have the process, sensors
and crisp-to-fuzzy interface fuzzification. Process sensors means the process output are fed back
through sensors. Whatever the feedback is, it is actually a crisp value and so we have a
fuzzification model that converts from crisp variable to fuzzy variable. So you have
fuzzification. Then, they have a fuzzy rule base. Using the fuzzy linguistic variables that are used
in the rule base and the present status of the process in terms of linguistic variable, you have an
inference mechanism or rule evaluation, which actually tells us what should be the control action

in fuzzy linguistic variable.

That control action is defuzzified to get a crisp control action and is fed to the actuator back to
the process. This is a Mamdani type of fuzzy logic controller. Here, the heart of this controller is
this fuzzy rule base. Maximum research in Mamdani type of fuzzy logic controllers is regarding
fuzzy rule base — how we generate the rule base and how do we optimize the parameters of the

rule base. Its controller is simply expressed in terms of a fuzzy rule base.
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Some important works are.... As you know, Zedeh is the founder of fuzzy logic concepts — A
fuzzy-algorithmic approach to the definition of complex or imprecise concepts, International
Journal of Man-Machine Studies in 1976. Mamdani is the pioneer in terms of proposing the
fuzzy logic controller and that is why the direct adaptive type of fuzzy logic controllers are
Mamdani type — Application of Fuzzy Algorithms for the Control of a Dynamic Plant, (Refer
Slide Time: 04:46) IEEE, volume 121, number 12, 1974.

Kickert and Mamdani — Analysis of a fuzzy logic controller, Fuzzy Sets and Systems, volume 1,
1978. CC Lee's Fuzzy Logic in Control Systems is actually a survey paper — Fuzzy Logic
Controller, parts | and I, IEEE Transactions on Systems, Man, and Cybernetics, volume 20,
number 2. This is in 1990 and | would recommend all of you to study it. Of course, this paper
deals basically with Mamdani type of controllers — you will not get anything about T-S fuzzy
model in this paper. Then, Mizumoto's Realization of PID controls by fuzzy control methods,

Fuzzy Sets and Systems, volume 70, 1995.
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As | said, research issues are always.... Formation of the rule base. How do we form various
rules? The papers that would be worth noting or the ones we should go into in detail are Mann,
Bao-Gang Hu and Gosine — Analysis of direct action fuzzy PID controller structures. This was
published in 1999. Lopez and Martin's A simplified version of Mamdani's fuzzy controller: the
natural logic controller, IEEE Transactions on Fuzzy Systems, volume 14, number 1, 2006.
Margaliot and Langhoiz's Fuzzy Lyapunov-based approach to design fuzzy controllers is
something that we will be focusing on in our future classes — how to design a rule base using
Lyapunov-based function or Lyapunov-based approach, Fuzzy Sets and Systems, volume 106 in
1999.
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Parameter optimization is another research issue, parameter optimization of fuzzy rule base
membership functions — the parameters that are contained in a fuzzy logic controller. Karr and
Gentry — Fuzzy Control of pH, Using Genetic Algorithms, IEEE Transactions on Fuzzy Systems,
volume 1, number 1, 1993. Homaifar and McCormick's Simultaneous Design of Membership
Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms, IEEE Transactions on
Fuzzy Systems, volume 3, number 2, 1995. This is one of our own works — Sastry, Behera and
Nagrath's Differential evolution based fuzzy logic controller for nonlinear process control,
Fundamenta Informaticae in 1999. Here also, we use another technique called differential
evolution to optimize the parameters of the fuzzy logic controller and we have implemented to a

pH reactor in real time.
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As | said, the rule base formation can be done in three types. One is using the idea of PI/PD/PID
controller response — the generic idea that we have of how the normal response of a PI/PD/PID
controller would look like. Another analysis is the Fuzzy Lyapunov concept — Fuzzy Lyapunov
controller concept. Here, the rule base is formed using stability notion and the self-organizing
rule base, where all the parameters of the fuzzy logic controller are generated using the
optimization concept.
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Now let us look at the fuzzy PI/PD/PID controller and how it would behave when the normal
rule base is formed. This shows the general characteristics of a response of a system, given a step
command. The system is at the origin and we give a step command — unity step command 1.
Then, we would like our system to behave like this. What we would like to see is whether we can

now guess our rules such that our system would follow a behavior of this kind.
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Let us denote the error, change in error as e and e dot and the control input as u respectively.
Looking at the output response curve, the following rules can be formed. If e is large error and e
dot the change in error is small - it can be small and it can also be medium; then u is large. If e,
the error is medium and the derivative of the error is medium, then control action is medium.
This is a PD type of controller. If error is small and change in error is large, then u is negative
small. This means my control action should be negative so that the overshoot is not there. Fuzzy
P1/PID controller....

This is how the rules are generated for a PD/PID type of controller. This is how the fuzzy PI1/PID
controller rules are generated using the normal notion — normal notion of a response of the
system to a unity step command. The normal type structure of the controller v in case of a PID
controller - | write the control equation as: the present control action is the previous control
action plus incremental change in control action and this incremental change in control action is
computed from the rule base; whereas, if it is a fuzzy PD controller, the control input u is directly

computed from the rule base.
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In a general fuzzy logic controller, the control objective is to design a fuzzy controller using
information based on some physical intuition even if the exact system dynamics are not known,

but the main problem is constructing the rule base for the controller. In general, Mamdani type of



fuzzy logic control, the rule base is obtained using the notion of classical PD, Pl or PID
controller, but in fuzzy Lyapunov controller, the rule base is formed using the notion of
Lyapunov stability.
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What is Lyapunov stability? The Lyapunov stability is: A general single input single output
nonlinear system x dot f X, u is Lyapunov stable around the operating point x equal to 0, if there
exists a continuously differentiable function V x known as a Lyapunov function, such that the
following requirements are met: V x is positive definite in the neighborhood of the origin and V
dot X, the rate derivative of the Lyapunov function, is negative definite in the neighborhood of

the origin.
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Fuzzy Lyapunov controller: assume that the exact system model is unknown, but we have some
partial knowledge about the system. Then as in classical case, we consider a Lyapunov function
candidate V, derive an expression for its derivative, and then obtain the fuzzy rule base for the
control input u so that V dot is negative definite. Everything is qualitative; I will just show you

how it is.

Based on the rule base, a fuzzy controller u is obtained using general inference mechanism and

defuzzification method.
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I will just explain to you now. You see that we will take two different structures of the controller
for rule base formation. The first is representation 1. My FLC rule looks like this: If x; is A;
and/or X, is A, and so on and/or X, is A, then my control action is B, where A;’s and B are
linguistic variables, like large and small; whereas in the representation 2, | say if x; is Ay and/or
X2 1S Az and so on and/or X, is A, then u is a function of xi, X, and X,, where f is a linear
function. I will just show you. What | am trying to tell you here is that | would like to generate
either of these two types of rules. How do | generate this type of rules? How do | define a; and

a, apriori? This can be done in a very simple manner.
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Figure 1: Singk Link Manipulator

Let us think of a single link manipulator. This is my motor, this is my link whose mass is given
by capital... this is actually not capital but small m (Refer Slide Time: 15:18) and the angle is
actually theta and this angle is actually theta. | can write the dynamic equation of this is m |
square theta double dot plus m g | sin theta equal to tau. My states are theta and X, is theta dot —
this is my apriori knowledge. Another apriori knowledge is | can say my tau is directly
proportional to (Refer Slide Time: 16:04) normal because of the second law of Newtonian
mechanics. My acceleration is directly proportional to the applied force or the way you like to
know, whatever it is. If | write like this, if | know this kind of knowledge, this much knowledge
is sufficient for me to generate the rule base. This is the interesting thing — I do not have to know
exact dynamics. | do not require this knowledge: m | square theta double dot plus m g | sin theta

equal to tau. I will show you just now.
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Without knowing the complete dynamics of the system, the following statements can be made
about the single link manipulator. The relevant state variables are x; is equal to theta, X, is equal
to theta dot, and x, dot which is actually theta double dot, is proportional to tau. Now let us take
a Lyapunov function candidate V is half x; square plus x, square. The time derivative of V is V
dot is.... This is my Lyapunov function for the system | can always think. Then if | differentiate,
V dot is x; x dot plus X, X, dot. So, x; dot is X,. Here, x; dot is X, and | can say x, dot is
proportional to tau; hence, we can write qualitatively V dot, the rate derivative is X; X2, and X;
and x, dot is replaced by tau — approximately. This is a qualitative statement and not a
quantitative statement because, we do not say that x, dot is exactly tau — no, it is just
proportional to tau. But looking at this expression, | can always say... because there can be some

constant here (Refer Slide Time: 18:03) — we do not worry about that.

Now, | am interested in defining a rule base and | am trying to do a qualitative analysis — not a
guantitative analysis. Had | been doing a quantitative analysis, | would have liked to put some
kind of constant here, but since | am doing a qualitative analysis.... What is qualitative analysis?
I am trying to develop a fuzzy rule base from this equation, because, the objective is that my V
dot — rate derivative of the Lyapunov function — should be negative definite. How do | design a

fuzzy controller rule base such that this expression is qualitatively negative definite? That is the



objective. What | should write is find FLC rules such that V dot is qualitatively negative definite;

this is the objective.
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V dot is X3 X, plus x, tau. This can be made negative definite if the rule base is formed as
follows. If | say x; is negative and X, is negative, this quantity is positive (Refer Slide Time:
00:19:27 to 00:19:52 min); if this is positive, this has to be negative, so tau has to be negative
because X, is negative. X; Is negative and X, is negative, making this quantity positive. Hence,
this quantity has to be negative and more than this — qualitatively. To make it negative, since x;
is already negative, tau has to be positive, so tau is positive big. This is one way the first rule is

formed.
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The second rule is x; is positive and X, is positive. That means this quantity (Refer Slide Time:
20:09) is again positive and this quantity has to be negative now, because, this is positive. To

make it negative, X is already positive, so tau has to be negative. Then tau is negative big.
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Similarly, if x; is negative and x; is positive, then this quantity is negative, so V dot is required

to be negative. Now if my control action tau is 0, then also this is negative. tau is 0 — | can make



tau as O because this is already negative. Similarly, if x; is positive and X is negative, then this
(Refer Slide Time: 00:20:47 min) is already negative. Hence again, tau can be made 0 and my

control action is 0.

You see how we are generating rules in such a way that the rate derivative of the Lyapunov
function V is a negative definite qualitatively. Once | formulate the rules, the next thing I have
do is that | have to find out the parameters and | have to optimize the parameters. Parameter
optimization is the next thing, but the most important is the rule base formation. This process of
rule base formation is very comprehensive and in fact, it is very interesting for fuzzy logic
controller. We will be having at least one class on this particular topic — how to generate the rule
base using Lyapunov concept.

(Refer Slide Time: 21:42)

‘_1Fuzzy Parameters: Optimization
e '

m Tha i rahowk o hoth Tl amd | WAL s
KMamdani typas FLC 8 that the paramatars ansociaind
with thws F1C ara hesarietically opadated

m (WA'e A (poacail BenCihecuies 1D |;|.-|1.r.’-- (R LN T Ty i
cordly i ooy admaibathon of ach controd Ryatem s
Pl

B GAS pariorm pearolhe ool W0 fired ol oplismgd
i e et Il waovrcly dhewtsn, awlfhasr o il

by or & groadend e

Now, parameter optimization: parameter optimization is that, once | have formulated the rules,

how do we fix the parameters or how do we tune the parameters? My rules are....



(Refer Slide Time: 22:07)

Fuzzy Lyspunov Controller : Rule buse

—_

Vi .;,,)+ r»T can ba made nagative defi nite if the
rule bass’is formed as follows:

® IF x, s negative AND ry 16 negatice, THEN 7 IS

poxilee gy
® IF ry is positive AND r, i8 positive, THEN ris

ne gative big

® IF r, is negative AND r; is positiee, THEN 7 is

Lo

® IF ry i8 positive AND r, 18 negative, THEN 7 i8

-l



For example, here, If x; is negative.... But when | say x; is negative, how do | define this x; is
negative? This is my xj(Refer Slide Time: 22:14 to 00:23:05 min) and | have to fuzzify x;.
Negative can be like this, the negative also can be like this, this is one type and this is another
type. From this side, this is negative. How do | define this negative? Where should | put it? For
example, the membership function for negative here isl. In this particular case, this is my
membership function and maximum membership function 1 is here — for negative; similarly, for
Xz also. How do | (Refer Slide Time: 00:23:10 min) the fuzzification of each variable such that

my performance is optimized?
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Normally, the first case is heuristically updated. We take the help of heuristics — some kind of a
trial and error method. Nowadays, the normal practice has been genetic algorithms or
evolutionary computation. What are the GAs? The genetic algorithms perform parallel search to
find out optimal parameters, where each local search does either a hill climbing or a gradient

search.

In this lecture series, we will show three types of.... One is a simple genetic algorithm, another
is univariate marginal distribution algorithm and another is differential evolution. We will be

covering all these three algorithms to optimize the parameters of a fuzzy logic controller.



Now, we go to the next part of our topic, which is called Takagi—Sugeno type of fuzzy logic

controller.
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Here, we will outline various research issues that are involved in designing Takagi—Sugeno type.
Actually, I would not say that this is Takagi—Sugeno type of fuzzy logic controller. We will say
FLC using T-S fuzzy model. What is the meaning of that? We want to design a fuzzy logic
controller using T-S fuzzy model, Takagi-Sugeno Fuzzy model. That means any nonlinear

system can be represented by or approximated by T-S fuzzy model.

In general, Takagi-Sugeno type of fuzzy logic controller is an example of indirect adaptive
control. The main steps are identifying the nonlinear systems in terms of T-S fuzzy model and
designing the controller based on the identified T-S fuzzy model. We have a T-S Fuzzy model of
the plant. | utilize the T-S Fuzzy model to design my controller. In different control approaches
using T-S Fuzzy model, we will be discussing these three techniques. One is controller design
with common input matrix, then linear controllers using robust control approach and then

controller design using LMI techniques.

All these three approaches are very much prevalent in control research. I will just give you a hint

of these different types of control research or what are the different control problems these three



types of systems would define. What | am saying is that... what is the meaning of common input
matrix and using that, controller design and linear controller using robust control; these are all

the different control research issues.
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These are the important works in the T-S fuzzy model. First of all, Takagi and Sugeno proposed
the T-S fuzzy model. That is in IEEE Transactions on Systems, Man, and Cybernetics way back
in 1985 — Fuzzy identification of systems and its application to modeling and control. One of our
works is among the other works that are relevant in terms of fuzzy controller using T-S model -
On Identification and Stabilization of nonlinear plants using Fuzzy Neural Network, IEEE
Conference on Systems, Man, and Cybernetics, 2005.That was the work of Zak. In this work, the

second work (Refer Slide Time: 27:54), we are taking about common input matrix.

Zak's Stabilizing fuzzy system models using linear controller appeared in Transactions on Fuzzy
Systems in 1999. In this, you see how to design linear controllers using the fuzzy T-S model, but
in this case, Zak's approach, the controller parameters, the controller gains are fixed. That means
he has a fixed gain controller. We have another paper by Prem, Indhrani and | — Variable Gain
Controllers for Nonlinear Systems using T-S Fuzzy model. That is in IEEE Transactions on
Systems, Man, and Cybernetics, part b in 2006. In this, we are also designing linear controllers,

but the gains are varying — variable gain controller.



Tanaka proposed a notion of Stability and Stabilizability of Fuzzy-Neural-Linear control systems
using the linear matrix inequality approach — LMI. That work appeared in IEEE Transactions on
Fuzzy Systems, 1995. Lam, Leung and Tam A Linear Matrix Inequality Approach for the
Control of Uncertain Fuzzy Systems appeared in IEEE Control Systems Magazine in 2002. You

already know that, this of course, is being solved using linear matrix inequality — LMI.

Now, we will go a little deeper into understanding these problems — what are the control

problems and how the control problem is formulated for each case.

(Refer Slide Time: 29:55)

.R'Pl.“ﬂtllllﬂﬂ ol a nonlinear syslem

Lot us considar a clase of discrate nonlinear dynamical
systams, deacribad by

5 an o-dimonsonad state veolon, o 1% a p-dimensonal
input voctor and ¢ 1 medimongonal output woctor

The abowve system can bo affnctivaly modalad by fuzzy
mrging of aquivalont linear systemes in difforont oparating
ragions uring Takagk-Sugeno(T-5) furzy modal

Let us consider a class of discrete nonlinear dynamical systems described by x k plus 1 is f x k u
k and y k is h x k u k. You see that this is the complete nonlinear plant and these are vector
equations. x is an n-dimensional state vector, u is a p-dimensional input vector, and y is an m-
dimensional output vector. So, f is a vector and h is a vector. The above system can be
effectively modeled by fuzzy merging of equivalent linear systems in different operating regions

using the Takagi—Sugeno fuzzy model. What does it mean?
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A T-S fuzzy model is composed of r rules where the j th rule has the following form. What you
say is if x; kis F1 j and so on and x, kK is Fy J, then my x k plus 1 is a linear system A; x k plus
Bjukandykis Cjx k plus Dj u k, where x is the system's n states X, to X, and the rule here j....
This is the j th rule. So | have r rules. Given a current state vector x k and input vector u k, the T-
S fuzzy model infers x k plus 1 as x k plus 1 is sigma j equal to 1 to r mu; A;j x k plus Bj u k

upon sigma j equal to 1 r mu;.

What is this mu;? mu; is actually sigma mu; x; product i equal to 1 to n. mu; is mu;j X1, mu;j X2
until mu; because when I say x1 K is F1 j, given the crisp value of x1, | get a specific membership
function here. Similarly, given a crisp value of x and k, I get a specific mu; x,. The mu;
associated with the entire rule is normally computed by the product principle; that is, I multiply

each membership function and find out what is mu;.
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This is our muj, the product principle. y K is similarly mu; into associated with the rule j and my
y is Cj x k plus D; u k and you sum over j equal to 1 to r, r rules and divided by sum j equal to 1

to r mu;j. So, mu; i x; is the membership function of the fuzzy term F; j. | explained this.
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Pay a little attention here because, we will be discussing more and more about this kind of
structure; because, we will be going deeper into the control system aspect in this particular model

on fuzzy control.

(Refer Slide Time: 33:30)
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We had this rule and we have r such rules.
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Given these r rules, now we can write the overall fuzzy system, the fuzzy dynamics that the
nonlinear system we described. What was the nonlinear system? The nonlinear system was x k
plus Lisfx kukandy ks h x k uk. This is my nonlinear system and in the T-S fuzzy model,
the nonlinear system would look like this. (Refer Slide Time: 00:34:23 min) You represented the
same nonlinear system as x k plus 1 and here instead of this nonlinearity, we represent in a very
convenient format, which is A bar x k plus B bar u k. It looks linear. It is not linear, but looks
linear: A bar x k plus B bar u k — very convenient notation, and y k is C bar x k plus D bar u k,
where A bar is equal to j equal to 1 to r sigma; A;, B bar is j equal to 1 to r sigma; Bj, C bar is
sigma; C; and D bar is sigma; Dj, where sigma; is a normalized membership function and it is

mu; over sigma; equal to 1 to r mu;.

You must know that from j equal to 1 to r, sigma; is 1. This is always satisfied and always true
(Refer Slide Time: 00:35:28min). The overall system looks linear, but it is not linear; this is
nonlinear. Why? The overall system is nonlinear since A bar is a function of sigma; and this
sigma; is a function of x k because, the sigma; defines the fuzzy membership function of a state

variable x k. Hence, the system is nonlinear.
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Continuous time T-S fuzzy model: The continuous time counterpart of the overall fuzzy system

is.... Just like we said this is discrete time (Refer Slide Time: 00:36:11min), the continuous time



is also similar. x dot is A bar x plus B bar u, y is ¢ bar x plus D bar u, where again A bar is
sigma; Aj, j equal to 1 to r and B bar is sigma; Bj, j equal to 1 to r. C bar is sigma; Cj, j equal to 1
torand D bar is .... You should know how you are finding this. We wrote down x dot is sigma i

equal to 1 to r mu; into A; x plus Bj u divided by sigma i equal to 1 to r mu;.

(Refer Slide Time: 37:15)
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When 1 divide this mu; by this quantity (Refer Slide Time: 00:37:18min) and represent by
sigma;, where sigma; is mu; by sigma i equal to 1 to r muj, then this representation becomes x



dot is simply sigma j equal to 1 to r sigma; A; x plus B; u. You can easily see now that if | write
in terms of x dot equal to A bar X, so sigma; A; j equal to 1 to r. Similarly, B bar is sigma; B;j j
equal to 1 to r sigma; Bj. Be very clear that once | say T-S fuzzy model, then my system
dynamics in continuous time looks like x dot equal to A bar x plus B bar u, which looks very
similar to linear system but they it is not linear because A bar is a function of sigma; and sigma;
is a function of x and hence, this is nonlinear. Similarly, we also talked about discrete time
system (Refer Slide Time: 00:38:48min) which also looks linear, but it is not linear. x k plus 1 is
A bar x k plus B bar u k, where A bar and B bar are functions of x k because they are function of

sigma;.
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Once we understood what the T-S fuzzy model is, the next step is to derive the T-S fuzzy model.
We can derive the T-S fuzzy model by direct system identification or by linearization of an

actual nonlinear plant. I will just explain to you, how we linearize a plant.

Given a nonlinear system, you see that x dot is F X, u which is x plus x square plus u and I want
to linearize this. We can use Taylor's series expansion but I can only apply that when x is equal
to 0 and u is equal to 0. If I am trying to linearize around x is equal to 0 and u is equal to O, then |
can write the expression as this approximation (Refer Slide Time: 00:40:00 min) A x plus B u,

where A is dow F upon dow x and B is dow F upon dow u.



If 1 am linearizing around x is equal to 0, u is equal to O, it means origin. But if x is not equal to
0, then you can follow the book - Systems and Control by Zak; there are other books also, where
there is a method how to linearize a nonlinear system around some other points that are not the
origin. There is a formula here. Given x dot equal to f x plus g x u, we can find out the A matrix.
In that case, A; transpose denotes the i th rule of A where A; is computed by this formula and B
IS g Xo. There are various ways — you just have to learn how to linearize a nonlinear system
around various points. This is not a difficulty. You just try to understand that we can linearize

nonlinear systems around various operating points.
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This is a scalar differential equation — x dot is x plus x square plus u. We can write two rules for
this (Refer Slide Time: 00:41:39min). If x is equal to 0, x dot is x plus u and if x is equal to 1, x
dot is equal to 2 x plus u, where the corresponding matrices A; is 1 and By is 1, Az is 2 and B; is
1. These are all scalar values because, the differential equation is scalar. | just demonstrated this
for a scalar differential equation. You can also do it for a vector differential equation. In that
case, these will come (Refer Slide Time: 42:12).

This is one approach. The other approach is that we directly use fuzzy neural network. From the
input-output data of the system using a fuzzy neural network, we can also estimate these
parameters very easily. Using gradient descent algorithm or various kinds of algorithms, you can
do that. What we try to do in this case is that we represent a neural network where these rules
(Refer Slide Time: 00:42:53min) are encoded in terms of neural network parameters. Then, the

neural network parameters are updated using input-output data using the gradient descent rule.
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We are now very clear that we can write any nonlinear system using either a discrete time T-S
Fuzzy model or a continuous time T-S fuzzy model. This is a discrete time T-S fuzzy model and
this is my continuous time T-S fuzzy model, where we have already defined what is A bar and
what is B bar. Now | assume that the system will have a common input matrix. When we say
common input matrix, it means that for all fuzzy zones, for every rule, the associated control
matrix... because for each rule in T-S fuzzy model, we have a linear system dynamics, that is, X

dot is Aj x plus B;j u.

If this control matrix B; is the same for all rules, then this is called common input matrix. This is
what | say: Bj is equal to B for all j, B is a constant matrix. In that case, this is called common
input matrix. What is the utility of this common input matrix? Suppose we design individual
linear controllers for individual subsystems, the control action corresponding to the j th
subsystem is denoted by u; k. What do we do? If | have a common input matrix, | compute what

is u; for individual subsystems such that the individual subsystem is stable.

Once | compute uj, my control action u k, which is a fuzzy blending of all control actions is
sigma j uj k over j equal to 1 to r. This ensures that individual subsystems are excited by their
respective control inputs, which is u; k. That means if | am giving to the actual plant uy, to the

actual plant I am actuating the control signal ug, it means apparently that each individual



subsystem if they are they are in reality they are being excited by the control action u;. This is a

very important notion. This is a theorem that we will prove in one of the coming classes.

(Refer Slide Time: 45:49)
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Making use of common input matrix, various theorems have been presented to make the overall
system stable; in fact, we have done extensive work in this area. For example, suppose the
individual control input has a form u; k is minus K; x k. For discrete time T-S fuzzy model, the
overall system can be made stable if there exists a common input matrix B for all subsystems and
the individual gain matrices Kjs are designed such that A; dash is equal to Aj minus B Kjs have

singular values less than unity.

If this is the case, then we can say my T-S fuzzy model, my controller which is this one (Refer
Slide Time: 46:31) my controller where u; k is designed by this formula where u; k is minus K; x
k and then my system is stable provided A; minus B K;j have singular values less than unity for
each subsystem. How many subsystems do you have? You have r rules and that means you have
r subsystems. For r subsystems, each of these quantities has maximum singular values and if less
than unity, then the system is stable. The proof and other things will be shown in the following

classes.
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Similarly, another interesting result about this common input matrix is - for continuous time T-S
fuzzy model, the overall system can be made stable, if there exists a common input matrix B for
all subsystems and the individual gain matrices Kjs are designed such that... This is called
Hermitian part of the matrices A; dash. If this term has stable Eigen values, where A; dash is A;
minus B Kj; that is, if | am designing a controller uj is minus K; x and my overall controller is
sigma j uj, sigma; equal to 1 to r; this is my overall controller for a continuous time system; then
the system is stable provided the Hermitian part of this A; dash, which is this one — the

Hermitian part (Refer Slide Time: 48:14) has stable Eigen values.
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You can look at Takagi and Sugeno's Fuzzy identification of systems and its application to
modeling and control and you get the idea of T-S fuzzy model. For the common input matrix,
you can get the idea from this paper — On ldentification and Stabilization of nonlinear plants

using Fuzzy Neural Network, IEEE Conference on Systems, Man, and Cybernetics in 2005.
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Now, we go to the linear controller using robust control method. In this, the T-S fuzzy model is
written in terms of single linear plant and the rest of the linear models are expressed as a
disturbance to this. The norm bound on the disturbance is computed. Based on the norm bound,

the controller is designed, which makes the overall system Lyapunov stable.

(Refer Slide Time: 49:07)
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What does it mean? | have the i th rule as | said earlier. If x; tis F; i and so on and x, t is f, i,
then x dot tis A; x t plus B; u t and mui; is the associated membership function with the i th rule.
Then, we saw that the overall fuzzy dynamics x dot t is sigma; A;j x t plus B; u t, where sigma j is
defined like this.
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This overall fuzzy T-S model can be expanded, x dot is as a nominal plant A x t plus B u t and
these are we can say disturbance term and this disturbance term (Refer Slide Time: 00:49:53min)
can be again further categorized into three categories. ThisisB h, ut, B hy x tand f x t and these
two (Refer Slide Time: 00:50:06 to 00:50:15 min) take care of this part and this one takes care of
this part and then we define norm bounds on these quantities. By defining the norm bounds, we
can design the controller around this nominal plant.

There are various methods to the design controller, which we will not discuss in detail.
Computing the norm bounds of f, hy and h,, controllers are designed that makes the T-S fuzzy
model Lyapunov stable. This is the problem formulation. What is the problem? Given a T-S
fuzzy model, express this T-S fuzzy model as x dot t around a nominal plant and then
disturbance (Refer Slide Time: 00:50:51min). Then, using the robust control theory and

Lyapunov stability theorem, we can design the controller.
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For reference, we have a paper in IEEE Transactions on Systems, Man, and Cybernetics, 2006.
Zak also has a paper on this — Stabilizing Fuzzy system models using linear controllers, IEEE
Transactions on Fuzzy Systems, 1999. You can refer these papers for more, and of course, we

will be discussing this aspect in this class later.

(Refer Slide Time: 51:22)

Fuzzy controller using LMI technique

= In thie control strateqgy, the stability of the closad loop
systam la quarantaad by finding a common Lyapunav
function for all the local linaar modals. This can b
axpransad in the form of a Linaar Matrix Insquality
(LMI) and a stabla fuzzy controllar can ba dagignad by
solving the LMI's.

Lat us considar tha following T-5 fuzzy modal which i
Iocally describad by ™ rula:

Ruls "F!.l!'hrl and « !ﬁ'.F..ﬁnd
s if) s F* THEN
i) = Agr(t) + Bimit), s = 1.2




We talked about common input matrix and we talked about robust control theory — how to design
controller using the T-S fuzzy model. Now, we will talk about LMI technique.
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Again in LMI technique, as we said, the rule is given; given rule i, we have a T-S fuzzy model.
This is our T-S fuzzy model. You remember this; because you should learn this model by heart.
T-S fuzzy model means x dot t is sigma; equal to 1 to r sigma; A; x t plus B; u t; you should
learn this by heart because, we have to be very clear. When we design a control system, the
model should be very clear to us — what it means. This is not a linear model; although it looks
linear, this is a nonlinear model. This approximates the system. The nonlinear system x dot is f x

and u. This is a nonlinear system. It approximates any nonlinear system.

Now, given this T-S fuzzy model, for each rule, for each subsystem, I compute a control action u
t which is minus K; x t.
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If I do that, my overall control action u t is given as minus sigma; K; x t, i equal to 1 to r. The
individual control action u; was minus K; x t for individual and the overall was this one. (Refer
Slide Time: 00:53:02 min) Then, the closed loop system is A; x t plus B; into u. u is minus this
quantity. So minus will come here (Refer Slide Time: 00:53:17 to 00:53:33 min)) and sigma; K;
X t k, sorry, this is j, so sigma; Kj x t, j equal to 1 to r. If you put this quantity like this, after
simplification, you get this quantity. x dot t is sigmai square H;; where Hj; is Aj minus B; K; and
2 sigma; sigma; Hj; plus Hji by 2 x t where Hj; is A;j minus B; K;j. We can rewrite this expression

in this form.
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Once we do that, we take a Lyapunov function because, we have to analyze this particular x dot
equal to we can write this term plus this term into x t (Refer Slide Time: 00:54:16min). | want to
investigate the stability of this system. The best way to investigate stability of the system, you
take a Lyapunov function V equal to x transpose Py. V dot is x dot transpose Py plus x transpose
Px dot and x dot is given by this expression V. The actual dynamics x dot t is given by this
expression (Refer Slide Time: 00:54:40min).

If I replace x dot here, | get V dot finally in this particular format. You see if | put that, I get
sigma; square x transpose Hj; transpose P plus PH; x. Similarly, here (Refer Slide Time:
00:54:49min) | can write x transpose Hj; plus Hji by 2 transpose P, P Hj; plus Hj by 2 x. What
does it mean? You know that V dot has to be negative definite. That means this quantity has to

be negative definite and these quantities also have to be negative definite.
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That gives us the condition that H;; transpose P plus P Hj; has to be negative definite. Similarly,
this Hjj plus Hji by 2 transpose P plus P H;j; plus Hji by 2 also has to be negative definite. This
also can be negative or equal to 0 because, we have already said that this is negative definite. The
above expressions are basic stability conditions and these are actually LMI equations — linear
matrix inequality. You see that this is a linear matrix inequality equation. The controller
parameter K;-s are hidden in these expressions.

These can be further re-expressed in different suitable forms and the controller parameters K;s
can be obtained by solving these expressions. There are various methods — we will not be
discussing now. | am just presenting how to stabilize the fuzzy state feedback controller using

linear matrix equality.

In the beginning, we said the individual control action u; is Kj x. Then we said u is sigma; uj, ]
equal to 1 to r, where sigma; is the normalized membership function associated with rule j. This

is my overall control action u.
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If I give this overall control action, then | said that my overall system dynamics for the closed

loop, this is closed loop system dynamics, becomes like this(Refer Slide Time: 00:57:12min)
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That results in using Lyapunov stability theory to linear matrix inequality equations. If 1 solve,

then I properly find out, finally what should be my k;. This is minus k;.
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Similarly, for a discrete time case, we can follow the same method. The linear matrix inequality
equations would look like this: Hj; transpose P Hji minus P less than 0, and this quantity is less
than or equal to 0. This gives you an idea of how the T-S fuzzy model based controller can be

designed using LMI.
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Finally, we end this class by saying what we did in this class; we had an overview of different
fuzzy control systems. We said that fuzzy rule base can be generated using the concept of
PD/PI/PID type of response or using the notion of Lyapunov stability concept; tuning of fuzzy
controller parameters through optimization using genetic algorithms, univariate marginal
distribution algorithm or differential evaluation — any kind of evolutionary computation approach
we can use to optimize the FLC parameters. When we express a nonlinear system using T-S
fuzzy model, the controllers can be designed in three different cases, when each subsystem has a
common input matrix, or in a generic case, we use the robust control theory to design the
controller, or we can also use linear matrix inequality approach to design the fuzzy controller.

Thank you very much.



