
Intelligent Control

Prof. Laxmidhar Behera

Department of Electrical Engineering

Indian Institute of Technology, Kanpur

Module 3 Lecture 6

Adaptive Neural Control for Affine Systems (MMO)

Today's lecture is on the topic adaptive neural control for affine systems - multi-input

multi-output. Last class, we talked about single-input single-output system. We will see

how the techniques we learnt in the last class can be extended to multi-input multi-output

system. This is the lecture on the module 3 which is neural control and in this course on

intelligent control.

(Refer Slide Time: 01:08)

Topics that will be covered today are a revisit of adaptive neural control for single-input

single-output system. I just want to refresh your memory with what we discussed in the

last class, general form of multi-input-multi-output systems. Then, direct adaptive control

of MIMO system of the form. So, we are only considering a specific form of the multi-

input multi-output system, where this can be written in the form z1 dot is z2, z1 is z vector

and z2 dot is equal to f (z) plus g (z) u.

Where z1 and z2 are vector and of course z is z1 transpose, z2 transpose. So, if z1 is n1

dimensional vector and z2 is n2 dimensional vector, then z is n1 plus n2 dimensional

vector. We will talk about when f (z) is unknown g (z) is known and when g (z) is

unknown, we do not know the solution.

Simulation results for two-linked manipulator system: We will present whatever solution

we will get for this kind of non-linear system, where we assume object to be unknown

and we will solve the control problem. Finally, the summary, single-input single-output

affine systems; we will be revisiting that subject again today.

(Refer Slide Time: 03:07)

A large class of single-input single-output non-linear system can be represented by the

following affine systems: an affine system can be written as x1 dot is x2 x2 dot is x3 and

so on until x n dot is f x, where x is the complete vector consisting of the elements x1 x2

x3 until xn.x is x1 x2 xn and plus g xu u is a singular input u and y are single-input system

so belongs to real line. The control problem is find u so that x t follows a desired

trajectory x desired.

(Refer Slide Time: 03:48)

Feedback linearization technique we discussed last class that, in general if I have this

particular non-linearity here which we call affine. Then if we select this control law u to

be of the form 1 upon g x minus f (x) kv r lambda 1 e n minus 1 and so on until this is n

minus 1th derivative of the error. This is the first derivative of error plus x n desired,

desired xn dot, where e is y d minus 1 is the output tracking error, r is we said filtered

tracking error which is n minus 1th derivative of error plus n minus 2, 2th derivative of

error and so forth. Power d denotes respective derivatives; putting this expression of u in

the system dynamics. System dynamic is simply your x n dot is f (x) g (x) u. If I replace

this u here so I get xn dot this side and this side is in u you have this xn d dot. When you

multiply this u with g (x) you get xn d dot so bring to this side then by definition this term

is minus if you look at e is this one then this particular term by definition becomes minus

nth derivative of the error and equal to this side if you look at this minus f (x) will cancel

with this f (x).

(Refer Slide Time: 05:58)

Hence this is kv r plus lambda 1 e n minus 1 until lambda n minus 1 e first derivative. The

closed loop error dynamics becomes finally if I look at here, if I take this 1 to this side,

then this term will become r by definition here this is my r; so this will become if I take to

this side this will become r dot. r dot becomes minus kv r which is linear as well as stable

given kv and lambdas are positive parameters. These parameters are all positive. This is

speed back linearization. What you see is that, if my system is distract by this form, xn

dot is f (x) plus g (x) u and if I select control input is like this and I am able to show that

such a controller will stabilize the system. Also tracking will be achieved and the closed

error of feedback error dynamics becomes r dot equal to minus kv r.

(Refer Slide Time: 08:00)

We extended this feedback linearization principle, for adaptive control technique. Why

we are doing adaptive control? Because, we assume that in the dynamic which is given xn

dot is f (x) plus g (x) u if this f (x) and g (x) are known, then there is no need for adaptive

control.

But most of the situations or in many situations, we do not know what is f (x) and g (x).

How do we solve this problem using the same principle, the feedback linearization

concept? What we are trying to do here is that, last class we discussed two cases, where 1

is f x is unknown and g x is known and the other is that both are unknown. We are

considering the first case now: f x is unknown g x is known. Then if we select the control

law which is 1 upon g x, you can see that this form is exactly as that of a feedback

linearization control law, but with the exception that instead of f x which is known we

have written f hat x which is an estimate of f x. We are saying direct adaptive control

because we will not be estimating f (x) using the system identification principle, but we

will be identifying f x hat using the principle of tracking error convergence directly.

Hence this control technique is known as direct adaptive control. What I am saying here

is that, where the non-linear function f (x) is approximated as f hat x using a radial basis

function network, f hat x is W transpose phi x; W hat is the weight vector of the network.

The update law for W hat is W hat dot is minus phi F phi into r. F is a positive definite

matrix, phi is the radial basis functions easing which the unknown function F hat x is is

estimated and r is the filtered tracking error which you have already defined; r is e to the

power which is there here - e to the power n minus 1 plus lambda 1. This is our filtered

tracking error and using this filtered tracking error we have weight update rule for

estimating F hat x.

(Refer Slide Time: 10:18)

In this method the idea is not to exactly identify what is F hat x but to estimate F hat x in

such a way the tracking error is converged. We proved this theorem we are not going to

prove this theorem in this class because we have already done it; I am just refreshing your

memory.

(Refer Slide Time: 11:05)

Similarly, we also proposed a control law for when this affine system both f (x) and g (x)

are unknown. Again for your memory here I rewrite it as f (x) plus g (x) u so in this the

control law is given by u1 plus u2; where u1 is similar structure except that here we have

instead of g (x) we have g hat x and here instead of f (x) we have f hat x the estimate of f

x because we do not know f (x) and g (x) and u2 is a sliding mode term which is the

absolute value of g hat upon gl absolute value of u1 sign um sine r, sine of the filter

tracking error. gl lower bound of g (x).

(Refer Slide Time: 12:07)

What we are also assuming here g (x) is either positive or negative. g x is approximated

as g hat x using radial basis function network; g hat x is P transpose psi x. P hat is the

weight vector of the network the update law P hat dot is minus G psi u r and G is a

positive definite matrix. Similarly, the weight update law for f (x) which is f (x) hat is W

transpose phi x so this is f (x) and the W hat dot is also the same what we derived F phi r.

We have two weight update laws; one update law for the weights of the neural network

that approximates f (x) and there is another update law here, which is the weight update

law for the neural network that estimates g (x). If these are the two update laws, then the

control law given by u equal to u1 plus u2 will stabilize this non-linear system. Now

adaptive control of MIMO system using these two theorems, we have already proved in

the last class today we will extend these concepts to MIMO systems.

(Refer Slide Time: 14:21)

Let us see what a MIMO system is. We will now extend the application of proposed

direct adaptive neural control to multi-input multi-output system. A general multi-input

multi-output system can be written as x dot is f (x) plus g (x) u and y is Cx. Unlike the

earlier case, what we are writing here is, that here x dot is a vector a whole relation f (x)

plus g (x) u, where x belongs to the n dimensional vector, f (x) also is an n dimensional

vector, u is m dimensional vector, g is m into n dimensional vector, y is p dimensional

vector and C is p into m dimensional matrix. In fact, this is a matrix g (x) is a matrix and

this is also a matrix. We are talking about a multi-input multi-output system.

(Refer Slide Time: 15:40)

Now, this is a very general form and out of this form we will consider a very specific

form which is this one. This structure where this MIMO system we can write any of the

system dynamics particularly multi-link robot manipulators. All categories of multiple

robot manipulators are two-link or more than two-link robot manipulator. The dynamics

can be written as x1 dot is x2 dot is f1 x plus g11 u1 until g1n um x 3 dot is x 4 x 4 dot is f

2 x plus g 2 1 x until g2m (x) um and finally, x2n minus one dot is x 2n and x 2n dot is f

(x) fn (x) plus g n 1 x u 1 until gnm (x) um. So, what you are seeing is that here that we

have written is a generic form of a specific multi input multi output system where outputs

are x1 x3 the odd number state vectors x1 x3 until x2 n minus 1. For such cases the system

equation can be rewritten as z1 dot is z2 and z2 dot is f z plus g z u.

(Refer Slide Time: 17:25)

We are clubbing these equations and representing by z1 dot is z2 and then obviously we

are saying z1 is x1 odd number things x2n minus 1 transpose and z2 is x2 x 4r x2n. You

see that a given 2 n state vectors can be represented as z1 dot is z2 and the next one

(Refer Slide Time: 18:23) z2 dot can be written as f (z) plus g (z) u which you can see

here, this one this one and this one. So this representation is z2 dot is f (x) plus g x u. So

this is again the n dimensional vector z2 and fx(x) is 2 n dimensional and g x also is n into

m dimensional, because u is m dimensional.

 (Refer Slide Time: 19:21)

Here, this is our class of multi-input system; multi-input multi-output system that we will

be discussing today. Where z1 is x1 x3 the odd number of state vectors and z2 is even

number state elements. f (z) is f1 until fn transpose and g (z) you can easily see g (z) is

g11 so this is (Refer Slide Time: 19:42) g11 until g1 m g2 1 until g2m gn 1 until gn m.

This is the elements gather that forms g (z) and then your final state vector z is actually

2n dimensional where each one here is n dimensional.

(Refer Slide Time: 20:06)

Direct adaptive neural control, the output error can be defined as e is y d minus y in the as

you know that y is again n dimensional vector because we are assuming that this is z1 d

desired minus z1 since z1 is the n dimensional vector so this is valid. y d is z1 d is the

desired output vector. Let us define a variable r which is again in the form of a filtered

tracking error. r is e dot plus lambda e where lambda is a diagonal matrix with positive

diagonal element. Theorem one - suppose that the non-linear function f (z) is unknown

while the function g (z) is known, suppose also that f (z) can be approximated as f hat z

upon equal to W hat transpose phi z using a radial basis function network then the control

law given by this expression u is g transpose into g g transpose inverse whole

multiplication minus f hat z plus kvr plus this term into e dot plus z2 d dot so z2 dot. The

desired one will stabilize the system in sense of Lyapunov provided W hat is updated

using the update law minus F phi r transpose. You see that in here in-single-input single-

output case r was a scalar and in this case this is a vector n dimensional vector.

(Refer Slide Time: 22:32)

You see that when we did with using single-input single-output system we had a radial

basis function network that was estimating what is f (x). If you see the weight vector here

which is W this is a vector and how many dimensions? Dimension is l into 1 dimensional

vector W. In case of single-input single-output system the function f (x) is a scalar

function the R B F network as a single-output as shown in the figure. The network weight

constitutes a vector W hat in this case while when we do it in multi-input multi-output

system.

(Refer Slide Time: 23:25)

We have n outputs here. In this case this is no more a vector W hat is a matrix. What is

the meaning of this W hat here? In case of MIMO system the function f (x) is a vector

valued function. The R B F network has multiple outputs as shown in the figure. The

network weights constitute a matrix W hat in this case. Now, we will go to the proof with

this basic idea we have already actually described.

(Refer Slide Time: 23:55)

We described that this control law, with the weight update algorithm for F hat z which is

W hat dot is minus F phi r transpose. If I have this weight update law, for estimating F

hat z then, this controller will give me the results that the actual output will follow the

desired output.

In this control law k v is a positive definite diagonal matrix W hat is the weight matrix of

appropriate dimension. Let us assume that there exists an ideal weight matrix W such that

the original vector f (z) can be represented as W transpose phi z. We can say here f

(24:54) (z) is W hat transpose phi z for this W hat as to be updated. We have already

given this rule of W hat dot is minus F phi r transpose so can we say that given this as the

weight update law these controller will stabilize the given affine system. Now what I do

is that my dynamic is because f (z) is this one so z 2 z is f (z). This f z is now W

transpose phi z plus g (z) u in this u is replaced by this equation. The closed loop error

dynamics is obtained by putting u in this equation.

(Refer Slide Time: 25:52)

This is putting the control law u in the system equation and after simplification we get z2

dot is W transpose phi minus W hat transpose phi plus k v r plus lambda 1 e dot plus z2

dot. If f x would have been known, then these two terms would have cancelled. Then we

would have remained with only this term which is a stable closed loop error dynamics.

Since these two are not exact, they are different. How do we stabilize it?

We have proposed a control law for weight update. Defining the error in weight vector

is… earlier I told that in this case W is a matrix so this is very important and here W is

actually matrix; defining the weight matrix W tilde is according to this. We can write z2

dot this particular term is W tilde transpose. This is written as W tilde transpose phi plus

this 3 terms kv r plus this term into e dot plus z dot 2 desired. We have already defined r

dot. r dot we know, we have defined r to be e dot plus so if I re-compute r dot is e double

dot plus 1 into e dot. The symbol this is simply a constant into 1 suffix 1 e dot which is z2

dot minus z2 dot plus 1e dot. This particular expression we derive from r dot simply

differentiating then replacing, in this case what is e double dot. So e double dot is simply

z2 d dot minus z2 dot. Combining this expression we get the close error dynamics is r dot

is minus kvr minus W tilde transpose phi which is the final closed loop error dynamics.

We now analyze the stability of this using Lyapunov function so what we get is that this

is our closed loop error dynamics. By replacing u in our system dynamic which is f (z2)

plus g (z) u is z2 dot. This is our dynamics we refer in this dynamics here z2 dot here,

then I get this expression.

(Refer Slide Time: 29:50)

This (Refer Slide Time: 29:50) is our closed loop dynamics r dot is minus kv r W tilde

transpose phi.

(Refer Slide Time: 29:55)

Now consider a Lyapunov function candidate V is half r transpose r plus trace half W

tilde transpose F inverse W tilde F is the positive definite matrix. Since the Lyapunov

function should be a scalar function but W hat is a matrix. In this case we have taken

trace because earlier we simply wrote this is W tilde transpose F inverse W tilde. But

now we have taken trace because of the matrix. Because this Lyapunov function has to be

scalar.

(Refer Slide Time: 30:44)

Trace of a matrix those of you do not know, if I take a 3 dimensional matrix the diagonal

elements is given by a 1 1, a 2 2, a 3 3. Trace of a matrix is a 1 1, plus a 2 2 ,plus a 3 3.

Differentiating V, V dot which is r transpose r dot plus trace of W tilde transpose F

inverse W tilde dot. Substituting r dot into above equation, so this r dot which is the

closed loop dynamics this is my r dot (Refer Slide Time: 31:23). If I give this equation or

if I replace this equation in V dot which is r transpose r dot, we may get a nice solution

for this which we have derived now.

You can see that r transpose r dot plus trace of this thing with W tilde dot. Substituting r

dot into the above equation in this equation you get the rate of Lyapunov function to be r

minus kv r minus W tilde transpose phi plus the trace of this particular term.

 (Refer Slide Time: 32:10)

Since W is a constant matrix we can always write W tilde dot to be minus W hat dot. V

dot, which we have already computed to be minus r transpose kv r minus r transpose W

tilde transpose phi plus trace minus W tilde transpose F inverse W hat dot.

(Refer Slide Time: 32:40)

By taking this example, using the properties of trace we will utilize this theorem, which

says, r transpose W tilde transpose phi is trace of W tilde transpose phi r transpose. We

can further simplify this V hat V rate derivative of the Lyapunov function to minus r

transpose kv r trace. This is our trace; this particular thing has been replaced by this here

trace W tilde transpose phi r transpose. This is trace and this is also another trace so you

can write trace is minus W transpose phi r transpose minus W tilde transpose F inverse W

tilde W hat dot. Equating the second term of the above equation to 0, this one we want to

eliminate, I can take out W tilde transpose to the left side as a common, then I get simply

phi r transpose; you see that phi r transpose plus F inverse W hat dot is 0 or this is my

weight update law W ha dot is minus F phi r transpose. If this is my update law then

direct adaptive control for non-linear systems is solved.

(Refer Slide Time: 35:31)

Further the proof of the theorem again using the update law W hat dot which we just

derived minus F phi r transpose. Now let us see whether the algorithm is convergent rate

derivative Lyapunov function becomes according to our definition… this V dot becomes

V dot is minus r transpose kv r. Since V is greater than 0 and V dot is less than equal to 0

this shows stability in the sense of Lyapunov so that r and W tilde are bounded hence the

proof. Furthermore, you can easily check this one. Again V double dot if I have found V

dot then V double dot is minus 2 r transpose kvr dot is 2 r kv square because r dot is

minus kv r. This was negative this becomes positive plus 2 r transpose k v W tilde

transpose phi; because this r dot is replaced by…

Since r and W tilde are bounded as V double dot double differential of the Lyapunov

function. Therefore, V dot is uniformly continuous. Thus according to Barbalat’s Lemma,

V dot tends to 0 and t tends to infinity; hence r vanishes with time. We showed here

(Refer Slide Time: 36:15) by saying that this is my update law, I found out this is my rate

derivative of Lyapunov function which is negative definite which is always negative for

the values r not equal to 0 when r is equal to 0; this is 0. Then further we are showing that

V dot is uniformly continuous considering this term. Thus according to Barbalat’s

Lemma if this is continuous, then this term will go to 0 as t tends to 0. So r would vanish

with time and what is r? If you look at here r (Refer Slide Time: 37:03) we have defined r

is this particular term which is the filtered tracking error. So finally error will converge to

0.

(Refer Slide Time: 37:19)

Now we will apply this particular application to this adaptive control theory to an actual

system in simulation and we take two-link manipulator. The dynamics of a two-link

manipulator has been taken as an example of multi-input multi-output systems. For a

two-link robotic manipulator the second and third link of a PUMA 560 robot that we

have taken. The dynamical equation which relate the joint torques tow 1 and tow 2 to the

joint angles theta 1 theta 2 of the links are given as where tow 1 is a 1 plus a 2 cos theta 2

theta 1 double dot plus a3 plus a2 by 2 cos theta 2 so this is the coefficient of theta 2

double dot plus a 4 cos theta 1 minus a 2 sine theta 2; this whole term multiplication with

this term. The joint torque 1 is related with the joint velocities acceleration velocity

which is the co-relate force theta 1 dot theta 2 dot plus theta 2 dot whole square by 2 and

the gravity term F i cos theta 1 plus theta 2. Similarly, the joint torque in second joint

which is a 3; this is the acceleration term this is co-relation term and this is your gravity

term.

(Refer Slide Time: 39:08)

Where a1 is 3.82, a2 is 2.12, a3 is 0.71, a4 is 81.82, a5 is 24.06. The two-link manipulator

system can be re-written as (Refer Slide Time: 39:24) theta 1 double dot is something and

theta 2 double dot is something. But you see that each equation is written in terms of

theta 1 double dot and theta 2 double dot. So I have to eliminate and then I have to find

out the expression for theta 1 double dot. Similarly, I have to find the expression of theta

2 double dot using other terms. Doing that what you are getting theta 1 double dot theta 2

double dot equal to 1 upon D m22 minus m12 minus m21 m11 tow 1 minus v1 tow 2 minus

v2 where, m11 is given by this expression, m12 is given by this expression, m21 is m12 and

m 22 is a3.

(Refer Slide Time: 40:21)

Where v1 is given by this expression this big expression which is a4 cos theta 1 minus a2

sine theta 2 theta 1 dot theta 2 dot plus theta 2 dot whole square by 2 plus a5 cos theta 1

plus theta 2. Similarly, you can see that d2 here another expression a2 sine theta 2 theta 1

dot whole square upon 2 a phi cos theta 1 plus theta 2 and D is m11 m22 minus m12 m21.

This is m11 m22 minus m12 m21 so m11 m22, diagonal element multiplication minus the

other diagonal element. Considering the state variable as x1 is theta 1 x2 is theta 1 dot and

x2 is theta 2 x 4 is theta 2 dot. One can write x1 dot is x2 and x2 dot is 1 upon D and then

this quantity m22 t 1 tow 1 minus v1 minus m12 tow 2 minus v2 and similarly x3 dot is x4.

Similarly x dot 4 is in this particular format 1 upon D minus m21 tow 1 minus v1 plus m11

tow 2 minus v2. You see that we said in the beginning of the class that some of the

system can be represented in this particular form. You see that this v1 is function of the

state vector x and similarly v2 also is a function of state vector x this is also function of

state vector. You see that v2 is function of theta 1; theta 2 theta 1 dot, v1 is theta 1 theta 1

dot theta 2 dot and theta 2. All the states are there here one state is missing. But anyway

in general they can be a function of this entire state vector.

(Refer Slide Time: 42:34)

This can be represented if we define z1 to be x1 x3 and z2 is x2 and x4 then the system

can be written in our general notation that we talked which is z1 dot is z2 and z2 dot is f

(z) plus g (z) tow and going back and reformulating the problem we get f (z) is f1 f2

which is 1 upon D and this is my first term minus m22 v1 plus m12 v2 and the second term

is m21 v1 minus m11 v2 and g z is a 2 by 2 matrix g11, g12, g21and g22 and this is 1 upon D

m22 minus, m12 minus m21 and m11.

(Refer Slide Time: 43:30)

Output y is z1 and z1 is our first link position and second link position. The reference

output trajectories are taken as which is a z1 d is x1 d and x3 d is pi, so this is a angular

position of the joint 1 and angular position of the joint 2. pi by 6 sine 2 t pi by 6 cos 2 t

the control input which is ug transpose z g g transpose inverse minus W hat transpose phi

z plus k v. This term and this the desired trajectory z2 d dot so where r is our tracking

error e double dot plus lambda 1 e dot and e dot is z1 e dot minus z1 dot. This is our

control law we have already said this control law with the weight update law for W hat

will stabilize. The weight update law is we have already seen F phi r transpose. This

weight update law would surely stabilize the system.

(Refer Slide Time: 45:14)

We have selected kv is 30, 00, 30 which is a 2 by 2 matrix and lambda is 20, 20, 00. W

hat is updated using the following update law, minus f phi r transpose, where f is taken as

20, 00, 20, the number of neurons for the radial basis network function is taken as 30, the

centers of radial basis function networks are chosen randomly between 0 and 1.

(Refer Slide Time: 45:59)

Weights are initialized to very small values. If we do that the simulation results would

show the trajectory tracking force theta 1 is desired and absolutely no difference.

Tracking is so perfect so we see that we have achieved this tracking and the RMS

tracking error is found to be 0 point 0004 assuming f (x) to be unknown. Of course, in the

initial period we are not showing instead when the trajectory has settled, once the

transients are gone in their steady state that tracking is perfect because of very small

value 0 point 0004. This is a desired perfect tracking.

(Refer Slide Time: 46: 49)

Similarly, here this is a trajectory tracking for theta 2. Again this is link angle theta 2 and

according to time and steady state from time 3 to 8, if we compute the RMS tracking

error this is 0 point 0006 and very efficient tracking. Correspondingly, the controlled

torque tow 1 and tow 2 that were found out to be like this that you can see again in steady

state the controlled torque is very smooth without any kind of fluctuations. This implies

that the proposal algorithm is very efficient. If we go back to the control law, we have

this g, g transpose mac inverse; you know that this is a matrix. In this case the g is two-

dimensional matrix, so gg transpose is again two-dimensional matrix. But in general, if I

have n link matrix; if it is two-link then it is two dimensional. If I have a six link matrix it

is a 6 by 6 inverse matrix. Inverse means computation is more; this point gg transpose

can be computed using a recursive relation. One can work out on this that instead of

doing this inversion we can find a recursive solution for it. That this easily be computed.

(Refer Slide Time: 48:50)

Second thing is when we consider f (x) is unknown and g (x) is known, if g (x) is also

unknown or both are unknown this problem is still not solved in the control literature.

Non-linear function g is unknown the adaptive control problem becomes difficult to

solve. This is an open recursive problem.

(Refer Slide Time: 49:56)

In the summary, the following topics have been covered: adaptive control system for

single-input and single-output systems is revisited, mathematical model is provided for

general classes of multi-input multi-output system, where we could represent even

practical systems like multi-link robotic manipulators. They can also be represented in

this particular format: z1 dot z2 z2 dot zu plus g (z) u, and f (z) is unknown then this

solution to this control problem is already provided but we found that in this control law

includes an inversion which must be replaced by a recursive solution. Simulation results

are provided for a two-link manipulator system where we saw the tracking order is in the

range of 10 to the power minus 4, implying tracking is very perfect. Direct adaptive

control of multi-input multi-output system, when both f (z) and g (z) are unknown is kept

for the future work. This problem is still not solved.

(Refer Slide Time: 51:09)

Those who are further interested to work on this problem, I would like that you can

follow these references in the Lewis and Jaganathan and Woodwreck, neural network

control of robot manipulators and non-linear systems. A book published by Taylor and

Francis in 1999. Spoonor and Passino they have a paper on Stable Adaptive control and

Fuzzy systems and Neural Networks, S He Konnald Reif and Rolf have published A

neural approach for the control of Non-linear systems with Feedback linearization, Choy

and Farnell have published Non-linear adaptive control using networks of linear

approximates volume 11. This is our paper; Indrani Kar and I have published Neural

Network Direct adaptive control for all non-linear systems.

Thank you very much.

