Intelligent Systems and Control
Prof. Laxmidhar Behera
Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Module - 3 Lecture - 10
NN based Back stepping control

NN based back stepping control - This will be the topic that we will be discussing under
module three, neural control, it is lecture ten. NN based back stepping control. In the last
class, we learnt a very preliminary idea about neural network based control. Now, we will

introduce a new concept called back stepping control using neural network.
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Following are the topics to be covered: NN based - Neural Network based adaptive
control; Lyapunov based controller design; back stepping method and back stepping
control design using neural network. We will apply this method to a rigid link electrically

driven manipulator through simulation and final conclusion.
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We already discussed this topic in the last class, Neural Network based

controller.

(Refer Slide Time: 01:46)
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adaptive

I will just give you little hint. For this if I select tau equal to f plus Vr plus Kr. The

closed loop error dynamics is Mr dot plus Kr equal to 0 which as well as stable dynamics,

because M is always a positive definite matrix. So this is a stable dynamics, provided K is



properly selected. You can easily see, in principle this actually is a computed torque
control. But to implement this controller f must be known; f means this quantity; this
quantity (Refer Slide Time: 02:37) must be known, but unfortunately we do not have any

many parameters with us to compute this exactly.

Hence, we estimate f by f hat x. We approximate this as a radial basis function as a canon
in which, W is the weight vector and phi x is the basis function. This phi x is the basic
function of these quantities: g4 double dot g4 dot e dot and g. You can also easily see this
quantity is a function of qq double dot e dot qq dot e and q. Thus exactly is here, qq4
double dot qq4 dot e dot e and g and phi x are the basis functions. This can be represented
in terms of a radial basis function network. We have already discussed in neural network
model f(x). W is the weight matrix for the neural network and W transpose is the optimal
weight matrix so that the nonlinear function is f(x). It can be expressed as W transpose
phi x. Now, the objective is that, we know what is phi x basis functions, because we
know the input, but we do not know what is W transpose? We have to update the weights
in such a way, we have to find out what is this W hat dot? Such that, we can again

establish the system is stable so that we always do using a Lyapunov function method.

(Refer Slide Time: 04:50)
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What you do now? Instead of tau equal to f plus Kr we write tau equal to f hat plus Kr
you see (Refer Slide Time: 05:02) that tau is f Vr is missing here. We also assume V, is
also unknown; in that case, tau is f hat plus Kr. The closed loop error dynamics is Mr dot
is f minus f hat minus Kr minus Vr, which is this quantity f hat minus Kr minus V.
Earlier we used to have tau is f hat Kr plus Vr. In that case, Vo r used to cancel out. If
and f hat they are exact, then, simply Mr dot is minus Kr, but now we have extra a term
here, this term and this term. We have to now find out W hat dot, such that the closed

loop error dynamics is stable.

The closed loop error dynamics is stable if W hat tilde transpose phi is bounded. For this
we consider a Lyapunov function, which is L is half r transpose Mr plus half trace W
tilde transpose gamma inverse, gamma is a positive definite matrix, W tilde so it is time
derivative of this Lyapunov function is half r transpose M dot r plus r transpose Mr dot
plus trace W tilde gamma inverse W tilde dot and you know that W tilde dot is simply W
hat dot, because if you look at here W tilde which is f minus f hat, so W tilde is W minus
W hat; so W tilde dot is minus W hat dot.

Going back here, you can easily see that r dot, if you replace r dot which is M inverse this
quantities. So, this quantity r transpose Mr dot if | replace r dot from here, | finally get
minus r transpose Vmr minus r transpose Kr minus r transpose W tilde transpose phi. You
see that, because of skew-symmetricity these two quantities is 0. Finally, L dot is minus r

transpose Kr and these two terms.
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If | take W hat dot is gamma phi r transpose, then L dot is, as | said, this is 0, because of
skew-symmetric. If | select this, this quantity is same as this quantity, they cancel out.
Your rate derivative of Lyapunov function is minus r transpose Kr. This ensures the
boundedness of approximation error W tilde transpose phi. It can also be shown that V
double dot is bounded and by Barbalat's Lemma r tends to 0 as t tends to infinity. It is not
simply stable; it also says that the tracking error will converge to 0. We showed that, this
is a neural network based direct adaptive control, where my control law is given by this
particular thing. Weight update law is given by this particular expression. W hat d dot is

gamma phi r transpose.
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Now, we will go to the back stepping concept. How we can also utilize back stepping
concept to design neural network based direct adaptive control for very complex systems.
I just introduce little concept of Lyapunov based control and back stepping control. You
see this is our simple scalar differential equation, x dot is a cross X minus x cube plus u; u
is the control action and x is the state of the system. The objective is that, the task is to
design a feedback control law which globally stabilizes the equilibrium at x equal to 0.
Now, consider a Lyapunov function candidate V(x) which is half x square, because X is
the only state, you can easily write down this. This rate derivative or time derivative V
dot is x and x dot; x dot is cos x minus x cube plus u. If I select u to be minus cos x minus
X S0 you get V dot is minus X to the power 4 plus x square, if | replace 1 here, this and
this term cancels out and inside minus x cube minus x and outside x. If you multiply, you
get, minus outside X 4 plus x square so this is always 0 so the system is globally stable.
Tthis is my control law, u equal to minus cos x minus X. This | am finding out by simply

applying the Lyapunov function.
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Now in a Lyapunov based design, if I am given a nonlinear system a vector equation X
dot is finto x, u. x is a vector; f is a vector and u is also a vector. The task is to a design a
feedback control law u equal to alpha X, such that, the equilibrium point x equal to 0 is
globally asymptotically stable. The design step is always is to find out what is a V(x), as
a Lyapunov candidate. Then, you find out what V dot x. The rate derivative which you
can write as del V doe V upon doe x into f(x,u). Because this quantity is doe V by doe x
into dx by dt. This quantity is doe V by doe x into x dot. So, this x dot is f (x,u), if | put...
and if this is always less than some positive definite function W(x), then this is Lyapunov

stable.
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What is the problem? The problem is for a higher dimensional system, it is usually
difficult to find a suitable Lyapunov function V(x) and W(x), even though the system is
stabilizable. For a scalar system, control design is simpler. The motivation now for a back
stepping control is. Is it possible to divide a higher-order system into a number of scalar
systems and design control for each one of them and then finally integrate all these
individual control actions to find the actual control for the plant. Now the example, so
what | am trying to say here is that, because we saw that for a simple system like a scalar
differential equation which was given earlier here. This is a scalar differential equation
(Refer Slide Time: 14:11) for this designing a control action was very simple. But if
(Refer Slide Time: 14:19) complex systems of vector differential equation is there, can |
divide this vector differential equation to simple sub systems, such that, for each sub

system, | can design a control action using Lyapunov function, it is possible.
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Now, we will see that how we can do that? Here is a vector differential equation. We
have two states: One is x and another is z, where the differential equation is x dot is cos x
minus x cube plus xi and xi dot is u. The task is to stabilize the system at equilibrium
point, you can easily see that the equilibrium point here is 0 and minus 1. For the first
subsystem, if xi were the control input. This is the equilibrium point. Now, we want to
stabilize the system around the equilibrium point and we represent this subsystem 1 and

this one as 2.

Let us design a control action for this. Let us stabilize the first subsystem, assuming Xi to
be a control action or as a state. If it is a state, then it is a double state there which is
difficult. So, it is better that | always assume this to be... So, | already have solved this
problem in the last example, where xi was u. Instead of xi, | say this xi is simply a virtual
control action, let us imagine. If | accept xi as a control input then, we have already
shown in the last example V; is half x square. Then xi has to be minus x minus cos x for
which the system is stable. We found out the rate derivative of this is minus x to the

power X to the power 4 minus X square.

This xi is not a control action; | cannot give this xi from outside the system, this is inside.

But xi is a state variable not a control action, nevertheless, this desired value is known.



What is meaning of that? If xi follows this trajectory then, this is stabilizing. So, desired
xi d is minus X minus cos X, if xi d follows these trajectory minus x minus cos x then, the
first subsystem is stable that is very clear. We introduce a new state variable instead of xi

tilde which is xi minus xi desired.

(Refer Slide Time: 17:30)
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Now, what | do? | rewrite the first subsystem x dot as cos x minus x cube plus zeta, this
was my original one, | add zeta d and subtract zeta d, by doing that, what | do? | write
this equation... | know already that this zeta d is minus x. Let me write here we have
already found out zeta d is minus x minus cos X. If I introduce this zeta d, cos x and cos X
goes out. What is left is minus x and minus x cube. This particular term is xi tilde; this is
what | told you. So, x dot in the new form is minus x cube minus x minus xi tilde and xi
tilde dot, because xi tilde is a new state variables. | have to write down an expression for
xi tilde dot which is xi dot minus xi desired dot. Which is xi dot; we already know u,
from the original expression. So, xi d dot, if | differentiate this, of course this would
become minus x dot minus cos x into x dot, if | write that, this will be 1 minus sine x into
minus X cube minus x plus xi tilde. Now, you have this two: This is my subsystem one
and this is my subsystem two (Refer slide time: 19:26). We have to show that whether the
system is stable for and what control action | should find out u, such that, the overall

system is stable.



We first of all showed that x dot is stable provided this xi tilde is actually bounded or it is
0 or xi is following xi d. Now we have to find out the overall stability. To do that, we
take the Lyapunov function, we acknowledge the previous Lyapunov function V1x which
is half x square and plus half xi tilde square. This is V1x is half x square plus half xi tilde
square can be written as xi plus x plus cos x whole square, because xi d is minus x minus
cos X so Xi minus xi d is xi plus x plus cos x, this is what is put it here. xi plus x plus cos
x whole square. If | take the direct derivative of this Lyapunov function, I get x into x
dot. So x dot is this quantity from minus x cube minus x minus xi tilde and plus this 1. If
| differentiate this quantity xi tilde into xi tilde dot, this quantity xi if I (21:14) insert this
quantity here, 1 get minus x square minus X whole square. You see that minus x square
minus X whole square. | can take xi tilde common here and put x here and this quantity
all enters here. I can make this quantity vanish if I select u to be x minus x minus 1 minus
sine x into minus x minus X u plus xi tilde, then, (21:50) minus x square minus x to the

power 4 that is guarantees robust stability.

(Refer Slide Time: 21:59)
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Selecting u to be minus x minus xi tilde minus 1 minus sine X is quantity we get.
Replacing xi tilde is xi plus x plus cos x, we get, V, dot is minus x square minus Xi tilde

square. If | take this quantity and put it there, | get V, dot is minus x square minus Xi tilde



whole square and this proves the equilibrium point is globally asymptotically stable
because this is always negative definite.

(Refer Slide Time: 22:45)
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What we essentially did here in back stepping control is that, first we simplified our first
stabilization problem by stabilizing the first subsystem and then augmented the Lyapunov
function to define the global stability of the entire system. Instead of doing that, if I
would have directly selected a Lyapunov function like this, then, I would have taken V
Lyapunov derivative; this is what | am saying. Let us take the comparision and try to
solve the previous problem using direct method where we consider following Lyapunov
function candidate. You see that V dot becomes this quantity minus x 4 x cos X plus X xi
plus xi plus 1 u you can easily see that this you can verify this to be the rate derivative of
V dot because this is x x dot and we know already x dot is cos X minus X u plus xi. So, X
dot becomes this quantity minus x 4 minus x cos x and plus x Xi, this quantity and this
quantity is xi plus 1 into xi dot and you know that xi dot is u. So, xi dot is u and if | select
u to be this quantity then V dot is minus x 4 minus k xi plus 1 whole square and this is
less than 0 and the system becomes stable but as xi tends to minus 1, because we are
stabilizing around the equilibrium point 0 minus 1. When xi goes to minus 1, you can
easily see u becomes infinite, so system is not stable; although it implies that here it is

stable but it is not so.



Hence this control law does not take the system to equilibrium. This control law cannot
be implemented by going directly. If I assume a global Lyapunov function from the very
beginning designing control law is difficult; whereas, we had a very nice control law
(Refer Slide Time: 25:29) that guarantees stability here.

(Refer Slide Time: 25:32)
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We will give back stepping method in generic; through an example we explained what
the back stepping control. The general motion of back stepping is that the system
description must be in strict feedback form. What is the strict feedback form? The strict
feedback form means x; dot is F; X1 plus G; X1 X». To begin, you just assume this each
element is simply a scalar differential equation. So x; dot is F; X3 plus G; X3 X» so this is
a scalar; this is a scalar; x, is also a scalar. Similarly, x, dot is F, x1 X, again a scalar
function G, x; X, another scalar function into x3. It can be also vector for the moment;
you just try to understand simply individually each one is a scalar differential equation. If
I can represent any vector differential equation, in terms of scalar differential equation
then, this is called Strict Feedback Form. F; and G;, this is wrong, simply they are all
scalars; | would say these are all scalars. At the moments | just assume are to be scalars.
A nonlinear function that contain both parametric and non-parametric uncertainties, this
F1 G1 F2 G, F3 G3 Fry and G, they are nonlinear functions that contain both parametric

and non-parametric uncertainties and this G;s are known and invertible. We assume that



G; G, G3 Gy, they are known and invertible. Note, back stepping can be applied, if
internal dynamics are stabilizable, that is, if each individual subsystem are stabilizable
then, we can design a back stepping control for this particular form which is called strict
feedback form. You see that x; dot is represented in double X». X, is represented in X3. X3

dot is represented in X4 until X, dot is represented in terms of external controller.

(Refer Slide Time: 28:42)
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The back stepping method was originally given by Krstic, Kanellakopoulos and
Kokotovic in 1995. The general idea in the back stepping control is you saw that (Refer
Slide Time: 29:03), given this system, what | can always do? | can find out what is X, as
a virtual control action. So, what is my x, equal to x,d? Such that, this particular system
is stable, which we already have shown, by using Lyapunov functions approach. Then
again | find out what is x3 equal to xsd, the virtual control actions such that the second
subsystem along with the first one is stable, and like that we go ahead. So choose X;
equal to x,d such that the system x; dot equal to F; hat x; X,d tracks x;d. Similarly,
choose x3 equal to x3d such that x; tracks x,d and so on. Finally, select the control action

U, such that x,, tracks xd.
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What we are trying to do here is that, find x, equal to x,d such that x; tracks x;d in this
one. Similarly, find x3 equal to x3d such that x, tracks x,d and so on. Finally here, find u

such that xp, tracks x,d. This is why it is called back stepping.
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Once | told you what the methodology of back stepping is, | will tell you why this is
normally done? The problem with traditional robust and adaptive control is computation



of regression matrix at each design step is tedious and time consuming. Linear in
parameterization assumption which is used in robot manipulator is quite restrictive and

may not be true in practical situations.
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The back stepping control using neural network; this is the theme of this particular class
today. So, I introduce, what is back stepping control? Now, we will go in detail design
using neural network. Design a fictitious controller for x, x3 and Xy, is a first step.
Consider the first subsystem in strict feedback form, that is, x; dot is F; x; plus G; X3

into Xx,.

Define a Lyapunov function for this subsystem, we have already seen that, for a
subsystem V; dot is half e; square, where e; IS X; minus Xi4, because we are trying to
design a tracking controller. We can easily would have shown V; equal to half x; square,
if I simply stabilizing around the equilibrium point. Instead, this is for tracking controller.
The objective is to design a tracking controller that, my plant should follow desired
trajectory. So it is time, derivative is given by V; is half u; square and V; dot is e; into
e; dot, which is e; and e; dot you can easily see this is x; dot minus x;4 dot. What | can
do? This x; dot I can bring it from here, which is F; plus G into X, minus this quantity,

which is x4 dot.
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Choosing the fictitious controller for x, because you see that here (Refer Slide Time:
33:53) we found out V1 is to be this. Now, | want to make V; dot negative definite; so x,
is my virtual control action. So, what should be my x,, so that, V; dot is negative definite
that is possible if I select x; is G; inverse minus F; plus X14 dot minus Ky, dot. If | select
this and put this x, in this quantity, | get V; dot is minus K;e; square, which is negative
definite. But x, is a state not a control as we have already seen. So, its desired value is

given by X4, so this is not a control action.

What | can say that, if my X, is following this desired value given by G; inverse minus
F1 plus x; desired dot minus Kie; then, my first subsystem is stable. But you see that |
normally do not know why we are utilizing new neural network because this F;. You
have assumed this F; to be unknown so because this F; is unknown I replace this F; by
F1 hat, which is x4 desired, corresponding the error variable e, is X, minus Xz4. Then, we
can now write x; dot is F; plus GiX1, this is my original equation and I add to this minus
G1 Xoq and subtract also the same quantity. | replace this xq by this quantity, by doing
that, | get x; dot is F; plus Gie, minus F; hat plus x; desired dot minus Kies; Ky is
simply a positive constant. If you do that, | can take x14 dot to this other side and | can
write this to be e; dot, because my e; is X3 minus Xi4. This is called closed loop error

dynamics which F; minus F; hat minus K;e; plus G;e.
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Differentiating e, gives e, dot is X, dot minus Xu4 dot is F, plus Gx3 minus Xuq desired
dot. Following the same analysis before, we choose a fictitious control for x3, in such a
way where Xsq is G, inverse minus F, hat x4 dot minus K,e, minus G; transpose e;.
Then, we get the second closed loop error dynamics. e, dot is F, minus F, hat minus
K,e, minus G; transpose e; plus G,es. You see that this G; transpose e; is to
compensate the effect of coupling due to G;e,. We can actually derive this from the first
principle. The way we found out e; taking the Lyapunov function similarly, we can find
out what is e, dot. The process of finding the closed loop error dynamics for each
subsystem is scalar differential equation design is continued till the en; equal to Xm1

minus X, minus 1 desire stabilized. So, we found out the error dynamics.
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After the last equation, ey, is given by X, minus Xqg this time derivative of that is F, plus
Gmu Minus xmg dot, because Xy, dot is given by this quantity already by strict feedback
form. Choosing u, again this is found out using again Lyapunov function approach, when
we assume that Fp, is known. Then this is actually a control action that will stabilize. So
then, this is my final closed loop error dynamics en, dot is F, minus Fp, hat minus Kpen
and minus Gy, minus 1 transpose e, minus 1. Where Kj, i is equal to 1 to m are design
parameters; F;is are approximated by neural network. We assume that each F or F; is
approximated by W transpose phi, such that, phi hat the estimated one W hat transpose
phi; phi are the basis function. You know that phi is the basis function of input. For
example, if I go back to my original form, (Refer Slide Time: 39:53) if | want to estimate
this F1 then, my input is x; and F, my inputs are x; X, and F3 | estimate then X1, X, X3

are the input.
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In case the nonlinear functions F;s are known accurately the above control law is given
by this, would give exact tracking of state variables. However, in most cases, these
nonlinear functions are not known accurately. Hence, we approximate these functions
using Neural Networks. In order to keep the approximation error bounded we use
Lyapunov function to find a weight update law, W hat dot. Because if you at, previously
this each neural network is represented by W hat transpose phi is an unknown basis
functions; W hat transpose this weight vector is not known. We have to find out weight

update law.
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This is your back stepping controller. We design what is u and u utilizes the neural
network NN, whose output is Fr, hat. Also it utilizes Xmg, the information that is given
by back stepping approach, because given x4 I find out, what must be x»4? This is my

first F; is approximated by neural network 1, whose input is only X;.

Second neural network NN, takes the input x; X, as | showed you earlier, so, the output
is F2 hat. | get xsq4, you can easily see that, (Refer Slide Time: 41:55) we said that given
X1d, | find out what is X24? Xoq is terms of Xy4 is this input; neural network output F; hat.
Similarly, you can easily see here also X34 is a function of neural network output F, hat
and X4 and that is what we are seeing here. So, X4 is a function of x4 and F; hat. xzq4 is
a function of xyq as well as F, hat and so on. u is finally a function of f,, hat, which is
output of NN neural network m th neural network, whose input is X; to Xp, and this is also
u is a function of xng dot. Then, if I give this to the plant, | have to find out, what should
be the weight update law of all these neural networks? Such that the closed loop error
dynamics is stable.
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Now, | just represent the error dynamic that we have already seen u; dot is... this is F;
hat minus Kie; plus Giey; e, dot rate derivative of second error differential is again F;
hat minus K,e, minus G; transpose e; plus G,e3 and so on. This is error dynamics. So, if
I define to be this quantity this vector of all the parametric tracking errors. z tilde is...
These quantities are actually F minus F hat. You can easily see that e, dot is F, minus
Fm hat and so on. This is actually; the first one is F; minus Fy hat; similarly, this is Fp,
minus Fn, hat. This is my weight vector, the difference between the desired one, there
exist the actual one. K is the controller parameters that as to be found out and phi is

known quantities of basic functions of the input X, X2, X3 and so forth.

The each scalar differential equation is scalar error dynamics and like that m scalar
differential equation can be put into one vector differential equation xi dot is minus K
zeta. You can easily see K is the quantity; Z transpose phi this quantity and H xi is this

quantity, because my xi is simply this quantity.
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H is a matrix. H matrix is given by 0 G; 0 0, minus G; transpose 0 G, and so on. This is
my H, the property of this skew-symmetric. Now, the weight update algorithm is selected

because if | write x transpose Hx that is 0. You can prove that.
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Let us take a Lyapunov function for this to be this. If | find out differential of V dot,

finally, you get this quantity and if you further elaborate, you see that, this is due to skew-



symmetric this quantity becomes 0. If assumed z hat dot is this quantity and you know
the z is actually the weight vectors, so, if weight update law is taken by this quantity and
this quantity they all are same. So V dot is simply xi transpose K xi and K is all positive
quantity and hence this is stable. It can be shown that B double dot is bounded hence
Barbalat's Lemma; xi tends to 0, means, O tracking error goes to 0. We just learnt that,
this is weight update law for which this (Refer Slide Time: 47:15) particular dynamical
system is stable or this closed error dynamic are stable, where neural network as been

used to estimate the unknown functions F; to F,.
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Now, we take a example of a rigid link electrically driven robot manipulator for which
this is our normal expression Mg double dot; Vg dot (47:54) this is gravity; this is
friction; equal to K:l. I is the current of the electrically driven motor. You know this is
actually a torque. And torque is constant into current. Then we write for the motor of the
equation is LI dot plus RI plus Kyq dot is Ue which is the applied voltage. By defining
this parameters, a is this; b is this; this is taking two link robot manipulator and defining
parameter a b ¢ d and e as this. M becomes 2 into 2 matrix like this. The arm parameters
are: Ly is 1 meter; L, is 1 meter; m; is 0.8 kg; my is 2.3kg; go is 9.8 meter per Second

Square.
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You see that core lax matrix is force vector is given by this particular expression. G(q),
the gravity forces is given by this particular term. The motor parameters are given L is
again here; R is given by this; Ky, is given by this particular matrix and torque constant is
given, because we have two links so two motors, that is why you are seeing, these are all
matrices. Desired trajectories for two links are qiq IS sine t and Qa4 is cos t. So, robot
dynamics in terms of filtered error, you see in the beginning we always represent the
robot dynamics in terms of filtered error M, dot is F; minus Vr minus Ky, where F1 is

given by this particular quantity.
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You see this is a kind of expression that we can always say this is stable, provided if I
select | equal to desire 14 such that r tends to 0. The above, error dynamics may be written
in terms of M, dot is F; minus V,r. Now, | just represented this, earlier it was simply
minus Kl instead of I, | write I4 plus K; zeta and zeta is |4 minus I, so you can easily see
this is same as original one F1; minus Vp,r minus Kil. This is my original dynamics and
that 1 am representing in this particular form. If select 14 to be of this particular form.
Since, | do not what is Ky, so, | do not write 1 upon K; I write 1 upon K;. Kj is the

positive constant.

Then, M, dot can be represented in this particular form. You see that if F; and F; hat
there are almost known already, because let us think about the case where it is known,
then, | can say this is almost 0. V1, this particular some constant into r they contribute to
this stability. So all that | have to show that, if I can cancel this... Again | represent this
particular term | minus Vr bring it here and this minus F; this particular quantity is
represented by this expression. This F; hat is represented by neural network. Then can
represent this. This quantity is represented here. | always find some V a new tau in such a
way this term and this term can be cancelled out. The objective is that to find this

particular term that this term and this term first cancels out.
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Usually, Ky is not known. The robustifying term Uy is selected so as to suppress the effect
due to term | minus K; upon Kj, V tau if select this, then Vy is the upper bound of this.
The above error equation this M, dot is this quantity, can be rewritten in this particular
form (Refer Slide Time: 53:07). So you see this | representing by a neural network; this is
actually, if M, dot is this, if neural network approximately function, this is 0. Then, M,
dot is this quantity, this is stable. Then | have an extra term K; zeta and if zeta is
bounded, then system is stable. Now, | select U in such a way that zeta will be bounded,
for that zeta already | know that, desired current minus I. So, L zeta dot is LI4 dot minus |
dot, I can represent this in terms of F, minus U,, this is the control action. What should
be the control action such that theta is bounded, that is the second one.
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If | find U, as, this is neural network approximation of F, and then if | take control action
to be Kv theta then error dynamics is L theta dot is this quantity. You see that if this is 0
that means, neural network approximation is exact, then this is a stable dynamics. If zeta
is bounded in previous term this is also stable. Now, | have to do is, | got two closed error
dynamics. M, dot is this quantity and L zeta dot is this quantity, so two closed loop error
dynamics in the same manner that, we had earlier this one, set of similar error dynamics
found out just now. This two error dynamics going by the same principle of designing the

Lyapunov function, we can derive that for this (Refer Slide Time: 55:12)



(Refer Slide Time: 55:10)

ﬂmtu; NN Backwlspping control

iy

Mo o] by i ofyrummeca, o B sl wydein ey e
| i it g

1,

Thaspe orrry avjupieury me pimilpr 0 fres desiesd o gt Tesefhay b
LRl

Tlaumpgh Lpgaancs aelymae i can b sl ol ooy
wariphl wrpwlindee lonw v

oy b w b of igsgees
aned 1

vl oy nevied |

T i I ™
L

Wy |_)|

The weight update law is gamma; phiy r transpose and W, hat dot, for this one, is
gammay, phi; r transpose. If | do then the system is in Lyapunov stable.

(Refer Slide Time: 55:29)
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By doing that... This is obviously direct adaptive control architecture for rigid link

electrically driven robot manipulator. Implementing the previous control law, (Refer



Slide Time: 55:47) this is weight update law and control law. This is control law (Refer
Slide Time: 55:56).
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Doing that, I get this you see the desire actual link 1 position and tracking link 2 positions

tracking here. This is PD control of rigid link electrically driven manipulator by taking....

(Refer Slide Time: 56:20)
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This is a PD control. You see that, the proposed back stepping control tracking error is
vanished. If 1 do simple PD control lot of tracking error in both joint 1 and joint 2, but

once | implement the neural network based back stepping control tracking error goes to 0.
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This is an error which is this control input and this is PD control actions and this back

stepping control action.

(Refer Slide Time: 57:00)

ﬂﬂl ED: Simailation

@ Thay problioen of waesghl indlialization
| e walghite 117,00 ans takisn an FAroR
|

m Tha lunkng Alnarthm ansaras hat walhte ara

® PL conliodiyr TQOUIgS oy s il I|||II;I|I. [ Te TN
highy fir AT wnrrschndosd chy e

m NM canirallar improvas tracking parfamancs




The observations, the problem of weight initialization does not arise, since these are
taken as zero; tuning algorithm ensures that weights are bounded; PD controller requires
large gains which might excite high frequency unmodeled dynamics and NN control

neural network based controller improves tracking performance.
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The summary, what we discussed today is, NN based adaptive controller it was revisited,
we discussed in the last class; Lyapunov based design; back stepping; back stepping
using neural network and we demonstrated (57:34) of back stepping using rigid link

electrically driven motor.

Thank you very much.
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