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Indirect Adaptive Control of a Robot Manipulator 

This is a lecture on indirect adaptive control of a robot manipulator. This is the fourth 

lecture in this module on neural control. In the previous two classes, we covered the 

background that is necessary to understand this lecture. First we talked about network 

inversion. Given a network that has learnt a dynamic model, can I use that network to 

compute what is input given for a target output? Next we talked about the problem of 

having a model of a robot manipulator. The reason is, robot manipulator is an open-loop 

unstable system; data generation can be only done using a PD controller. 
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Given those two backgrounds we will have the topics that will be covering: System 

identification using a feed-forward network, we have already discussed this; we will be 

overviewing neural network training and data-insufficiency, we have discussed earlier 

and query based learning, these are all from previous classes. Today, we will be talking 



about two different indirect adaptive control schemes. One is based on forward-inverse 

modeling and second is network inversion approach and finally, we will show these 

methods how they can be validated through simulation. 
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Robot manipulator, we have been talking about this model since last two classes. This is 

vector equation of motion of N-link rigid manipulator; this is the state space model. 
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We have 2N states, with N angular position and angular velocity vector then, the control 

vector is that joint torque actuated which is N dimensional and it is desired that robot 

manipulators should follow this desired trajectory. 
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We have already talked about given generic system of this particular form. Where this is 

our output state, you can easily see for robot manipulator n is 2N and u is…the dimension 

is P; this is n state system, small n, for robot manipulator it will be 2 into capital N. We 

collect the data online from a robot manipulator by taking the links; the manipulator link 

around desired trajectory. We get various data from the robot manipulator. We use those 

data to model the robot manipulator in this particular form which is x (k plus 1) is f(x(k), 

u(k)). You can easily see that, this radial basis function network that has n plus p, input 

x1 to xn, u1 to up and the outputs are x1 to xn at sampling instant k plus 1, input are at 

sampling instant at k. These are the values taken from actual plant, these are the control 

action actuated and you get the output of the radial basis function network. If it is trained 

properly, then, it can mimic the robot dynamic behavior. Last class also we talked about 

dimensionally insufficient data which means, the robot manipulator is an open-loop 

unstable system. 
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We said that if this is my plant, this is my robot manipulator then, I use a PD controller 

here and I put some dither signal and here is your command signal and this is your 

sensors. The output of robot manipulator if we actuate with joints, we observe what are 

the link angular positions vector and angular velocity vector. They are fed back at the 

command signal and command signal is normally x - desired, the desired trajectory that 

link should follow, you have this PD controller. PD output we add this dither signal just 

to make sure that, the data that are being collected that only spread over n dimension 

rather n plus, actually 2n plus p, 2n plus p is also here n. Actually, given the state space 

model, we talked about n plus p, n is for x, p is for u. Input-output dimension is 2n plus p 

because, your number of input is n plus p and that is when you have a network. If I have a 

network that has modeled this robot manipulator then, you have n plus P input where, n is 

capital 2N, n is capital 2N and P is also N. So that is 3N number of input, number of 

output is 2N, 2 capital N. So, the total input- output dimension is 5N; the objective is to 

collect data in 5N dimension. To be able to do that is very difficult job because, we do 

not have a method by which we can independently give input signal to the plant or to the 

robot manipulator. 

The input actuation cannot be made state independent because we are using a PD 

controller. If I do not give dither signal, I am simply collecting data in n dimension. This 



n is actually 2N and if I add dither signal the maximum dimensionality into which the 

data will span is 2N plus N is 3N. This is the problem of dimensionally insufficient data. 

What is a neural network? Neural network means, we are simply fitting the input data 

from input to output; it is simply a data mapping. How well data are generated? This 

point we discussed in the last class and that is why we proposed a query based learning 

algorithm. 
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In query based learning algorithm what we proposed that after the way we generated a 

data here, we generated data like this and then we provided those data to the radial basis 

function network to emulate an actual robot manipulator. So that first iteration robot 

emulator or neural emulator is placed in parallel to the robot manipulator. 

What this query based learning algorithm has to do is that; this neural emulator will give 

new learning trajectories. Along each learning trajectory, through neural emulator, the 

query through network inversion will be asked. What would be the input for the desired 

target point defined by learning trajectory? Through network inversion we compute what 

should be the tau, we actuate that to the actual physical plant, and if we see the response 

of the physical plant in the next sampling instant is far away from the actual value of that 

is set as according to the learning trajectory. Then we accept that as a new example 



because, in that zone the neural emulator does not have proper information. The basic 

motivation here is that, if I have a neural emulator that has modeled robot manipulator. 

Kindly, hear very attentively this particular statement, what I am trying to say is that, if 

this neural emulator or this model of a robot manipulator, if it has actually trained 

properly to capture the dynamic behavior of the robot manipulator, it is not sufficient, to 

simply ask this question given a desired sequence of desired input. If the neural emulator 

is able to follow the behavior of robot manipulator then, this is a proper emulator; now 

we are going a step beyond. Here, what we are saying the first step is that, neural 

emulator should follow the behavior of robot manipulator. What it meant is, given a 

sequence of control actuation to both the robot manipulators as well as neural emulator, 

the response of neural emulator and robot manipulator should match, this is standard 

practice. But, we are introducing a second constraint to say that, the neural emulator 

actually is emulating robot manipulator properly. 

Second point is that, we ask this question to neural emulator. Given a target point, what 

should be the control input? We give that control input to the actual robot manipulator 

and we see if their manipulator goes to the target point. If that is the case then we would 

say that, the neural emulator is properly mimicking the robot manipulators. In this case, 

using network inversion and neural emulator predict the control input for a given target 

trajectory. Control input sequence I would say. This is second point that we are imposing 

to say that a robot manipulator model in using neural network, how that can be robust? 

Not only should it be able to predict the target point, it should also predict the target input 

because, to this robot manipulator given tau it produces q q dot. So, one way we can say 

that, if this is a neural emulator give the same q q dot to the neural emulator and tell him 

it should predict what tau is. The other way is that gives the tau to the neural emulator 

and predicts q q dot and we have to do both; if neural emulators satisfy both conditions 

then, we say this is an exact replica of the robot manipulator. Of course, we cannot say 

exact replica but, in some sense it has much more robust behavior than taking only this 

condition alone. We have already discussed these things. 
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The control objective is given a desired state trajectory vector that is output activation of 

the radial basis function network model which is x d (k plus 1) and actual system state 

vector x (k): design a control law so that neural model g is Lyapunov stable. What we are 

trying to say is that, this is our robot manipulator. This is our neural emulator; neural 

emulator that mimics the robot manipulator behavior. Now, I utilize this neural 

manipulator and design a controller here. This controller will actuate a control signal tau 

to the robot manipulator and robot follows certain trajectory. In the state space up angular 

position and angular velocity, this is called in literature which we say indirect adaptive 

control, this is indirect adaptive control. What you are seeing here is that, what is 

meaning of Lyapunov stable is that, if I represent this NE by a function g because, the 

normal stability study is that, I can put instead of robot manipulator this NE. There neural 

emulator and neural emulator in the feedback loop, they should be Lyapunov stable that 

is the control objective. 
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Here, the first type of indirect adaptive control scheme that we will be discussing today. 

This is called forward-inverse modeling. In this forward-inverse modeling what you are 

seeing here is that, this is the robot manipulator, this is again indirect adaptive control 

you see. This is also indirect adaptive control but, the principle is forward-inverse 

modeling. I will just explain forward-inverse modeling. 

This is our robot manipulator which has a neural emulator that we have already discussed 

a lot. This neural emulator has the capacity to exactly mimic the behavior of robot 

manipulator not only in the terms what is of desired target but given the desired target 

and desired input. In both ways this is an ideal neural emulator. This is our desired 

trajectory q d, here is my neural controller. I have two-stage controller here; the neural 

controller actuates the feed-forward task and the PD controller actuates a feedback torque 

and together they are actuated to robot manipulator. The question now here is, given the q 

d whatever the output of neural controller and PD controller output the same output is 

given to the neural emulator which gives an output q hat and we take it, compare to the 

desired trajectory and I get an error. I use a weight update algorithm to update the 

weights of neural controller. The meaning of forward-inverse modeling is neural 

emulator represents the forward dynamics of the robot manipulator. Now what we can 

do, we extract from this neural emulator the information known as: Del x upon Del u, 



which I will show you just now. This is very important information that we get from 

neural emulator. We use that information which is necessary in our weight update rule to 

compute which is w dot. We compute and update the weights of the neural controller 

based on this w dot, and what is this neural network controller, this is again another radial 

basis function network. We have two radial basis function network, one radial basis 

function network represents neural emulator; another radial basis function network is the 

neural controller. What we do not know in this radial basis function network. We fix the 

centers in their place in specific domain because, we know that to this controller what 

will be the various possible input that is q d the desired trajectories, actually to this neural 

controller, we have 3 n inputs, n inputs from angular position, n input from angular 

velocity, and capital N inputs from angular acceleration and then neural controller 

predicts, what is the forward torque necessary for making the robot manipulator to 

exactly follow the trajectory. Now, we will show you how we design a weight update rule 

for this forward-inverse modeling such that, the controllers the total feedback control 

system here is Lyapunov stable. See how we are doing it here, consider the Lyapunov 

function to be half x tilde, transpose x tilde where x tilde is x d minus x hat. 
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This x hat is response of the radial basis function network, which is here q hat. The time 

derivative of the Lyapunov function can be derived as follows: V dot rate derivative is x 



tilde transpose into x tilde dot and then we can write that x tilde transpose. Then, we can 

write that: Del x upon Del u because, you see that this x tilde dot is x minus x hat dot. 

That is, minus d x hat by d t so d x hat by d t can be written as: doe x upon doe u into doe 

u upon doe W into doe W by dw by dt. That is, we are expanding that x as a function of u 

the control input, u is a function of W and W is a function of time. Say if you go back 

here this is the meaning of forward-inverse modeling that is given x hat here, this is a 

function of u here. That is why, doe x upon doe u is computed from the neural emulator, 

again the neural controller output is u. We can say the output is here is u, so doe x upon 

doe u into doe u upon doe W that again can be computed from this neural controller into 

W dot is, what is dx upon dt. I have to explain to you again what we are trying to 

compute is dx upon dt. 

To compute dx upon dt, which is x hat that is the rate change of the output of the neural 

emulator can be written as, doe x upon doe u into… because this neural emulator has a 

functional relation between q and u, again doe x upon doe u here it is, doe u upon doe W. 

The neural controller is characterized by a weight vector w and this u output neural 

controller is a function of this W, this is not…. because PD controller gains are fixed, 

these really do not affect, this q hat what affects is the weights because, these are 

changing neural controller. So, doe x upon doe u again doe u upon doe W, u is the output 

of the neural controller, neural controller is characterized by the parameter W and the 

input is qd which are all known. Naturally, doe u upon doe W it can be easily computed 

from the neural controller into dw by dt. This is the weight update law, now we have to 

find out what should be this dw by dt such that, the whole system is Lyapunov stable. 

Meaning of that is that Lyapunov stable means, if I consider this to be a Lyapunov 

function, the rate derivative of this function V dot has to be negative definite, if I can 

prove that this is negative definite, then this is a stable controller. The objective is here I 

have defined j to be this quantity, this is Jacobin, the objective is to select a weight of that 

W dot such that, the derivative of the Lyapunov function remains negative semi-definite. 

We will now represent two such weight update laws that are converging in the sense of 

Lyapunov functions. We are selecting first what is W dot and this is my W dot the weight 

update law. If I select this weight update law and put this weight update law in this 



particular replace here, then what I get V dot is minus x tilde norm square, meaning this 

quantity this particular quantity is either. 
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If x tilde is not 0, then it is positive; hence it is negative and if x tilde is 0, all the terms in 

x tilde because this is a vector, if all the terms are 0 then only at that time it is 0, which is 

desired, x tilde finally should be 0. That is desired then, the system is stable. Thus, the 

update law the previous law what we saw? What we saw is this stabilizes the control 

system; the complete control system including the planned dynamics is stable, according 

to this weight update law. Now, the weight update law however does not ensure the 

boundedness of the weight because, you see that, we are updating this weight and there is 

no way we are talking about boundedness of the weight. So that we will be doing now, 

thus the update law is modified by adding the gradient of the cost function H as follows. 

W dot earlier term was this one we have added another term. 
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Where you have taken a gradient of a function H and this H is normally we select here, 

you can check here, this is half W transpose tilde into W tilde. Taking this H to be this 

particular function the, Del H upon Del W if you compute that, and where this particular 

function that you are looking at is a function of W is defined by this quantity. If you take 

that, add this term to this W dot, then again you take this new weight update law into the 

Lyapunov function, then Lyapunov function again becomes x tilde norm square negative, 

negative of x norm x tilde norm square implying again the system is stable. Again this 

control law stabilizes the control system in the sense of Lyapunov. The system is 

Lyapunov stable, finally this update law ensures convergence of tracking vector x tilde 0. 

A new function is chosen such that, x transpose J this function is 0, which ensures the 

time derivative of the Lyapunov function remains negative semi definite simultaneously, 

by selecting H to be half W tilde transpose W tilde, we are intuitively providing a 

damping to the weight that is increasing; this ensures the boundedness of the weight 

vector W. 



(Refer Slide Time: 32:02) 

 

Finally, summarize two weight update rules are derived which guarantees stability for 

forward inverse modeling based indirect adaptive control. Weight update rule 1 was, W 

dot is, how if we go back what was the problem? Originally the problem was that, we 

place a neural controller whose weights are unknown, how do we update these weights 

such that, the overall control system is stable and the perfect tracking is achieved at the 

plant level. That is what we are doing first; we found out the weight update law for the 

weights of the neural controller. Similarly, weight update law, second neural update law 

we found out. This does not take into account of the boundedness of the weights, this 

does take into account. 
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Now, we will go to the second approach that is using network inversion, we have already 

talked about network inversion. Now, the concept here is very simple I have a robot 

manipulator, I have a neural emulator. Now, can I use this neural emulator as a whole to 

construct my control law here that would stabilize the entire control system here? That is 

the question. That is what I am trying to say is that, if I have a controller sitting here in 

conjunction with the neural emulator can I say, given a desired trajectory here, next 

desired state present and past states and past input or you can always also say here that q 

d. Given a desired trajectory, can I say that I have a control law in conjunction with the 

neural emulator in such a way that, finally my neural emulator output are always 

following the desired trajectory and system is Lyapunov stable? 
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This is the network inversion, control law using network inversion. What we are trying to 

do is we are constructing a Lyapunov function which is half x tilde, transpose x tilde plus 

u tilde transpose u tilde. We have introduced a new element or new term in the Lyapunov 

function, where u tilde is u hat minus u. What is this u hat? If you go back you see that, 

when I invert the network I get what should be the control input that will take my neural 

emulator to the target vector. You know already that, there may be a situation where my 

predicted control input may not take the robot manipulator to its actual target. Because of 

the problem that we enumerated in the beginning that, actually neural emulator is that one 

which not only predicts the target, also predicts the desired input. If that training is not 

complete then obviously, the neural emulator will fail sometime to predict the control 

input. Now, we have to find some method by which this prediction can be made properly. 

With this introduction of this new term, we take the time derivative of the Lyapunov 

function and then we see that if I differentiate this term, x tilde transpose x tilde dot and x 

tilde dot can be written as: minus doe x upon doe u. That is why, the minus sign comes 

into doe u by d t and so du by d t that is how is the first term. Second term is, u tilde 

transpose into u dot. Where, we can write this term as minus x tilde transpose J plus D u 

dot where, J is doe x upon doe u, and D is 1 upon x tilde norm square x tilde u tilde 

transpose. Control law using network inversion; first of all, we present a theorem. 
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If an arbitrary initial input activation u not is updated by this formula, this identity u(t) is 

u not plus 0 to t dash u dot d t where, u dot is given by this expression then, x tilde 

converges to 0 under the condition that, u dot exists along the convergence trajectory. 

Substituting u dot in previous V dot, you get V dot is minus x tilde whole square that is, 

the overall system will be Lyapunov stable. The iterative input activation update rule will 

be because, this is continuous update, so iterative will be u(t) is u t minus 1 mu u dot t 

minus 1. This is iterative actually because, t we have given in terms of time, maybe we 

can put this is k, k, k where mu is a small constant representing the update rate. Where, u 

dot is computed from this expression at the sampling instant k minus 1. We proposed two 

different control indirect adaptive control schemes and we found out the control law and 

weight update law. First case, we found out what should be the weight update law for the 

controller; in second case we found out what is the control law and now we will show 

that how this controller is effective. 
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We selected a high speed robot manipulator, whose dynamics are given this way where in 

this particular dynamic model C21 stands for cos q2 minus q1, and S21 stands for sine q2 

minus q1 this two-link manipulator and the parameters a1, a3, a4 and a2 they are 0.15, 

0.04, 0.03 and 0.025 kg meter square respectively. 
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We have selected the same robot manipulator that we have been discussing in the last two 

classes. The online data generation scheme for training the radial basis function network 



is the same. A PD controller is used to generate the training data to find a neural model of 

the robot arm. Data are collected as the robot arm is made to track various random “pick 

and place” trajectories and sinusoid trajectories. While tracking random trajectories at 

each sampling instant, various dither signals in the form of white noise, impulses, step 

functions, ramp and parabolic type of functions are added to PD controller to increase the 

spread of the training data in the input-output space. This is from; we shift the data from 

n manifold to n plus p manifold. 3000 examples are collected while the sampling interval 

is kept at 10 milliseconds. 
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Then radial basis function network which has 6 inputs that is, two terms for joint inputs, 

two terms for angular positions, two terms for angular velocity at sampling instant k. 

When you give to the network, the network will predict what should be the actual value 

of the angular position and angular velocity at k plus 1. The model incorporates 100 

radial centers. Training of RBFN is carried out using 3000 examples for 10 numbers of 

passes that means 30,000 iterations. After training is over the RMS error for a test data 

set is found to be 0.003. The validation test of neural model thus learned is done by 

finding input through recall process for a given test data. It is not simply because, when 

you have the RMS error 0.003 then, you can easily predict the output. The radial basis 

function network will effectively predict what should be the output given an input, but 



what is the case. Given an output, can the same network predict the input? These results 

we showed in the last class. 
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This is a for a sinusoid trajectory when robot manipulator is tracking a sinusoid 

trajectory, we asked a question to the neural emulator corresponding to the robot 

manipulator. What is the input given the target output? That input is already given to the 

robot manipulator; so what this result is all about is I can tell you again. This is my robot 

manipulator and this is my neural emulator, this is my u I give to the robot manipulator 

and I get q, I give that same q to the neural emulator and predict, what should be that u. If 

this u hat matches this u, then this neural emulator is a good emulator of the robot 

manipulator. I hope you understand very clearly; again I repeat what is the meaning of 

this validation through inversion. Validation through inversion means, of course we have 

trained this neural emulator by giving the training, set u and q to this. Obviously, if I give 

u this will predict what q is but, given q can I predict the u? This is the question we 

obtained. Both ways the neural emulator should do a perfect job and then it is a robust 

identifier or robust model of the actual robot manipulator. What you are seeing is that, we 

have already discussed in the last class that, before the query based learning that we 

discussed today, also yesterday, that before query based learning the input prediction was 

very bad. You see that these are lot of variation from this solid line, solid line is the actual 



control input that is given to the robot arm for a desired sinusoid trajectory but, after 

query based learning for the joint 1 you see that, the predicted one, the broken one and 

the solid one, they are almost very close. Where the dotted one this is before query based 

learning. After query based learning, the model has become very robust, not only the 

neural emulator is predicting the target given input, it is also predicting what should be 

the input given the target and the same thing also valid for the joint 2. You see that, 

before query based learning again you see these dotted lines they were not good. They 

were not similar to the actual the solid line that is the control signals sequence given to 

the actual robot manipulator. But, after query based learning you see that, this broken line 

almost follows the solid line. This is the advantage; this is the neural emulator, we have 

now utilized for testing our controller. I will not discuss because, these things we have 

already talked in the last class. We will now show the simulation result for the two 

control algorithms that we derive today to repeat for your own understanding. 
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We first of all propose a forward - inverse modeling. In forward - inverse modeling, this 

is my robot manipulator, this is my neural controller. Neural controller is supposed to 

actuate, you know a feed-forward torque such that, the q tracks q d the output of the 

manipulator tracks q d. The neural controller is a radial basis function network whose W 

is not known, now how do I update this W in such a manner that my q follows q d and 



this is Lyapunov stable. For that, as you saw that today in this class, we derived a weight 

update law called W dot and this W dot is computed by using two terms first term del doe 

x upon doe u is computed from the neural emulator. Another term we computed this 

term, doe u upon doe W from the neural controller itself using these two. We computed 

what is W dot and this W dot in the first case this was: x tilde norm square upon J 

transpose x tilde norm square into J transpose x tilde and the second rule that we saw we 

added a gradient term of the weight, where H is half W transpose W. When we took this 

value for H and we differentiated that, we found that this weight update rule is also 

Lyapunov stable or gives us Lyapunov stability. Using these two rules, we did 

simulation; this is forward-inverse modeling simulation. What you are seeing is that we 

provide the robot manipulator the same trajectory for 50 times, we start here, what we 

started with this neural controller. The weights are all initially randomly initialized. 
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We did not know, now with this initial random weight, we used various algorithms first 

are gradient descent. So, what we did is that, we simply updated the weight according to 

the gradient descent and you see the over 50 trails the error in joint 1 position is this is 

trial 1, this is the RMS error and slowly the RMS error reduced and it is here. But, when 

we use the gradient descent but with weight update thrice per sampling interval then, you 

see that error further decreased. Then the third one is the adaptive tuning. First we have 



two update rules; the first type of update rule. You can easily see this is the upper one and 

then you have the same adaptive tuning algorithm but, weight update thrice per sampling 

interval, then you see that it is further improved. But, you see the amazing aspect of the 

adaptive tuning that is the type 2. When you do the type 2, you see that, error is actually 

almost 0 and independent of trial, it does not require any trial that is; instantaneously the 

error goes to 0 point 000001. This is a very fantastic influence of this controller; the 

controller that we talked is this type 2. You see, the type 2 controller here also the error is 

on the x-axis means 0 point 000001. Here also, you see a joint 1 positive, the error is very 

small and here also the error is very small; whereas, other schemes they have relatively 

large errors. 
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We compared, now we will take an example here. This is the sinusoid trajectory that is 

being tracked by this robot manipulator, this is joint 1 angle. You can easily see in the 

beginning there are some error and that error died down as time progressed and you can 

easily see there are two, this is the tracking error, this is trajectory tracking, this is the 

tracking error at joint 1, this solid line is using the new update rule; whereas, the dotted 

one is using gradient descent. 
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Similarly, here on joint 2 the tracking is very perfect; whereas, because you cannot even see 

the two trajectories, the actual trajectory and the desired trajectory they are super 

imposing perfectly that they appear to be the same trajectory, tracking is perfect. 

Tracking error at joint 2, if we see in a very micro scale then you see that for gradient 

descent the error is quite visible; whereas, this is almost 0 for the adaptive tuning that we 

have done using Lyapunov stability theory. That is a simulation result of the first part; the 

second part is a network inversion. A network inversion what we did is that, we have 

already a neural network. We said why we should put another neural network there. 

Instead we have neural network that has already identified the model of the robot 

manipulator. We utilize that neural network to predict our control law such that, the 

overall the system is Lyapunov stable. What should be the control input u dot here or the 

u here? We say this is my u or tau. That will be a function of u hat that has been given 

from the network inversion algorithm and J is the Jacobian that is computed from the 

neural emulator that is Del x upon Del u. 
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We derive this algorithm, my control algorithm is u (t), u is same as tau is u (t minus 1) 

mu u do and where u dot is this expression, which can be computed very easily because, 

these are simply norm square J is a Jacobian matrix computed from the neural emulator. 

D is an expression that we already expressed in this class. When you implement this 

thing, here what you are seeing is that, we have two robot manipulators and this is joint 1 

and this is joint 2. The A is tracking error in joint 1 and joint 2 using control law for 

sinusoid trajectory after query based learning and before query based learning and 

controller response; this is the controller response. 
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Controller response for joint 1 and joint 2 corresponding to figure; this is the controller 

response; this is tracking error, and this is u; this curve gives you u. You see that, this 

dotted line what you are seeing here this is the control action before query based learning, 

we implemented. You implement this network inversion control before query based 

learning. This is, you see that controller is fluctuating but, s1 is you did the query based 

learning, then the controller is smooth the solid line. Correspondingly, when the 

controller was not smooth the error was very large but, when controller becomes smooth 

the error is almost very negligible in joint 1. Similar is the case with joint 2, you see that 

the controller is fluctuating here, quite very much fluctuating before query based learning 

and that means, when a not properly trained neural network is used, then we have a large 

error. But, when the query based learning was completed, again implement the controller. 

Do you see that the torque is very smooth here and the error is very small? 
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Similar thing here that in this case, that is the previous one is the sinusoid trajectory, this 

is exponential trajectory. For the exponential trajectory you see that, this fluctuation is  

before query based learning and fluctuation died down after I am implementing the 

controller after the query based learning, so that is the solid line, that is quite smooth. 

Corresponding to solid line, this solid curve here implies the error in joint 1 tracking is 

almost negligible not there; whereas, without query based learning the error is there 

always existing. Similarly, joint 2, with query based learning this is a solid line almost no 

error and error is there before query based learning, and you can see this fluctuation here 

that indicates that controller control actuation is not smooth. 
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In summary, indirect adaptive control for a robot manipulator we discussed today. This 

indirect adaptive control has two different architectures we proposed, one is indirect 

adaptive control using forward-inverse modeling approach, another is indirect adaptive 

control using network inversion, we say these are indirect adaptive control because, we 

are utilizing the neural emulator the forward modeling that is the forward dynamic model, 

we trained a neural network that captures the forward dynamics of the robot manipulator 

and utilize that neural network to tune our controller or to update our controller. Both the 

control schemes are shown to be Lyapunov stable, simulation results are provided to 

validate efficacy of the proposed schemes. We saw that, how our tracking is almost 

perfect when we have the neural emulator that is perfectly trained using query based 

learning and then we implement this controller, the result is fantastic. 
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Those who want to pursue further work in this the last three classes their kind of one in a 

box type of course, you can follow these references that we have given here for further 

work. First one is our own paper that is published in 2003 in Computers and Electrical 

Engineering Journal, second one is again our paper published in IEEE Transaction Neural 

Network in 1996 and this is volume 7, number 6. The third paper is again our paper is 

IEEE proceedings control theory application in 1995, volume 142 and number 6. This is 

another paper that is called Inverting Feed-forward Neural Networks using linear and 

nonlinear programming by Bau-Lian Lu and H.Kita Nishikawa Y this is in IEEE 

Transaction Neural Network volume 10, issue 6 and another one is a query based 

learning for aerospace applications that is there in IEEE Transaction and Neural 

Networks volume 14, issue 6, November 2003. So thus, that should give you a good 

exposure on how to design indirect adaptive control schemes for robot manipulators in 

particular and in general for nonlinear systems. 

Thank you. 


