Intelligent Control
Prof. Laxmidhar Behera
Department of Electrical Engineering

Indian Institute of Technology, Kanpur

Module 3 Lecture 6

Adaptive Neural Control for Affine Systems (MMO)

Today's lecture is on the topic adaptive neural control for affine systems - multi-input
multi-output. Last class, we talked about single-input single-output system. We will see
how the techniques we learnt in the last class can be extended to multi-input multi-output
system. This is the lecture on the module 3 which is neural control and in this course on

intelligent control.
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Topics that will be covered today are a revisit of adaptive neural control for single-input

single-output system. | just want to refresh your memory with what we discussed in the
last class, general form of multi-input-multi-output systems. Then, direct adaptive control
of MIMO system of the form. So, we are only considering a specific form of the multi-
input multi-output system, where this can be written in the form z; dot is z,, z; is z vector

and z, dot is equal to f (z) plus g (2) u.



Where z; and z, are vector and of course z is z; transpose, z, transpose. So, if z; is n;
dimensional vector and z, is n, dimensional vector, then z is n; plus n, dimensional
vector. We will talk about when f (z) is unknown g (z) is known and when g (z) is

unknown, we do not know the solution.

Simulation results for two-linked manipulator system: We will present whatever solution
we will get for this kind of non-linear system, where we assume object to be unknown
and we will solve the control problem. Finally, the summary, single-input single-output

affine systems; we will be revisiting that subject again today.
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A large class of single-input single-output non-linear system can be represented by the
following affine systems: an affine system can be written as x; dot is X, X, dot is X3 and
so on until x n dot is f x, where X is the complete vector consisting of the elements x; X»
X3 until xp X is X3 X2 X, and plus g X, u is a singular input u and y are single-input system
so belongs to real line. The control problem is find u so that x t follows a desired

trajectory x desired.



(Refer Slide Time: 03:48)

.Fr\odlunk lincarization techniques: rovisited

|
| Lt us taka a contral input

A g
e

wharm . = g 1= tha output tracking armor and
N . it powar danotas
POy Ay thene,

Puttng this expression of u in the system dynamics,

- | \ \

The closad loop armor dynamics bacomae » = L » which
| is Bncar as woll o5 stable, &, and \'s are positive dvf,icjn
(R AT

Feedback linearization technique we discussed last class that, in general if I have this
particular non-linearity here which we call affine. Then if we select this control law u to
be of the form 1 upon g x minus f (x) k, r lambda 1 e n minus 1 and so on until this is n
minus 1th derivative of the error. This is the first derivative of error plus x n desired,
desired x, dot, where e is y d minus 1 is the output tracking error, r is we said filtered
tracking error which is n minus 1th derivative of error plus n minus 2, 2th derivative of
error and so forth. Power d denotes respective derivatives; putting this expression of u in
the system dynamics. System dynamic is simply your x n dot is f (x) g (x) u. If I replace
this u here so | get x, dot this side and this side is in u you have this x, d dot. When you
multiply this u with g (x) you get x,, d dot so bring to this side then by definition this term
is minus if you look at e is this one then this particular term by definition becomes minus
nth derivative of the error and equal to this side if you look at this minus f (x) will cancel
with this f (x).
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Hence this is ky r plus lambda 1 e n minus 1 until lambda n minus 1 e first derivative. The
closed loop error dynamics becomes finally if | look at here, if | take this 1 to this side,
then this term will become r by definition here this is my r; so this will become if | take to
this side this will become r dot. r dot becomes minus ky r which is linear as well as stable
given k, and lambdas are positive parameters. These parameters are all positive. This is
speed back linearization. What you see is that, if my system is distract by this form, x,
dot is f (x) plus g (x) u and if I select control input is like this and | am able to show that
such a controller will stabilize the system. Also tracking will be achieved and the closed
error of feedback error dynamics becomes r dot equal to minus ky r.
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We extended this feedback linearization principle, for adaptive control technique. Why
we are doing adaptive control? Because, we assume that in the dynamic which is given X,
dot is f (x) plus g (x) u if this f (xX) and g (x) are known, then there is no need for adaptive

control.

But most of the situations or in many situations, we do not know what is f (x) and g (x).
How do we solve this problem using the same principle, the feedback linearization
concept? What we are trying to do here is that, last class we discussed two cases, where 1
is f x is unknown and g x is known and the other is that both are unknown. We are
considering the first case now: f x is unknown g x is known. Then if we select the control
law which is 1 upon g X, you can see that this form is exactly as that of a feedback
linearization control law, but with the exception that instead of f x which is known we
have written f hat x which is an estimate of f x. We are saying direct adaptive control
because we will not be estimating f (x) using the system identification principle, but we
will be identifying f x hat using the principle of tracking error convergence directly.
Hence this control technique is known as direct adaptive control. What | am saying here
is that, where the non-linear function f (x) is approximated as f hat x using a radial basis
function network, f hat x is W transpose phi x; W hat is the weight vector of the network.
The update law for W hat is W hat dot is minus phi F phi into r. F is a positive definite
matrix, phi is the radial basis functions easing which the unknown function F hat X is is

estimated and r is the filtered tracking error which you have already defined; r is e to the



power which is there here - e to the power n minus 1 plus lambda 1. This is our filtered
tracking error and using this filtered tracking error we have weight update rule for

estimating F hat x.
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In this method the idea is not to exactly identify what is F hat x but to estimate F hat x in
such a way the tracking error is converged. We proved this theorem we are not going to
prove this theorem in this class because we have already done it; | am just refreshing your

memory.
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Similarly, we also proposed a control law for when this affine system both f (x) and g (x)
are unknown. Again for your memory here | rewrite it as f (x) plus g (x) u so in this the
control law is given by u; plus u; where u; is similar structure except that here we have
instead of g (x) we have g hat x and here instead of f (x) we have f hat x the estimate of f
X because we do not know f (x) and g (x) and u, is a sliding mode term which is the
absolute value of g hat upon g, absolute value of u; sign um sine r, sine of the filter

tracking error. g, lower bound of g (x).

(Refer Slide Time: 12:07)

ﬂ.ll\lm-'ﬂ. cawibrod F-.rw-u B mdmebh oy .:Hm perwbe itoad

AR oy S R S L R S T =
._:" -"4‘ ::- f ."« B _h, r_,| h:l'
m Bty [ ) A ) e TS

| wharm

¥

- il g e ok et
T wase v

crwar Bownd ol | g Ll = mpprirnabed as | r
st i vl Dearsrs Purnciaon tasbed

Fiom F
i i wmight vll:ln-' ol !hl-nﬂwnﬂ: rh-ll.pdnll Lps
S, "
={s r"l & l'i."I:I

K S [ Oy
i 0 i-rﬂl'..l--ll-l-'fulﬂllll.,|r|.l ; :_:- s _F =|l

What we are also assuming here g (x) is either positive or negative. g X is approximated
as g hat x using radial basis function network; g hat x is P transpose psi X. P hat is the
weight vector of the network the update law P hat dot is minus G psi u r and G is a
positive definite matrix. Similarly, the weight update law for f (x) which is f (x) hat is W
transpose phi x so this is f (x) and the W hat dot is also the same what we derived F phi r.
We have two weight update laws; one update law for the weights of the neural network
that approximates f (x) and there is another update law here, which is the weight update
law for the neural network that estimates g (x). If these are the two update laws, then the
control law given by u equal to u; plus u, will stabilize this non-linear system. Now
adaptive control of MIMO system using these two theorems, we have already proved in
the last class today we will extend these concepts to MIMO systems.
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Let us see what a MIMO system is. We will now extend the application of proposed
direct adaptive neural control to multi-input multi-output system. A general multi-input
multi-output system can be written as x dot is f (x) plus g (x) u and y is Cx. Unlike the
earlier case, what we are writing here is, that here x dot is a vector a whole relation f (x)
plus g (X) u, where x belongs to the n dimensional vector, f (x) also is an n dimensional
vector, u is m dimensional vector, g is m into n dimensional vector, y is p dimensional
vector and C is p into m dimensional matrix. In fact, this is a matrix g (x) is a matrix and

this is also a matrix. We are talking about a multi-input multi-output system.
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Now, this is a very general form and out of this form we will consider a very specific
form which is this one. This structure where this MIMO system we can write any of the
system dynamics particularly multi-link robot manipulators. All categories of multiple
robot manipulators are two-link or more than two-link robot manipulator. The dynamics
can be written as x; dot is X, dot is f; X plus g11 u; until g1, um x 3 dotisx 4 x 4 dot is f
2 x plus g 2 1 x until gom (X) um and finally, x2, minus one dot is x 2, and x 2, dot is f
(x) fn () plusgn1xuluntil gum (X) um. SO, what you are seeing is that here that we
have written is a generic form of a specific multi input multi output system where outputs
are X; X3 the odd number state vectors x; X3 until X, n minus 1. For such cases the system

equation can be rewritten as z; dot is z; and z, dot is fz plus g z u.
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We are clubbing these equations and representing by z; dot is z, and then obviously we
are saying z; is X1 odd number things X, minus 1 transpose and z, is Xz X 4r X2,. You
see that a given 2 n state vectors can be represented as z; dot is z, and the next one
(Refer Slide Time: 18:23) z, dot can be written as f (z) plus g (z) u which you can see
here, this one this one and this one. So this representation is z, dot is f (x) plus g x u. So
this is again the n dimensional vector z, and fx(x) is 2 n dimensional and g x also is n into

m dimensional, because u is m dimensional.
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Here, this is our class of multi-input system; multi-input multi-output system that we will
be discussing today. Where z; is X1 X3 the odd number of state vectors and z, is even
number state elements. f (z) is f; until f, transpose and g (z) you can easily see g (2) is

g11 o this is (Refer Slide Time: 19:42) g;; until g1 m g2 until gom g, 1 until g, m.

This is the elements gather that forms g (z) and then your final state vector z is actually

2, dimensional where each one here is n dimensional.
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Direct adaptive neural control, the output error can be defined as e is y d minus y in the as
you know that y is again n dimensional vector because we are assuming that this is z; d
desired minus z; since z; is the n dimensional vector so this is valid. y d is z; d is the
desired output vector. Let us define a variable r which is again in the form of a filtered
tracking error. r is e dot plus lambda e where lambda is a diagonal matrix with positive
diagonal element. Theorem one - suppose that the non-linear function f (z) is unknown
while the function g (z) is known, suppose also that f (z) can be approximated as f hat z
upon equal to W hat transpose phi z using a radial basis function network then the control
law given by this expression u is g transpose into g g transpose inverse whole
multiplication minus f hat z plus kyr plus this term into e dot plus z, d dot so z, dot. The
desired one will stabilize the system in sense of Lyapunov provided W hat is updated
using the update law minus F phi r transpose. You see that in here in-single-input single-

output case r was a scalar and in this case this is a vector n dimensional vector.
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You see that when we did with using single-input single-output system we had a radial
basis function network that was estimating what is f (x). If you see the weight vector here
which is W this is a vector and how many dimensions? Dimension is | into 1 dimensional
vector W. In case of single-input single-output system the function f (x) is a scalar
function the R B F network as a single-output as shown in the figure. The network weight
constitutes a vector W hat in this case while when we do it in multi-input multi-output

system.



(Refer Slide Time: 23:25)

.Fllm‘.li-un agwpioalmatlon for MIMO wyatems

m [ o of BURECY mypiemt, Bhaty Monc il (e ) 12 A
VECIDr vt hEnchion

i Thay HBF retwch baos mullipehs catpts o ahaiwt )
Ihs fypers

= Tha nvbanrk walnhia conalibuba & malrie (117] in Bhis
I, L7

We have n outputs here. In this case this is no more a vector W hat is a matrix. What is
the meaning of this W hat here? In case of MIMO system the function f (x) is a vector
valued function. The R B F network has multiple outputs as shown in the figure. The
network weights constitute a matrix W hat in this case. Now, we will go to the proof with
this basic idea we have already actually described.
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We described that this control law, with the weight update algorithm for F hat z which is

W hat dot is minus F phi r transpose. If | have this weight update law, for estimating F



hat z then, this controller will give me the results that the actual output will follow the
desired output.

In this control law K v is a positive definite diagonal matrix W hat is the weight matrix of
appropriate dimension. Let us assume that there exists an ideal weight matrix W such that
the original vector f (z) can be represented as W transpose phi z. We can say here f
(24:54) (z) i1s W hat transpose phi z for this W hat as to be updated. We have already
given this rule of W hat dot is minus F phi r transpose so can we say that given this as the
weight update law these controller will stabilize the given affine system. Now what | do
is that my dynamic is because f (z) is this one so z 2 z is f (z). This f z is now W
transpose phi z plus g (z) u in this u is replaced by this equation. The closed loop error

dynamics is obtained by putting u in this equation.
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This is putting the control law u in the system equation and after simplification we get z,
dot is W transpose phi minus W hat transpose phi plus k v r plus lambda 1 e dot plus z;
dot. If f x would have been known, then these two terms would have cancelled. Then we
would have remained with only this term which is a stable closed loop error dynamics.

Since these two are not exact, they are different. How do we stabilize it?

We have proposed a control law for weight update. Defining the error in weight vector
is... earlier | told that in this case W is a matrix so this is very important and here W is

actually matrix; defining the weight matrix W tilde is according to this. We can write z,



dot this particular term is W tilde transpose. This is written as W tilde transpose phi plus
this 3 terms ky r plus this term into e dot plus z dot 2 desired. We have already defined r
dot. r dot we know, we have defined r to be e dot plus so if | re-compute r dot is e double
dot plus 1 into e dot. The symbol this is simply a constant into 1 suffix 1 e dot which is z,
dot minus z, dot plus 1e dot. This particular expression we derive from r dot simply
differentiating then replacing, in this case what is e double dot. So e double dot is simply
z, d dot minus z, dot. Combining this expression we get the close error dynamics is r dot
is minus k,r minus W tilde transpose phi which is the final closed loop error dynamics.
We now analyze the stability of this using Lyapunov function so what we get is that this
is our closed loop error dynamics. By replacing u in our system dynamic which is f (zy
plus g (z) u is z, dot. This is our dynamics we refer in this dynamics here z, dot here,

then | get this expression.
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This (Refer Slide Time: 29:50) is our closed loop dynamics r dot is minus k, r W tilde

transpose phi.
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Now consider a Lyapunov function candidate V is half r transpose r plus trace half W
tilde transpose F inverse W tilde F is the positive definite matrix. Since the Lyapunov
function should be a scalar function but W hat is a matrix. In this case we have taken
trace because earlier we simply wrote this is W tilde transpose F inverse W tilde. But
now we have taken trace because of the matrix. Because this Lyapunov function has to be

scalar.
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Trace of a matrix those of you do not know, if | take a 3 dimensional matrix the diagonal
elementsisgivenbyal1l,a22,a33. Trace of amatrixisall, plusa22plusa33.
Differentiating V, V dot which is r transpose r dot plus trace of W tilde transpose F
inverse W tilde dot. Substituting r dot into above equation, so this r dot which is the
closed loop dynamics this is my r dot (Refer Slide Time: 31:23). If | give this equation or
if 1 replace this equation in V dot which is r transpose r dot, we may get a nice solution

for this which we have derived now.

You can see that r transpose r dot plus trace of this thing with W tilde dot. Substituting r
dot into the above equation in this equation you get the rate of Lyapunov function to be r
minus ky r minus W tilde transpose phi plus the trace of this particular term.
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Since W is a constant matrix we can always write W tilde dot to be minus W hat dot. V
dot, which we have already computed to be minus r transpose ky r minus r transpose W
tilde transpose phi plus trace minus W tilde transpose F inverse W hat dot.
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By taking this example, using the properties of trace we will utilize this theorem, which
says, r transpose W tilde transpose phi is trace of W tilde transpose phi r transpose. We
can further simplify this V hat V rate derivative of the Lyapunov function to minus r
transpose ki r trace. This is our trace; this particular thing has been replaced by this here
trace W tilde transpose phi r transpose. This is trace and this is also another trace so you
can write trace is minus W transpose phi r transpose minus W tilde transpose F inverse W
tilde W hat dot. Equating the second term of the above equation to 0, this one we want to
eliminate, | can take out W tilde transpose to the left side as a common, then | get simply
phi r transpose; you see that phi r transpose plus F inverse W hat dot is 0 or this is my
weight update law W ha dot is minus F phi r transpose. If this is my update law then

direct adaptive control for non-linear systems is solved.
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Further the proof of the theorem again using the update law W hat dot which we just
derived minus F phi r transpose. Now let us see whether the algorithm is convergent rate
derivative Lyapunov function becomes according to our definition... this VV dot becomes
V dot is minus r transpose Kk r. Since V is greater than 0 and V dot is less than equal to 0
this shows stability in the sense of Lyapunov so that r and W tilde are bounded hence the
proof. Furthermore, you can easily check this one. Again V double dot if I have found V
dot then V double dot is minus 2 r transpose kyr dot is 2 r kv square because r dot is
minus k, r. This was negative this becomes positive plus 2 r transpose k v W tilde
transpose phi; because this r dot is replaced by...

Since r and W tilde are bounded as V double dot double differential of the Lyapunov
function. Therefore, V dot is uniformly continuous. Thus according to Barbalat’s Lemma,
V dot tends to 0 and t tends to infinity; hence r vanishes with time. We showed here
(Refer Slide Time: 36:15) by saying that this is my update law, | found out this is my rate
derivative of Lyapunov function which is negative definite which is always negative for
the values r not equal to O when r is equal to O; this is 0. Then further we are showing that
V dot is uniformly continuous considering this term. Thus according to Barbalat’s
Lemma if this is continuous, then this term will go to 0 as t tends to 0. So r would vanish
with time and what is r? If you look at here r (Refer Slide Time: 37:03) we have defined r
is this particular term which is the filtered tracking error. So finally error will converge to
0.
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Now we will apply this particular application to this adaptive control theory to an actual
system in simulation and we take two-link manipulator. The dynamics of a two-link
manipulator has been taken as an example of multi-input multi-output systems. For a
two-link robotic manipulator the second and third link of a PUMA 560 robot that we
have taken. The dynamical equation which relate the joint torques tow 1 and tow 2 to the
joint angles theta 1 theta 2 of the links are given as where tow 1 is a 1 plus a 2 cos theta 2
theta 1 double dot plus a3 plus a; by 2 cos theta 2 so this is the coefficient of theta 2
double dot plus a 4 cos theta 1 minus a 2 sine theta 2; this whole term multiplication with
this term. The joint torque 1 is related with the joint velocities acceleration velocity
which is the co-relate force theta 1 dot theta 2 dot plus theta 2 dot whole square by 2 and
the gravity term F i cos theta 1 plus theta 2. Similarly, the joint torque in second joint
which is a 3; this is the acceleration term this is co-relation term and this is your gravity

term.
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Where a; is 3.82, a, is 2.12, a3 is 0.71, a4 is 81.82, as is 24.06. The two-link manipulator
system can be re-written as (Refer Slide Time: 39:24) theta 1 double dot is something and
theta 2 double dot is something. But you see that each equation is written in terms of
theta 1 double dot and theta 2 double dot. So | have to eliminate and then | have to find
out the expression for theta 1 double dot. Similarly, I have to find the expression of theta
2 double dot using other terms. Doing that what you are getting theta 1 double dot theta 2
double dot equal to 1 upon D m3,; minus My Minus My, My; tow 1 minus v; tow 2 minus
V2 where, my; is given by this expression, mi, is given by this expression, my; is my, and

m 2 IS as.
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Where v is given by this expression this big expression which is a, cos theta 1 minus a;
sine theta 2 theta 1 dot theta 2 dot plus theta 2 dot whole square by 2 plus as cos theta 1
plus theta 2. Similarly, you can see that d, here another expression a, sine theta 2 theta 1
dot whole square upon 2 a phi cos theta 1 plus theta 2 and D is my; My minus ma My;.
This is my; My, minus Mz My SO My Myy, diagonal element multiplication minus the
other diagonal element. Considering the state variable as x; is theta 1 x; is theta 1 dot and
Xz is theta 2 x 4 is theta 2 dot. One can write X; dot is X, and X, dot is 1 upon D and then
this quantity my, t 1 tow 1 minus vi; minus mi, tow 2 minus v, and similarly x; dot is X4,
Similarly x dot 4 is in this particular format 1 upon D minus my; tow 1 minus vy plus my;
tow 2 minus v,. You see that we said in the beginning of the class that some of the
system can be represented in this particular form. You see that this v, is function of the
state vector x and similarly v, also is a function of state vector x this is also function of
state vector. You see that v, is function of theta 1; theta 2 theta 1 dot, v is theta 1 theta 1
dot theta 2 dot and theta 2. All the states are there here one state is missing. But anyway

in general they can be a function of this entire state vector.
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This can be represented if we define z; to be x; X3 and z, is X2 and X4 then the system
can be written in our general notation that we talked which is z; dot is z, and z, dot is f
(2) plus g (z) tow and going back and reformulating the problem we get f (z) is f; f;
which is 1 upon D and this is my first term minus my; v; plus mi, v, and the second term
IS M2 Vi minus my; Vo and g z is a 2 by 2 matrix 911, 912, 921and g2z and this is 1 upon D

M2 MINUS, M2 MINUS M»; and M.
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Output y is z; and z; is our first link position and second link position. The reference
output trajectories are taken as which is a z; d is x; d and x5 d is pi, so this is a angular
position of the joint 1 and angular position of the joint 2. pi by 6 sine 2 t pi by 6 cos 2 t
the control input which is ug transpose z g g transpose inverse minus W hat transpose phi
z plus k v. This term and this the desired trajectory z, d dot so where r is our tracking
error e double dot plus lambda 1 e dot and e dot is z; e dot minus z; dot. This is our
control law we have already said this control law with the weight update law for W hat
will stabilize. The weight update law is we have already seen F phi r transpose. This

weight update law would surely stabilize the system.
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We have selected kv is 30, 00, 30 which is a 2 by 2 matrix and lambda is 20, 20, 00. W
hat is updated using the following update law, minus f phi r transpose, where f is taken as
20, 00, 20, the number of neurons for the radial basis network function is taken as 30, the

centers of radial basis function networks are chosen randomly between 0 and 1.
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Weights are initialized to very small values. If we do that the simulation results would
show the trajectory tracking force theta 1 is desired and absolutely no difference.
Tracking is so perfect so we see that we have achieved this tracking and the RMS
tracking error is found to be 0 point 0004 assuming f (x) to be unknown. Of course, in the
initial period we are not showing instead when the trajectory has settled, once the
transients are gone in their steady state that tracking is perfect because of very small

value 0 point 0004. This is a desired perfect tracking.
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Similarly, here this is a trajectory tracking for theta 2. Again this is link angle theta 2 and
according to time and steady state from time 3 to 8, if we compute the RMS tracking
error this is 0 point 0006 and very efficient tracking. Correspondingly, the controlled
torque tow 1 and tow 2 that were found out to be like this that you can see again in steady
state the controlled torque is very smooth without any kind of fluctuations. This implies
that the proposal algorithm is very efficient. If we go back to the control law, we have
this g, g transpose mac inverse; you know that this is a matrix. In this case the g is two-
dimensional matrix, so gg transpose is again two-dimensional matrix. But in general, if |
have n link matrix; if it is two-link then it is two dimensional. If I have a six link matrix it
is a 6 by 6 inverse matrix. Inverse means computation is more; this point gg transpose
can be computed using a recursive relation. One can work out on this that instead of

doing this inversion we can find a recursive solution for it. That this easily be computed.
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Second thing is when we consider f (x) is unknown and g (x) is known, if g (x) is also
unknown or both are unknown this problem is still not solved in the control literature.
Non-linear function g is unknown the adaptive control problem becomes difficult to

solve. This is an open recursive problem.
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In the summary, the following topics have been covered: adaptive control system for
single-input and single-output systems is revisited, mathematical model is provided for
general classes of multi-input multi-output system, where we could represent even
practical systems like multi-link robotic manipulators. They can also be represented in
this particular format: z, dot z, z, dot z, plus g (z) u, and f (z) is unknown then this
solution to this control problem is already provided but we found that in this control law
includes an inversion which must be replaced by a recursive solution. Simulation results
are provided for a two-link manipulator system where we saw the tracking order is in the
range of 10 to the power minus 4, implying tracking is very perfect. Direct adaptive
control of multi-input multi-output system, when both f (z) and g (z) are unknown is kept

for the future work. This problem is still not solved.
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Those who are further interested to work on this problem, 1 would like that you can
follow these references in the Lewis and Jaganathan and Woodwreck, neural network
control of robot manipulators and non-linear systems. A book published by Taylor and
Francis in 1999. Spoonor and Passino they have a paper on Stable Adaptive control and
Fuzzy systems and Neural Networks, S He Konnald Reif and Rolf have published A
neural approach for the control of Non-linear systems with Feedback linearization, Choy
and Farnell have published Non-linear adaptive control using networks of linear
approximates volume 11. This is our paper; Indrani Kar and | have published Neural
Network Direct adaptive control for all non-linear systems.

Thank you very much.



