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Module - 3 Lecture - 10 

NN based Back stepping control 

NN based back stepping control - This will be the topic that we will be discussing under 

module three, neural control, it is lecture ten. NN based back stepping control. In the last 

class, we learnt a very preliminary idea about neural network based control. Now, we will 

introduce a new concept called back stepping control using neural network.  

(Refer Slide Time: 01:08) 

 

Following are the topics to be covered: NN based - Neural Network based adaptive 

control; Lyapunov based controller design; back stepping method and back stepping 

control design using neural network. We will apply this method to a rigid link electrically 

driven manipulator through simulation and final conclusion. 
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We already discussed this topic in the last class, Neural Network based adaptive 

controller.  

(Refer Slide Time: 01:46) 

 

I will just give you little hint. For this if I select tau equal to f plus Vmr plus Kr. The 

closed loop error dynamics is Mr dot plus Kr equal to 0 which as well as stable dynamics, 

because M is always a positive definite matrix. So this is a stable dynamics, provided K is 



properly selected. You can easily see, in principle this actually is a computed torque 

control. But to implement this controller f must be known; f means this quantity; this 

quantity (Refer Slide Time: 02:37) must be known, but unfortunately we do not have any 

many parameters with us to compute this exactly. 

Hence, we estimate f by f hat x. We approximate this as a radial basis function as a canon 

in which, W is the weight vector and phi x is the basis function. This phi x is the basic 

function of these quantities: qd double dot qd dot e dot and q. You can also easily see this 

quantity is a function of qd double dot e dot qd dot e and q. Thus exactly is here, qd 

double dot qd dot e dot e and q and phi x are the basis functions. This can be represented 

in terms of a radial basis function network. We have already discussed in neural network 

model f(x). W is the weight matrix for the neural network and W transpose is the optimal 

weight matrix so that the nonlinear function is f(x). It can be expressed as W transpose 

phi x. Now, the objective is that, we know what is phi x basis functions, because we 

know the input, but we do not know what is W transpose? We have to update the weights 

in such a way, we have to find out what is this W hat dot? Such that, we can again 

establish the system is stable so that we always do using a Lyapunov function method. 

(Refer Slide Time: 04:50) 

 



What you do now? Instead of tau equal to f plus Kr we write tau equal to f hat plus Kr 

you see (Refer Slide Time: 05:02) that tau is f Vmr is missing here. We also assume Vm is 

also unknown; in that case, tau is f hat plus Kr. The closed loop error dynamics is Mr dot 

is f minus f hat minus Kr minus Vmr, which is this quantity f hat minus Kr minus Vmr. 

Earlier we used to have tau is f hat Kr plus Vmr. In that case, Vmr used to cancel out. If f 

and f hat they are exact, then, simply Mr dot is minus Kr, but now we have extra a term 

here, this term and this term. We have to now find out W hat dot, such that the closed 

loop error dynamics is stable. 

The closed loop error dynamics is stable if W hat tilde transpose phi is bounded. For this 

we consider a Lyapunov function, which is L is half r transpose Mr plus half trace W 

tilde transpose gamma inverse, gamma is a positive definite matrix, W tilde so it is time 

derivative of this Lyapunov function is half r transpose M dot r plus r transpose Mr dot 

plus trace W tilde gamma inverse W tilde dot and you know that W tilde dot is simply W 

hat dot, because if you look at here W tilde which is f minus f hat, so W tilde is W minus 

W hat; so W tilde dot is minus W hat dot. 

Going back here, you can easily see that r dot, if you replace r dot which is M inverse this 

quantities. So, this quantity r transpose Mr dot if I replace r dot from here, I finally get 

minus r transpose Vmr minus r transpose Kr minus r transpose W tilde transpose phi. You 

see that, because of skew-symmetricity these two quantities is 0. Finally, L dot is minus r 

transpose Kr and these two terms.  
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If I take W hat dot is gamma phi r transpose, then L dot is, as I said, this is 0, because of 

skew-symmetric. If I select this, this quantity is same as this quantity, they cancel out. 

Your rate derivative of Lyapunov function is minus r transpose Kr. This ensures the 

boundedness of approximation error W tilde transpose phi. It can also be shown that V 

double dot is bounded and by Barbalat's Lemma r tends to 0 as t tends to infinity. It is not 

simply stable; it also says that the tracking error will converge to 0. We showed that, this 

is a neural network based direct adaptive control, where my control law is given by this 

particular thing. Weight update law is given by this particular expression. W hat d dot is 

gamma phi r transpose. 
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Now, we will go to the back stepping concept. How we can also utilize back stepping 

concept to design neural network based direct adaptive control for very complex systems. 

I just introduce little concept of Lyapunov based control and back stepping control. You 

see this is our simple scalar differential equation, x dot is a cross x minus x cube plus u; u 

is the control action and x is the state of the system. The objective is that, the task is to 

design a feedback control law which globally stabilizes the equilibrium at x equal to 0. 

Now, consider a Lyapunov function candidate V(x) which is half x square, because x is 

the only state, you can easily write down this. This rate derivative or time derivative V 

dot is x and x dot; x dot is cos x minus x cube plus u. If I select u to be minus cos x minus 

x so you get V dot is minus x to the power 4 plus x square, if I replace 1 here, this and 

this term cancels out and inside minus x cube minus x and outside x. If you multiply, you 

get, minus outside x 4 plus x square so this is always 0 so the system is globally stable. 

Tthis is my control law, u equal to minus cos x minus x. This I am finding out by simply 

applying the Lyapunov function. 
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Now in a Lyapunov based design, if I am given a nonlinear system a vector equation x 

dot is f into x, u. x is a vector; f is a vector and u is also a vector. The task is to a design a 

feedback control law u equal to alpha x, such that, the equilibrium point x equal to 0 is 

globally asymptotically stable. The design step is always is to find out what is a V(x), as 

a Lyapunov candidate. Then, you find out what V dot x. The rate derivative which you 

can write as del V doe V upon doe x into f(x,u). Because this quantity is doe V by doe x 

into dx by dt. This quantity is doe V by doe x into x dot. So, this x dot is f (x,u), if I put… 

and if this is always less than some positive definite function W(x), then this is Lyapunov 

stable. 
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What is the problem? The problem is for a higher dimensional system, it is usually 

difficult to find a suitable Lyapunov function V(x) and W(x), even though the system is 

stabilizable. For a scalar system, control design is simpler. The motivation now for a back 

stepping control is. Is it possible to divide a higher-order system into a number of scalar 

systems and design control for each one of them and then finally integrate all these 

individual control actions to find the actual control for the plant. Now the example, so 

what I am trying to say here is that, because we saw that for a simple system like a scalar 

differential equation which was given earlier here. This is a scalar differential equation 

(Refer Slide Time: 14:11) for this designing a control action was very simple. But if 

(Refer Slide Time: 14:19) complex systems of vector differential equation is there, can I 

divide this vector differential equation to simple sub systems, such that, for each sub 

system, I can design a control action using Lyapunov function, it is possible. 
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Now, we will see that how we can do that? Here is a vector differential equation. We 

have two states: One is x and another is z, where the differential equation is x dot is cos x 

minus x cube plus xi and xi dot is u. The task is to stabilize the system at equilibrium 

point, you can easily see that the equilibrium point here is 0 and minus 1. For the first 

subsystem, if xi were the control input. This is the equilibrium point. Now, we want to 

stabilize the system around the equilibrium point and we represent this subsystem 1 and 

this one as 2. 

Let us design a control action for this. Let us stabilize the first subsystem, assuming xi to 

be a control action or as a state. If it is a state, then it is a double state there which is 

difficult. So, it is better that I always assume this to be… So, I already have solved this 

problem in the last example, where xi was u. Instead of xi, I say this xi is simply a virtual 

control action, let us imagine. If I accept xi as a control input then, we have already 

shown in the last example V1 is half x square. Then xi has to be minus x minus cos x for 

which the system is stable. We found out the rate derivative of this is minus x to the 

power x to the power 4 minus x square.  

This xi is not a control action; I cannot give this xi from outside the system, this is inside. 

But xi is a state variable not a control action, nevertheless, this desired value is known. 



What is meaning of that? If xi follows this trajectory then, this is stabilizing. So, desired 

xi d is minus x minus cos x, if xi d follows these trajectory minus x minus cos x then, the 

first subsystem is stable that is very clear. We introduce a new state variable instead of xi 

tilde which is xi minus xi desired. 
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Now, what I do? I rewrite the first subsystem x dot as cos x minus x cube plus zeta, this 

was my original one, I add zeta d and subtract zeta d, by doing that, what I do? I write 

this equation… I know already that this zeta d is minus x. Let me write here we have 

already found out zeta d is minus x minus cos x. If I introduce this zeta d, cos x and cos x 

goes out. What is left is minus x and minus x cube. This particular term is xi tilde; this is 

what I told you. So, x dot in the new form is minus x cube minus x minus xi tilde and xi 

tilde dot, because xi tilde is a new state variables. I have to write down an expression for 

xi tilde dot which is xi dot minus xi desired dot. Which is xi dot; we already know u, 

from the original expression. So, xi d dot, if I differentiate this, of course this would 

become minus x dot minus cos x into x dot, if I write that, this will be 1 minus sine x into 

minus x cube minus x plus xi tilde. Now, you have this two: This is my subsystem one 

and this is my subsystem two (Refer slide time: 19:26). We have to show that whether the 

system is stable for and what control action I should find out u, such that, the overall 

system is stable.  



We first of all showed that x dot is stable provided this xi tilde is actually bounded or it is 

0 or xi is following xi d. Now we have to find out the overall stability. To do that, we 

take the Lyapunov function, we acknowledge the previous Lyapunov function V1x which 

is half x square and plus half xi tilde square. This is V1x is half x square plus half xi tilde 

square can be written as xi plus x plus cos x whole square, because xi d is minus x minus 

cos x so xi minus xi d is xi plus x plus cos x, this is what is put it here. xi plus x plus cos 

x whole square. If I take the direct derivative of this Lyapunov function, I get x into x 

dot. So x dot is this quantity from minus x cube minus x minus xi tilde and plus this 1. If 

I differentiate this quantity xi tilde into xi tilde dot, this quantity xi if I (21:14) insert this 

quantity here, I get minus x square minus x whole square. You see that minus x square 

minus x whole square. I can take xi tilde common here and put x here and this quantity 

all enters here. I can make this quantity vanish if I select u to be x minus x minus 1 minus 

sine x into minus x minus x u plus xi tilde, then, (21:50) minus x square minus x to the 

power 4 that is guarantees robust stability.  

(Refer Slide Time: 21:59) 

 

Selecting u to be minus x minus xi tilde minus 1 minus sine x is quantity we get. 

Replacing xi tilde is xi plus x plus cos x, we get, Va dot is minus x square minus xi tilde 

square. If I take this quantity and put it there, I get Va dot is minus x square minus xi tilde 



whole square and this proves the equilibrium point is globally asymptotically stable 

because this is always negative definite.  

(Refer Slide Time: 22:45) 

 

What we essentially did here in back stepping control is that, first we simplified our first 

stabilization problem by stabilizing the first subsystem and then augmented the Lyapunov 

function to define the global stability of the entire system. Instead of doing that, if I 

would have directly selected a Lyapunov function like this, then, I would have taken V 

Lyapunov derivative; this is what I am saying. Let us take the comparision and try to 

solve the previous problem using direct method where we consider following Lyapunov 

function candidate. You see that V dot becomes this quantity minus x 4 x cos x plus x xi 

plus xi plus 1 u you can easily see that this you can verify this to be the rate derivative of 

V dot because this is x x dot and we know already x dot is cos x minus x u plus xi. So, x 

dot becomes this quantity minus x 4 minus x cos x and plus x xi, this quantity and this 

quantity is xi plus 1 into xi dot and you know that xi dot is u. So, xi dot is u and if I select 

u to be this quantity then V dot is minus x 4 minus k xi plus 1 whole square and this is 

less than 0 and the system becomes stable but as xi tends to minus 1, because we are 

stabilizing around the equilibrium point 0 minus 1. When xi goes to minus 1, you can 

easily see u becomes infinite, so system is not stable; although it implies that here it is 

stable but it is not so. 



Hence this control law does not take the system to equilibrium. This control law cannot 

be implemented by going directly. If I assume a global Lyapunov function from the very 

beginning designing control law is difficult; whereas, we had a very nice control law 

(Refer Slide Time: 25:29) that guarantees stability here.  
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We will give back stepping method in generic; through an example we explained what 

the back stepping control. The general motion of back stepping is that the system 

description must be in strict feedback form. What is the strict feedback form? The strict 

feedback form means x1 dot is F1 x1 plus G1 x1 x2. To begin, you just assume this each 

element is simply a scalar differential equation. So x1 dot is F1 x1 plus G1 x1 x2 so this is 

a scalar; this is a scalar; x2 is also a scalar. Similarly, x2 dot is F2 x1 x2 again a scalar 

function G2 x1 x2 another scalar function into x3. It can be also vector for the moment; 

you just try to understand simply individually each one is a scalar differential equation. If 

I can represent any vector differential equation, in terms of scalar differential equation 

then, this is called Strict Feedback Form. Fi and Gi, this is wrong, simply they are all 

scalars; I would say these are all scalars. At the moments I just assume are to be scalars. 

A nonlinear function that contain both parametric and non-parametric uncertainties, this 

F1 G1 F2 G2 F3 G3 Fm and Gm they are nonlinear functions that contain both parametric 

and non-parametric uncertainties and this Gis are known and invertible. We assume that 



G1 G2 G3 Gm. they are known and invertible. Note, back stepping can be applied, if 

internal dynamics are stabilizable, that is, if each individual subsystem are stabilizable 

then, we can design a back stepping control for this particular form which is called strict 

feedback form. You see that x1 dot is represented in double x2; x2 is represented in x3; x3 

dot is represented in x4; until xm dot is represented in terms of external controller. 
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The back stepping method was originally given by Krstic, Kanellakopoulos and 

Kokotovic in 1995. The general idea in the back stepping control is you saw that (Refer 

Slide Time: 29:03), given this system, what I can always do? I can find out what is x2 as 

a virtual control action. So, what is my x2 equal to x2d? Such that, this particular system 

is stable, which we already have shown, by using Lyapunov functions approach. Then 

again I find out what is x3 equal to x3d, the virtual control actions such that the second 

subsystem along with the first one is stable, and like that we go ahead. So choose x2 

equal to x2d such that the system x1 dot equal to F1 hat x1 x2d tracks x1d. Similarly, 

choose x3 equal to x3d such that x2 tracks x2d and so on. Finally, select the control action 

u2 such that xm tracks xmd.  
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What we are trying to do here is that, find x2 equal to x2d such that x1 tracks x1d in this 

one. Similarly, find x3 equal to x3d such that x2 tracks x2d and so on. Finally here, find u 

such that xm tracks xmd. This is why it is called back stepping. 

Refer Slide Time: 31:29) 

 

Once I told you what the methodology of back stepping is, I will tell you why this is 

normally done? The problem with traditional robust and adaptive control is computation 



of regression matrix at each design step is tedious and time consuming. Linear in 

parameterization assumption which is used in robot manipulator is quite restrictive and 

may not be true in practical situations. 
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The back stepping control using neural network; this is the theme of this particular class 

today. So, I introduce, what is back stepping control? Now, we will go in detail design 

using neural network. Design a fictitious controller for x2 x3 and xm is a first step. 

Consider the first subsystem in strict feedback form, that is, x1 dot is F1 x1 plus G1 x1 

into x2.  

Define a Lyapunov function for this subsystem, we have already seen that, for a 

subsystem V1 dot is half e1 square, where e1 is x1 minus x1d, because we are trying to 

design a tracking controller. We can easily would have shown V1 equal to half x1 square, 

if I simply stabilizing around the equilibrium point. Instead, this is for tracking controller. 

The objective is to design a tracking controller that, my plant should follow desired 

trajectory. So it is time, derivative is given by V1 is half u1 square and V1 dot is e1 into 

e1 dot, which is e1 and e1 dot you can easily see this is x1 dot minus x1d dot. What I can 

do? This x1 dot I can bring it from here, which is F1 plus G1 into x2 minus this quantity, 

which is x1d dot. 



(Refer Slide Time: 33:48) 

 

Choosing the fictitious controller for x2 because you see that here (Refer Slide Time: 

33:53) we found out V1 is to be this. Now, I want to make V1 dot negative definite; so x2 

is my virtual control action. So, what should be my x2, so that, V1 dot is negative definite 

that is possible if I select x2 is G1 inverse minus F1 plus x1d dot minus K1e dot. If I select 

this and put this x2 in this quantity, I get V1 dot is minus K1e1 square, which is negative 

definite. But x2 is a state not a control as we have already seen. So, its desired value is 

given by x2d, so this is not a control action.  

What I can say that, if my x2 is following this desired value given by G1 inverse minus 

F1 plus x1 desired dot minus K1e1 then, my first subsystem is stable. But you see that I 

normally do not know why we are utilizing new neural network because this F1. You 

have assumed this F1 to be unknown so because this F1 is unknown I replace this F1 by 

F1 hat, which is x2d desired, corresponding the error variable e2 is x2 minus x2d. Then, we 

can now write x1 dot is F1 plus G1x1, this is my original equation and I add to this minus 

G1 x2d and subtract also the same quantity. I replace this x2d by this quantity, by doing 

that, I get x1 dot is F1 plus G1e2 minus F1 hat plus x1 desired dot minus K1e1; K1 is 

simply a positive constant. If you do that, I can take x1d dot to this other side and I can 

write this to be e1 dot, because my e1 is x1 minus x1d. This is called closed loop error 

dynamics which F1 minus F1 hat minus K1e1 plus G1e2. 
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Differentiating e2 gives e2 dot is x2 dot minus x2d dot is F2 plus G2x3 minus x2d desired 

dot. Following the same analysis before, we choose a fictitious control for x3, in such a 

way where x3d is G2 inverse minus F2 hat x2d dot minus K2e2 minus G1 transpose e1. 

Then, we get the second closed loop error dynamics. e2 dot is F2 minus F2 hat minus 

K2e2 minus G1 transpose e1 plus G2e3. You see that this G1 transpose e1 is to 

compensate the effect of coupling due to G1e2. We can actually derive this from the first 

principle. The way we found out e1 taking the Lyapunov function similarly, we can find 

out what is e2 dot. The process of finding the closed loop error dynamics for each 

subsystem is scalar differential equation design is continued till the em1 equal to xm1 

minus xm minus 1 desire stabilized. So, we found out the error dynamics. 
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After the last equation, em is given by xm minus xmd this time derivative of that is Fm plus 

Gmu minus xmd dot, because xm dot is given by this quantity already by strict feedback 

form. Choosing u, again this is found out using again Lyapunov function approach, when 

we assume that Fm is known. Then this is actually a control action that will stabilize. So 

then, this is my final closed loop error dynamics em dot is Fm minus Fm hat minus Kmem 

and minus Gm minus 1 transpose em minus 1. Where Ki, i is equal to 1 to m are design 

parameters; Fis are approximated by neural network. We assume that each F or Fi is 

approximated by W transpose phi, such that, phi hat the estimated one W hat transpose 

phi; phi are the basis function. You know that phi is the basis function of input. For 

example, if I go back to my original form, (Refer Slide Time: 39:53) if I want to estimate 

this F1 then, my input is x1 and F2 my inputs are x1 x2 and F3 I estimate then x1, x2 x3 

are the input. 



(Refer Slide Time: 40:05) 

 

In case the nonlinear functions Fis are known accurately the above control law is given 

by this, would give exact tracking of state variables. However, in most cases, these 

nonlinear functions are not known accurately. Hence, we approximate these functions 

using Neural Networks. In order to keep the approximation error bounded we use 

Lyapunov function to find a weight update law, W hat dot. Because if you at, previously 

this each neural network is represented by W hat transpose phi is an unknown basis 

functions; W hat transpose this weight vector is not known. We have to find out weight 

update law. 
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This is your back stepping controller. We design what is u and u utilizes the neural 

network NNm whose output is Fm hat. Also it utilizes xmd, the information that is given 

by back stepping approach, because given x1d I find out, what must be x2d? This is my 

first F1 is approximated by neural network 1, whose input is only x1. 

Second neural network NN2 takes the input x1 x2 as I showed you earlier, so, the output 

is F2 hat. I get x3d, you can easily see that, (Refer Slide Time: 41:55) we said that given 

x1d, I find out what is x2d? x2d is terms of x1d is this input; neural network output F1 hat. 

Similarly, you can easily see here also x3d is a function of neural network output F2 hat 

and x2d and that is what we are seeing here. So, x2d is a function of x1d and F1 hat. x3d is 

a function of x2d as well as F2 hat and so on. u is finally a function of fm hat, which is 

output of NN neural network m th neural network, whose input is x1 to xm and this is also 

u is a function of xmd dot. Then, if I give this to the plant, I have to find out, what should 

be the weight update law of all these neural networks? Such that the closed loop error 

dynamics is stable. 
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Now, I just represent the error dynamic that we have already seen u1 dot is… this is F1 

hat minus K1e1 plus G1e2; e2 dot rate derivative of second error differential is again F2 

hat minus K2e2 minus G1 transpose e1 plus G2e3 and so on. This is error dynamics. So, if 

I define to be this quantity this vector of all the parametric tracking errors. z tilde is… 

These quantities are actually F minus F hat. You can easily see that em dot is Fm minus 

Fm hat and so on. This is actually; the first one is F1 minus F1 hat; similarly, this is Fm 

minus Fm hat. This is my weight vector, the difference between the desired one, there 

exist the actual one. K is the controller parameters that as to be found out and phi is 

known quantities of basic functions of the input x1, x2, x3 and so forth. 

The each scalar differential equation is scalar error dynamics and like that m scalar 

differential equation can be put into one vector differential equation xi dot is minus K 

zeta. You can easily see K is the quantity; Z transpose phi this quantity and H xi is this 

quantity, because my xi is simply this quantity. 
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H is a matrix. H matrix is given by 0 G1 0 0, minus G1 transpose 0 G2 and so on. This is 

my H, the property of this skew-symmetric. Now, the weight update algorithm is selected 

because if I write x transpose Hx that is 0. You can prove that. 
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Let us take a Lyapunov function for this to be this. If I find out differential of V dot, 

finally, you get this quantity and if you further elaborate, you see that, this is due to skew-



symmetric this quantity becomes 0. If assumed z hat dot is this quantity and you know 

the z is actually the weight vectors, so, if weight update law is taken by this quantity and 

this quantity they all are same. So V dot is simply xi transpose K xi and K is all positive 

quantity and hence this is stable. It can be shown that B double dot is bounded hence 

Barbalat's Lemma; xi tends to 0, means, 0 tracking error goes to 0. We just learnt that, 

this is weight update law for which this (Refer Slide Time: 47:15) particular dynamical 

system is stable or this closed error dynamic are stable, where neural network as been 

used to estimate the unknown functions F1 to Fm. 
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Now, we take a example of a rigid link electrically driven robot manipulator for which 

this is our normal expression Mq double dot; Vmq dot (47:54) this is gravity; this is 

friction; equal to KtI. I is the current of the electrically driven motor. You know this is 

actually a torque. And torque is constant into current. Then we write for the motor of the 

equation is LI dot plus RI plus Kbq dot is Ue which is the applied voltage. By defining 

this parameters, a is this; b is this; this is taking two link robot manipulator and defining 

parameter a b c d and e as this. M becomes 2 into 2 matrix like this. The arm parameters 

are: Ll is 1 meter; L2 is 1 meter; m1 is 0.8 kg; m2 is 2.3kg; g0 is 9.8 meter per Second 

Square.  
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You see that core lax matrix is force vector is given by this particular expression. G(q), 

the gravity forces is given by this particular term. The motor parameters are given L is 

again here; R is given by this; Kb is given by this particular matrix and torque constant is 

given, because we have two links so two motors, that is why you are seeing, these are all 

matrices. Desired trajectories for two links are q1d is sine t and q2d is cos t. So, robot 

dynamics in terms of filtered error, you see in the beginning we always represent the 

robot dynamics in terms of filtered error Mr dot is F1 minus Vmr minus Ktr, where F1 is 

given by this particular quantity.  
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You see this is a kind of expression that we can always say this is stable, provided if I 

select I equal to desire Id such that r tends to 0. The above, error dynamics may be written 

in terms of Mr dot is F1 minus Vmr. Now, I just represented this, earlier it was simply 

minus KtI instead of I, I write Id plus Kt zeta and zeta is Id minus I, so you can easily see 

this is same as original one F1 minus Vmr minus KtI. This is my original dynamics and 

that I am representing in this particular form. If select Id to be of this particular form. 

Since, I do not what is Kt, so, I do not write 1 upon Kt I write 1 upon K1. K1 is the 

positive constant.  

Then, Mr dot can be represented in this particular form. You see that if F1 and F1 hat 

there are almost known already, because let us think about the case where it is known, 

then, I can say this is almost 0. Vmr, this particular some constant into r they contribute to 

this stability. So all that I have to show that, if I can cancel this… Again I represent this 

particular term I minus Vmr bring it here and this minus F1 this particular quantity is 

represented by this expression. This F1 hat is represented by neural network. Then can 

represent this. This quantity is represented here. I always find some V a new tau in such a 

way this term and this term can be cancelled out. The objective is that to find this 

particular term that this term and this term first cancels out. 



(Refer Slide Time: 52:35) 

 

Usually, Kt is not known. The robustifying term Ut is selected so as to suppress the effect 

due to term I minus Kt upon K1, V tau if select this, then Vk is the upper bound of this. 

The above error equation this Mr dot is this quantity, can be rewritten in this particular 

form (Refer Slide Time: 53:07). So you see this I representing by a neural network; this is 

actually, if Mr dot is this, if neural network approximately function, this is 0. Then, Mr 

dot is this quantity, this is stable. Then I have an extra term Kt zeta and if zeta is 

bounded, then system is stable. Now, I select Ue in such a way that zeta will be bounded, 

for that zeta already I know that, desired current minus I. So, L zeta dot is LId dot minus I 

dot, I can represent this in terms of F2 minus Uv, this is the control action. What should 

be the control action such that theta is bounded, that is the second one. 



(Refer Slide Time: 53:55) 

 

If I find Ue as, this is neural network approximation of F2 and then if I take control action 

to be Kv theta then error dynamics is L theta dot is this quantity. You see that if this is 0 

that means, neural network approximation is exact, then this is a stable dynamics. If zeta 

is bounded in previous term this is also stable. Now, I have to do is, I got two closed error 

dynamics. Mr dot is this quantity and L zeta dot is this quantity, so two closed loop error 

dynamics in the same manner that, we had earlier this one, set of similar error dynamics 

found out just now. This two error dynamics going by the same principle of designing the 

Lyapunov function, we can derive that for this (Refer Slide Time: 55:12) 



(Refer Slide Time: 55:10) 

 

The weight update law is gamma1 phi1 r transpose and W2 hat dot, for this one, is 

gamma2 phi2 r transpose. If I do then the system is in Lyapunov stable. 

(Refer Slide Time: 55:29) 

 

By doing that… This is obviously direct adaptive control architecture for rigid link 

electrically driven robot manipulator. Implementing the previous control law, (Refer 



Slide Time: 55:47) this is weight update law and control law. This is control law (Refer 

Slide Time: 55:56). 

(Refer Slide Time: 55:59) 

 

Doing that, I get this you see the desire actual link 1 position and tracking link 2 positions 

tracking here. This is PD control of rigid link electrically driven manipulator by taking…. 

(Refer Slide Time: 56:20) 

 



This is a PD control. You see that, the proposed back stepping control tracking error is 

vanished. If I do simple PD control lot of tracking error in both joint 1 and joint 2, but 

once I implement the neural network based back stepping control tracking error goes to 0.  

(Refer Slide Time: 56:46) 

 

This is an error which is this control input and this is PD control actions and this back 

stepping control action. 

(Refer Slide Time: 57:00) 

 



The observations, the problem of weight initialization does not arise, since these are 

taken as zero; tuning algorithm ensures that weights are bounded; PD controller requires 

large gains which might excite high frequency unmodeled dynamics and NN control 

neural network based controller improves tracking performance. 

(Refer Slide Time: 57:15) 

 

The summary, what we discussed today is, NN based adaptive controller it was revisited, 

we discussed in the last class; Lyapunov based design; back stepping; back stepping 

using neural network and we demonstrated (57:34) of back stepping using rigid link 

electrically driven motor. 

Thank you very much. 
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