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Visual Motor Coordination Using Quantum Clustering 

The topic for today is visual motor coordination using quantum clustering. Last class we 

discussed visual motor coordination using a different technique that is the Kohonen SOM 

(Self Organizing Map). Today we will present a different approach, little more 

introspective. It may be a little bit difficult for you to follow, but when you go through 

the class, you may be interested to do something in this area if you have a liking for it. 

This is the eighth lecture on this component neural control, which is module 3 of our 

course on intelligent control - Visual motor coordination using quantum clustering. 

(Refer Slide Time: 01:16) 

 

Presentation outline: We will be talking about Quantum Clustering. Earlier, we did the 

clustering using Kohonen self organizing map. We have also discussed what the meaning 

of clustering in general notion of clustering is. We will now be talking about quantum 

clustering, the motivation, the algorithm and then general results. 
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We will apply this quantum clustering to visual motor coordination which we have 

already discussed in the last class. The problem of visual motor coordination, using 

quantum clustering, training algorithm and comparison with Kohonen SOM based 

algorithm. 

(Refer Slide Time: 02:01)  

 



Quantum clustering and overview: those who want further information about quantum 

clustering I would suggest you read the paper published by David Horn and Assaf 

Gottlieb - The Method of Quantum Clustering, 2001. This particular quantum clustering 

algorithm is motivated by scale space algorithm using a Parzen window estimator. The 

scale space probability distribution is the solution of this Schrödinger wave equation with 

a potential function V( x) that has a similarity to the cost function. 
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When we do any kind of clustering, the cluster center and the data point should always 

minimize the cost function. We always try to minimize the cost function. Let us see the 2-

dimensional work space having some data points here and there, some sparsely there and 

lot of data point again here. Obviously what I would do is find one cluster point here; 

another cluster point here; another cluster point here and may be another cluster point 

here. The objective xj c is the cluster point and this j would vary from 1 to 4 and xi here 

represents all the data points. We would try to find out how far are these various data 

points from these cluster points and the objective of clustering is to minimize this 

distance (xj c minus xi). xi represents all the data points in the data space and xj c are the 

few clusters we have selected. In this case j is 1, 2, 3, 4 and so 4 clusters. The clusters 

must be selected in such a way that this particular cost function is minimized. The 

meaning of the potential function V(x) describes the cluster centers. In Kohonen network 



model that given a work space, and a data space with innumerable data, we try to 

represent those data with minimal representatives and the whole purpose of a clustering is 

to how to find these cluster points and that we have seen how to solve that problem using 

Kohonen self organizing maps. Scale space clustering, you can refer to the papers by 

Robert published in 1997. 

(Refer Slide Time: 05:09) 

 

Given a set of observations from the set S over a d-dimensional space, S is defined as x1, 

x2, until xN. A non-parametric estimate of the probability density function of x belonging 

to S as the weighted combination of a set of basis functions fi or kernels evaluated at each 

observation xi, the probability is given as wifi (x). When we look at the data space, what 

is the probability that this data is likely to be at a specific point in the data space? 



(Refer Slide Time: 06:15) 

  

Considering the Parzen window’s approach, where the weight wi is independent of the 

position and then modulating the above function with an optimal filter with scale s, ks 

(x), we get the following. This is the probability distribution function for scale space 

clustering. For the estimate to be a valid probability density function, the function (psi)i x 

must be a positive symmetric function and a popular choice of this is Gaussian filter. 

(Refer Slide Time: 07:27) 

 



What is normally done is that the given the cluster points – how do I find when datas are 

everywhere? Find out a cluster point that represents the data, we have a Gaussian 

function e to the power minus xj c minus x whole square by 2 sigma square. This is the 

normal Gaussian function and what we would like to do is that we should maximize, 

because when this is minimum, this exponential function to the power is negative. 

Obviously, that has to be maximum and if this is minimum, ideally this should be 0, then 

e to the power minus 0 is 1 and that is the maximum value. 
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So in quantum clustering algorithm, a time independent Schrödinger equation is defined 

as H psi (H is Hamiltonian) minus sigma square upon 2, gradient square plus V (x) psi (x) 

is E psi (x) where psi (x) is the Eigen function and E is the Eigen value. Given V (x) the 

potential function, Schrödinger equation finds the psi (x) of the Eigen function. In 

quantum clustering, psi (x) is assumed and V (x) is found out. Normally in Schrödinger 

equation, we supply the potential function and see what is psi(x). But here given psi (x), 

V (x) is to be found and Q C is an inverse process. Considering Robert’s probability 

distribution as a wave function psi, we have the following (Refer Slide Time: 09:12) and 

we assume our weight packets- to half Gaussian nature. So following scale space 

clustering approach, the maxima of the above wave function gives the location of the 

cluster centers. That is, the ground state of Schrödinger potential gives the cluster centers. 



The maximum of this is the cluster center. In the same way the minimum of this is also 

the cluster centre. 
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A potential function can be discussed as follows. IRIS flower problem is a 3-class 

problem with four variables. The three classes are shown in three colors: red, blue and 

green. The potential function is plotted for every instance or data point; where IRIS 

setosa is linearly separable and the other two classes are non-separable to each other. In 

this case, the setosa is the red one and I can place a line by which it is separable from the 

other two classes. But I cannot actually put a line because it is a potential I have plotted 

for each data point and the potential function V (x). With some raw data, I map them in 

such a way that each class of data can be separated and so that they occupy different 

zones. The raw data are all mixed and by doing some kind of operation on them, can I 

separate those classes? This is the point of clustering. 



(Refer Slide Time: 11:36) 

  

Potential versus wave function: As we said, normal approach is to find out the Gaussian 

mixture model of the data points. While trying to find out the cluster points, we maximize 

the Gaussian mixture model while deriving the cluster centers. We showed that it is the 

same as finding the minima of the potential function. The plot of potential function is a 

wave function source and that maxima of the wave function are not so clearly defined. 

The minima of the potential function which can be found in every cluster is actually the 

minimum and these are the maximum points of the same IRIS data and you can easily see 

that the maximums here over various data points. If I put a threshold here, these maximas 

will appear. In this case, if I put a threshold here, I am getting all these cluster points; 

because they represent the minimum values. Similarly if I go on, you have to compromise 

a lot to find some cluster points that means I have to put a threshold in this level. So 

while putting threshold in this level, you are compromising that means all data remain 

under the cluster point. So what you are doing is that if I put a more reasonable threshold, 

using this wave equation and a potential, the cluster points for every data point we are 

computing, what is the potential function using the formula? 
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We are finding out the Gaussian mixture model function, we compute that for each data 

point we plot that and there is a fluctuation. How do I find a cluster point? I find that as a 

cluster point for which the potential function is minimum here and in this case the wave 

function or the Gaussian function is maximum. 

(Refer Slide Time: 14:57)  

 



I put a threshold for this wave function here and threshold for the potential function over 

the entire range of the data, I have cluster centers. Here there is 1 cluster, 3 clusters, 2 

clusters and multiple clusters, whereas if I look at the wave function side, I have only 

clusters in this zone. I have no clusters in this zone and this entire zone is unrepresented. 
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In Quantum clustering, given psi the potential function V is given by V x is E, which is 

the Eigen value and sigma square upon 2 into gradient square into psi upon psi. If V is 0, 

then the minimum is 0. If we have E equal to minus min sigma square upon 2 into grade 

square psi upon psi. Since psi has no node, E is the ground state energy of V, V being a 

non-negative function and E must be positive. This gives E between 0 and d by 2; where 

E is equal to d by 2 which is the lowest Eigen value of H determined by Harmonic 

oscillator problem. 
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Quantum clustering implementation: This is a wave function, Gaussian function; where q 

is 1 upon 2 sigma square, because this gives the width. The initial estimate of the 

potential function V (x) is evaluated as minus d by 2 plus 1 upon 2 sigma square psi 

sigma i x minus xi whole square and this function e to the power minus x minus xi whole 

square by 2 sigma square where d is the dimensionality of the space. Evaluate E equal to 

negative of minimum of V(x). Transform V(x) to V(x) plus E. The data points that are 

minima of the potential function V(x) which is equal to 0 denotes the cluster centers. So 

we add this E to find out the cluster centers. 
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In essence, the minima of the potential function V is the same as the maxima of the wave 

function and based on that, cluster centers are decided in quantum clustering using the 

minima of the potential function. E sets the scale on which the minima or the cluster 

centers are observed; where to put the threshold is selected by E. From earlier concept it 

determines where to put the thresholds, here or here. 

(Refer Slide Time: 17:29) 

 



If I am putting the threshold at the low value, I have fewer clusters and the moment I 

increase more and more, I have the number of clusters more. This is adaptive. Depending 

on E, our cluster centers will change and E will depend on 1 upon 2 sigma square. The 

only parameter which needs to vary is the width of the parameter and q is 1 upon 2 sigma 

square. Higher q value gives more number of clusters. So if we want more number of 

clusters, we increase the value of q. 

 (Refer Slide Time: 18:24) 

 

Here is an example: If you look at here the IRIS data set, first two principle components 

you plot and you have these 3 different classes. 

We find one class is completely separable from the other class, but these two class are all 

mixed. So we have to create a method by which we can linearly separate the green from 

the blue. The IRIS problem is a 3-class problem with 4 dimensions considering the first 

two principle components, a distribution as shown above is obtained. 
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By mapping these data points, by transforming them through their potential function and 

the threshold E; V is the potential function and this is V by E; where E decides the 

threshold, we have a a line here that separates this class from these two classes. Similarly 

we put another line that separates the green from blue and red thereby the three classes 

are now distinctly separable. The three classes are very well separated in V E space. On 

clustering in normalized 4-dimensional input space, note that classes virginica and 

versicolor are totally non-separable classes but are very well separated here like the red 

and green. If we look at the previous color red and blue, they are inseparable and now the 

red and blue are completely separable. We can put a line by which they can be 

separated.With this idea on quantum clustering, we apply it on visual motor coordination. 

We have introduced some new concepts also to this visual motor coordination. 



(Refer Slide Time: 20:41) 

 

As discussed earlier, the visual motor coordination has a robot manipulator and this robot 

manipulator whose end-effector is being observed by two cameras, camera one and 

camera two. If you have a target point and if this end-effector wants to reach that point, 

the target point is also in the camera focus and also the end-effector. The objective is how 

to reach this target point through learning. Imagine I am holding a pen here and the other 

hand wants to reach that point. This is a visually guided motion. In this visual guided 

motion. I am not aware of the arm dynamics and I do not take into account any kind of 

dynamics from my hand; rather the mechanism is such that it is like a learning 

mechanism that guides my hand to a target point. If you see a child, he learns as he grows 

by various trial and error methods. Similarly, in this situation by hand eye coordination, 

we do many things dexterously. 
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Here is the manipulator in detail dynamics: We have three joints; one is the base ,this is 

the joint for the first link and then another here, the joint for the second link. So the base, 

first link and second link comprise a 3-link manipulator. The three joint angles of the 

manipulator are to be determined for a given end-effector position u; where the 

coordination principle is, camera finds the end-effector position. When you take a 

photograph of a 3 D point, camera which has only 2 D point, as u1 u2 and camera 1 and 

camera 2 is u3 and u4. You have this 4-dimensional input vector for a given target, a 

given end-effector point. Given a target, the objective is that the control algorithm should 

find theta1, the base angle and theta2 which is the joint angle one, two, theta2 and theta3 

such that by orienting theta1 theta2 and theta3 properly, this end-effector will exactly 

reach this target point. 
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What we are trying to map u, theta is f of u. We would find out theta given u through 

learning and one can use easily the inverse kinematics of this manipulator and can find 

out that. 

This principle is different; we need not go to the manipulator inverse kinematics and 

simply learn to find out what is theta equal to f(u). The objective is that this is just a 

curiosity that how learning can be so powerful and we can ignore the inverse kinematics 

of the actual model and still we can reach any point in the robot work space. What we do 

is that this function of u can be linearized around a specific formula which is in a local 

zone. If I know thetas for response to do, this point in the Cartesian space point 

corresponds to thetas. So then any point near to this Cartesian point will be very close to 

thetas. Thus we can find this expression and the relationship by simply linearizing this 

non-linear function around thetas. This is linearized around thetas plus a Jacobian matrix 

which is obviously 3 by 4 matrix and u is the input vector and actually input is not x y z, 

this is u1, u2, u3, u4 and u represents Cartesian space, but this is actually the input coming 

from the camera. This is 3 by 4 and u is the actual input that is the actual data point 

around the thick dot and ws is the neuronal center that is when I localize or discretize this 

entire work space as we did in the Kohonen SOM algorithm. When I create a discrete 

cell, each cell is assumed to be represented by a neuron, so that neuron is associated with 



a specific ws and the meaning of that is, this ws actually corresponds to this thetas. If 

given any other point u very close to ws, how do I represent the exact theta? This is my 

actual theta and so my actual theta is a local zone in which I have a special point in the 

3D coordinate and corresponding to this coordinate, I have thetas as the actual joint 

position theta1, theta2, theta3. They take this end-effector to this point which is the 

representative in the camera coordinate which is ws. We can write at a given point which 

is very close to this point in the Cartesian space, the joint space theta can be written as 

thetas plus As u minus ws. So, u represents a new data point around the old point which is 

ws. This is the meaning of linearization around a small work space. 
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What we are now doing is that we have an input space and an output space; input space is 

4-dimensional (29:37) and we can make the dimension 3. In a two camera coordinate 

system, we get 4 points and the Cartesian dimension is 3, but we get 4 points, Output 

space is theta1, theta2, and theta3. If we create a joint called joint input and output space, 

it is u transpose, theta transpose, transpose, a 6-dimensional vector. 
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A new space is obtained by concentrating the input and output space. On working in the 

6-dimensional space determined by vector g and cluster space, we created a cluster only 

in the input space and now we are creating cluster both in input and output space. Now 

we created a cluster and have a work space and in the work space, the input-output space 

is divided into small cells. 

(Refer Slide Time: 31:02) 

 



The clusters in the 6-dimensional space are made up of position and joint angle values. 

Corresponding to each special position w, we have a specific w theta and these clusters 

are obtained using quantum clustering technique rather than the Kohonen self organizing 

map. The cluster centers are obtained using quantum clustering and are combination of 

neuron centers and the 0 order term. 
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The idea is to discretize the workspace u into non-overlapping regions Fs and each one of 

these are all small discrete cells belonging to Fs. ws belonging to Fs, which is the 

reference or weight vector for each discrete cell. This is your reference vector associated 

with the each discrete cell. Present methods use only the input space discretization and no 

output space information and the Kohonen self organizing map can also be incorporated 

and this is independent of the other. You do quantum clustering or Kohonen SOM; this is 

not a defect of Kohonen SOM. It is just that we are utilizing that feature. In our approach, 

we have used the joint input-output space partitioning scheme. 
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This is 3D work space in which the robot is working in this and any random point in the 

work space, the robot manipulator can reach and corresponding to each point in joint 

space, we have a specific theta1, theta2, theta3, but if we look at the output space, they are 

not uniformly distributed. The output space is well separated; it means it is natural 

because not all joint angle values are allowed. When I manipulate my hand, I cannot 

probably create certain angles like a robot manipulator. Thus, a partitioning scheme with 

information from input and output space would work best. 
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The first part is performing quantum clustering on the 6-dimensional space formed by 

combining the end-effector position and the joint angles. This gives a set of cluster 

centers, each cluster denotes the receptive field of a neuron and these cluster centers are 

then separated into the neuron centers and 0 order term end initialized to the neuron. 
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The initial parameters are not random and this speeds up the learning space process .The 

neuron centers and 0 order term need only a fine tuning and the Jacobian matrix needs to 

be determined. A collective training scheme is adopted which means we create a cluster. 

Through clustering, we find out ws as well as thetas. Now thetas and ws are given and 

with new input u, how do I learn this s? How do I also refine the relation between thetas 

and ws? This is key question being asked. 
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The objective of this training scheme can be explained. For example, this is my robot 

manipulator; this is one link; this is another link and this is another link. For example, we 

have to come to this target point and what happens is that this algorithm gives some 

random variables, theta1, theta2, theta3 -in the beginning, when it was not learnt to 

various links and then the end-effector goes to some point. The learning principle is, how 

I can with some minimal steps bring this end-effector? 
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I can bring from this point to this point through training and what is happening here is 

that you see that I have many neurons in the workspace and these neurons are actually a 

3D lattice. In the case of Kohonen network, it is a 3D lattice, but in the case of quantum 

clustering, we do not create a lattice kind of thing. But each neuron represents a specific 

discrete zone of the input, output space and while clustering you have already the 

coordinates associated with this neuron which is ws and thetas. Once clustering is done 

and for each neuron As is defined, then obviously given u, each neuron output would be 

thetas plus As u minus ws by each neuron. But instead of allying only one neuron to take 

a decision, we allow a group of neurons to take decision which is collective averaged 

output. 

The collective averaged output is that k represents each neuron and this is within a 

specific neighborhood and this H is the distance that is given input as specific neuron is 

the winner according to cluster. The winning neuron will have a maximum role to 

contribute to the decision making process and others will have less and less say. Each 

neuron is associated with three parameters and the output of each neuron is this. If this is 

the winning neuron, then the maximum contribution comes from the winning neuron and 

lesser and lesser contribution. The neurons are away from winning neuron and their 

ability to contribute to the decision making process dies down that is, their participation 



is to the degree how close to the winner. So the collected averaged output in a given input 

utarget and this is the distance M u is the winner and k is the specific neuron what is the 

distance between them and so we also put this neurons in a lattice and find out the end-

effector to a position v0, needing a correcting action determined by this theta1 out is 

theta0 out which is the initial plus this is the correcting that is instead of wk we now put it 

here v0. Now the end-effector is at a position V1 and we do not wish to give further 

correction to it; because, if this takes it to V1, then we do not need it. 
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The learning scheme is actually the gradient distance. Delta V is V1 minus Vnaught. I 

discussed all these things in the last class; theta out is theta1 out minus theta0 out. Theta0 

out minus thetak out; because, this is a kth iteration minus Ak V0 minus wk. This is the 

update law for the Jacobian matrix which is a norm delta V square this delta theta out. 

You can actually derive this algorithm from using gradient descent. Finally, each weight 

of the neuron is updated as wk using clustering algorithm -just like we did in the 

Kohonen clustering algorithm; where wk is wk plus epsilon hμ k utarget wk, thetak is thetak 

plus epsilon dash hμ k dash delta thetak. My new weight associated with a neuron k is the 

old weight associated with neuron k plus epsilon is the learning rate. This is the distance 

factor; how far is kth the neuron from the winning neuron and utarget minus wk? This is a 

normal learning that is done in clustering. Similarly for thetak the old thetak plus the 



learning rate and another distance function and delta thetak .Similarly for the Jacobian, we 

train with old Jacobian. In the beginning, the beauty of this entire learning process is that 

we start from absolutely no idea. Our neural network possesses no knowledge of the 

workspace and everything is initially, randomly initialized without taking any 

consideration, the workspace size -nothing is taken into consideration. The moment you 

give the data, the neural network is associated or excited by the data the learning starts 

and then beautifully the mapping of the topology of actual work space gets mapped to the 

neuronal structure and nice mapping results. This is a distance measure; Mu denotes the 

winning neuron, the neuron which is closest- to the target. 
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The parameters epsilon, epsilon dash, sigma, sigma dash and may vary during the 

training time depending on the current iteration using general expression Eta is Etainitial 

Etafinal upon Etainitial l by lmax, this is the iteration . When I have not started the iteration, 

then this is 0. Eta is Eta initial; because this to the power 0 is 1. When this l is lmax, this is 

1; so this becomes Etafinal by Etainitial cancels out, Eta is Etafinal. Eta in the beginning is 

Etainitial and Eta is Etafinal at l equal to lmax and this is 1 equal to 0. The neurons are 

indexed by normalizing their weights and in general are not integers. Indexing scheme 

uses the information of actual position rather than simply associating an integer. 
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Now we would compare our results today to the last class. Last class we talked about 

Kohonen self-organizing-map-based methodology where we had a fixed topology in the 

beginning. We fixed the neurons and fixed topology has to be pre-specified for the 

workspace. Thus the number of neurons must be decided priori and this leaves very little 

flexibility. One has to begin with random parameters, thus making the process slow and 

does not use the joint angle space information when partitioning the workspace. But this 

is not confined to Kohonen sum; it is an additional theme because we can also do this for 

Kohonen. 
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What we learned is that a flexible topology of the workspace is adopted as the width 

parameter in quantum clustering is changed and a number of clusters changed, quantum 

clustering helps in designing the workspace topology and no random initializations are 

done using joint angle space information when partitioning the workspace. Again this is 

not exclusive to quantum clustering and this can also be in the quantum clustering. 
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Our workspace size was 20 centimeters into 30 centimeters into 20 centimeters. The 

initial parameters were taken like this: (Refer Slide Title: 46:35). In the beginning, q is1 

upon 2 sigma square; this was fixed as 0 point 12 and then 164 for clusters or neurons are 

obtained .These are very few as compared to K SOM based method where 336 neurons 

are considered. In a Kohonen cluster 7 into 12 into 4 many neurons were considered. 

Here, it is only 164 clusters, a mean square error of 0 point 18 mm is achieved using 164 

neurons when 200 random points are evaluated in space .This is significantly small as 

compared to 1 point 18 mm using K SOM based approach where 336 neurons were used. 

This is the result we achieved in the last class using Kohonen quantum clustering 

algorithm. 
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Here it is the average error and number of iterations, so what you are seeing is that the 

errors are almost in 200 samples iterations; whereas normally in Kohonen clustering it 

takes 5000 iterations. 
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In this quantum clustering, I have put this as the average error and the number of neurons. 

This is an adaptive and flexible topology in the case of quantum clustering and the 

number of neurons are not fixed in the beginning; that means how many discrete cells the 

original workspace should be consisting of, we decide in Kohonen’s self organizing map 

But in quantum clustering, these can be varied by varying the q; which is 1 upon 2 sigma 

square. If I increase the number of neurons naturally the average error decreases and this 

is the profile. You increase the number of neurons, (average error) decreases. 
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This is another interesting piece of result where we find the number of iterations we 

require for training and the number of neurons. If you increase the number of neurons 

more and more, the number of iterations required is in large numbers and the price for 

making this is high. In such a situation, if the number of neurons is small, less number of 

iterations is required. Increasing the number of neurons also needs more time. 
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What you are seeing here is that we commanded the end-effector of a robot to track a 

circle, we find that the star positions, the points along which the robot have moved. The 

average error in tracing a circle of radius 50 mm is 0 point 0907 mm using 164 neurons. 

The star is the track trajectory and the broken line is the actual trajectory. A circle is 

tracked with an average error of 0 point 09 mm in the workspace using 164 neurons. 
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This is a sphere where the actual position is the red point and the blue point in the track 

position. We have placed the red point in the first and if we are able to see the blue point, 

we say the tracking is perfect. Whereas if the red is there and then the tracking is not 

good, a sphere is constructed with an average error of 0 point 116 mm in the workspace. 

That means our end-effector is able to reach all this points in the sphere with an error of 0 

point 1116 mm after 5000 training steps. 
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Finally, we have presented a method of visual motor coordination using quantum 

clustering in which the flexible topologies where the number of neurons can be increased 

or decreased depending on the accuracy you want with time. If you want more accuracy, 

the number of iteration increases vigorously and the reduced number of neurons can give 

you equivalent and much better results when compared to fixed Kohonen SOM and joint 

learning scheme. It is proposed that let the clustering be done in joint input-output space 

instead of only input space. In this lecture, I have given you some dynamic model in the 

beginning and we discussed some control mechanisms. We discussed different 

application of learning methods to control the dynamic control. But as you know, a robot 

moving to any point, we are interested to know how the robot can go to any point through 

visual guidance. This is a little different aspect of control and we will start again some of 

these direct adaptive control schemes for robot manipulators as well as, we will introduce 

a nice experimental setup that we have in our lab which is an inertial wheel pendulum in 

our discussion. Thank you. 


