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Module — 3 Lecture — 4
Indirect Adaptive Control of a Robot Manipulator

This is a lecture on indirect adaptive control of a robot manipulator. This is the fourth
lecture in this module on neural control. In the previous two classes, we covered the
background that is necessary to understand this lecture. First we talked about network
inversion. Given a network that has learnt a dynamic model, can I use that network to
compute what is input given for a target output? Next we talked about the problem of
having a model of a robot manipulator. The reason is, robot manipulator is an open-loop
unstable system; data generation can be only done using a PD controller.
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eTopics to be Covered

» System dentification using a fead-forward
natwork

» Neural network training and Data-insufficiency

= Query based learning
= Forward-inversa modaling

= A natwork inversion approach

» Simulation results

Given those two backgrounds we will have the topics that will be covering: System
identification using a feed-forward network, we have already discussed this; we will be
overviewing neural network training and data-insufficiency, we have discussed earlier

and query based learning, these are all from previous classes. Today, we will be talking



about two different indirect adaptive control schemes. One is based on forward-inverse
modeling and second is network inversion approach and finally, we will show these

methods how they can be validated through simulation.
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e.ﬁ Robot Mampulator. The dynamic model

The vector equation of motion of N-link rigid
manipulator @ of the form

Vg il Clg.ghg + Gly
where
s v = N x 1 vactor of joint actualor lorques
= g =N x 1 vector of joint positions
= M(gq) = N x N Inertial matrix

w (.4 )4 = Torque arising from Centrifugal and
Coriolis forces

» G(q) = Gravitational torque vector

Robot manipulator, we have been talking about this model since last two classes. This is

vector equation of motion of N-link rigid manipulator; this is the state space model.
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‘!Tha atate madel

= State vector * r(L) = glk)" 4k} order s 2N
x1

» Control vector : u(k) = r(k) orderis N x 1
= Desired trajectory

k1) = gtk + 1) gk + 1)




We have 2N states, with N angular position and angular velocity vector then, the control
vector is that joint torque actuated which is N dimensional and it is desired that robot

manipulators should follow this desired trajectory.
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We have already talked about given generic system of this particular form. Where this is
our output state, you can easily see for robot manipulator n is 2N and u is...the dimension
is P; this is n state system, small n, for robot manipulator it will be 2 into capital N. We
collect the data online from a robot manipulator by taking the links; the manipulator link
around desired trajectory. We get various data from the robot manipulator. We use those
data to model the robot manipulator in this particular form which is x (k plus 1) is f(x(k),
u(k)). You can easily see that, this radial basis function network that has n plus p, input
X1 t0 Xp, U1 to up and the outputs are X; to X, at sampling instant k plus 1, input are at
sampling instant at k. These are the values taken from actual plant, these are the control
action actuated and you get the output of the radial basis function network. If it is trained
properly, then, it can mimic the robot dynamic behavior. Last class also we talked about
dimensionally insufficient data which means, the robot manipulator is an open-loop

unstable system.
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We said that if this is my plant, this is my robot manipulator then, I use a PD controller
here and | put some dither signal and here is your command signal and this is your
sensors. The output of robot manipulator if we actuate with joints, we observe what are
the link angular positions vector and angular velocity vector. They are fed back at the
command signal and command signal is normally x - desired, the desired trajectory that
link should follow, you have this PD controller. PD output we add this dither signal just
to make sure that, the data that are being collected that only spread over n dimension
rather n plus, actually 2n plus p, 2n plus p is also here n. Actually, given the state space
model, we talked about n plus p, n is for x, p is for u. Input-output dimension is 2n plus p
because, your number of input is n plus p and that is when you have a network. If | have a
network that has modeled this robot manipulator then, you have n plus P input where, n is
capital 2N, n is capital 2N and P is also N. So that is 3N number of input, number of
output is 2N, 2 capital N. So, the total input- output dimension is 5N; the objective is to
collect data in 5N dimension. To be able to do that is very difficult job because, we do
not have a method by which we can independently give input signal to the plant or to the

robot manipulator.

The input actuation cannot be made state independent because we are using a PD

controller. If I do not give dither signal, I am simply collecting data in n dimension. This



n is actually 2N and if | add dither signal the maximum dimensionality into which the
data will span is 2N plus N is 3N. This is the problem of dimensionally insufficient data.
What is a neural network? Neural network means, we are simply fitting the input data
from input to output; it is simply a data mapping. How well data are generated? This
point we discussed in the last class and that is why we proposed a query based learning
algorithm.
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Figure 2. Sehama for quary basad laarning

In query based learning algorithm what we proposed that after the way we generated a
data here, we generated data like this and then we provided those data to the radial basis
function network to emulate an actual robot manipulator. So that first iteration robot

emulator or neural emulator is placed in parallel to the robot manipulator.

What this query based learning algorithm has to do is that; this neural emulator will give
new learning trajectories. Along each learning trajectory, through neural emulator, the
query through network inversion will be asked. What would be the input for the desired
target point defined by learning trajectory? Through network inversion we compute what
should be the tau, we actuate that to the actual physical plant, and if we see the response
of the physical plant in the next sampling instant is far away from the actual value of that
is set as according to the learning trajectory. Then we accept that as a new example



because, in that zone the neural emulator does not have proper information. The basic
motivation here is that, if | have a neural emulator that has modeled robot manipulator.
Kindly, hear very attentively this particular statement, what | am trying to say is that, if
this neural emulator or this model of a robot manipulator, if it has actually trained
properly to capture the dynamic behavior of the robot manipulator, it is not sufficient, to
simply ask this question given a desired sequence of desired input. If the neural emulator
is able to follow the behavior of robot manipulator then, this is a proper emulator; now
we are going a step beyond. Here, what we are saying the first step is that, neural
emulator should follow the behavior of robot manipulator. What it meant is, given a
sequence of control actuation to both the robot manipulators as well as neural emulator,
the response of neural emulator and robot manipulator should match, this is standard
practice. But, we are introducing a second constraint to say that, the neural emulator

actually is emulating robot manipulator properly.

Second point is that, we ask this question to neural emulator. Given a target point, what
should be the control input? We give that control input to the actual robot manipulator
and we see if their manipulator goes to the target point. If that is the case then we would
say that, the neural emulator is properly mimicking the robot manipulators. In this case,
using network inversion and neural emulator predict the control input for a given target
trajectory. Control input sequence | would say. This is second point that we are imposing
to say that a robot manipulator model in using neural network, how that can be robust?
Not only should it be able to predict the target point, it should also predict the target input
because, to this robot manipulator given tau it produces g g dot. So, one way we can say
that, if this is a neural emulator give the same g q dot to the neural emulator and tell him
it should predict what tau is. The other way is that gives the tau to the neural emulator
and predicts g g dot and we have to do both; if neural emulators satisfy both conditions
then, we say this is an exact replica of the robot manipulator. Of course, we cannot say
exact replica but, in some sense it has much more robust behavior than taking only this

condition alone. We have already discussed these things.
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The control objective is given a desired state trajectory vector that is output activation of

the radial basis function network model which is x d (k plus 1) and actual system state
vector x (K): design a control law so that neural model g is Lyapunov stable. What we are
trying to say is that, this is our robot manipulator. This is our neural emulator; neural
emulator that mimics the robot manipulator behavior. Now, | utilize this neural
manipulator and design a controller here. This controller will actuate a control signal tau
to the robot manipulator and robot follows certain trajectory. In the state space up angular
position and angular velocity, this is called in literature which we say indirect adaptive
control, this is indirect adaptive control. What you are seeing here is that, what is
meaning of Lyapunov stable is that, if | represent this NE by a function g because, the
normal stability study is that, I can put instead of robot manipulator this NE. There neural
emulator and neural emulator in the feedback loop, they should be Lyapunov stable that
is the control objective.
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Here, the first type of indirect adaptive control scheme that we will be discussing today.
This is called forward-inverse modeling. In this forward-inverse modeling what you are
seeing here is that, this is the robot manipulator, this is again indirect adaptive control
you see. This is also indirect adaptive control but, the principle is forward-inverse

modeling. I will just explain forward-inverse modeling.

This is our robot manipulator which has a neural emulator that we have already discussed
a lot. This neural emulator has the capacity to exactly mimic the behavior of robot
manipulator not only in the terms what is of desired target but given the desired target
and desired input. In both ways this is an ideal neural emulator. This is our desired
trajectory q d, here is my neural controller. 1 have two-stage controller here; the neural
controller actuates the feed-forward task and the PD controller actuates a feedback torque
and together they are actuated to robot manipulator. The question now here is, given the q
d whatever the output of neural controller and PD controller output the same output is
given to the neural emulator which gives an output g hat and we take it, compare to the
desired trajectory and | get an error. | use a weight update algorithm to update the
weights of neural controller. The meaning of forward-inverse modeling is neural
emulator represents the forward dynamics of the robot manipulator. Now what we can

do, we extract from this neural emulator the information known as: Del x upon Del u,



which | will show you just now. This is very important information that we get from
neural emulator. We use that information which is necessary in our weight update rule to
compute which is w dot. We compute and update the weights of the neural controller
based on this w dot, and what is this neural network controller, this is again another radial
basis function network. We have two radial basis function network, one radial basis
function network represents neural emulator; another radial basis function network is the
neural controller. What we do not know in this radial basis function network. We fix the
centers in their place in specific domain because, we know that to this controller what
will be the various possible input that is q d the desired trajectories, actually to this neural
controller, we have 3 n inputs, n inputs from angular position, n input from angular
velocity, and capital N inputs from angular acceleration and then neural controller
predicts, what is the forward torque necessary for making the robot manipulator to
exactly follow the trajectory. Now, we will show you how we design a weight update rule
for this forward-inverse modeling such that, the controllers the total feedback control
system here is Lyapunov stable. See how we are doing it here, consider the Lyapunov

function to be half x tilde, transpose x tilde where X tilde is x d minus X hat.
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This x hat is response of the radial basis function network, which is here g hat. The time

derivative of the Lyapunov function can be derived as follows: V dot rate derivative is X



tilde transpose into x tilde dot and then we can write that x tilde transpose. Then, we can
write that: Del x upon Del u because, you see that this x tilde dot is x minus x hat dot.
That is, minus d x hat by d t so d x hat by d t can be written as: doe x upon doe u into doe
u upon doe W into doe W by dw by dt. That is, we are expanding that x as a function of u
the control input, u is a function of W and W is a function of time. Say if you go back
here this is the meaning of forward-inverse modeling that is given x hat here, this is a
function of u here. That is why, doe x upon doe u is computed from the neural emulator,
again the neural controller output is u. We can say the output is here is u, so doe x upon
doe u into doe u upon doe W that again can be computed from this neural controller into
W dot is, what is dx upon dt. | have to explain to you again what we are trying to

compute is dx upon dt.

To compute dx upon dt, which is x hat that is the rate change of the output of the neural
emulator can be written as, doe x upon doe u into... because this neural emulator has a
functional relation between g and u, again doe x upon doe u here it is, doe u upon doe W.
The neural controller is characterized by a weight vector w and this u output neural
controller is a function of this W, this is not.... because PD controller gains are fixed,
these really do not affect, this q hat what affects is the weights because, these are
changing neural controller. So, doe x upon doe u again doe u upon doe W, u is the output
of the neural controller, neural controller is characterized by the parameter W and the
input is qd which are all known. Naturally, doe u upon doe W it can be easily computed
from the neural controller into dw by dt. This is the weight update law, now we have to
find out what should be this dw by dt such that, the whole system is Lyapunov stable.
Meaning of that is that Lyapunov stable means, if | consider this to be a Lyapunov
function, the rate derivative of this function V dot has to be negative definite, if I can
prove that this is negative definite, then this is a stable controller. The objective is here |
have defined j to be this quantity, this is Jacobin, the objective is to select a weight of that
W dot such that, the derivative of the Lyapunov function remains negative semi-definite.
We will now represent two such weight update laws that are converging in the sense of
Lyapunov functions. We are selecting first what is W dot and this is my W dot the weight

update law. If | select this weight update law and put this weight update law in this



particular replace here, then what I get V dot is minus x tilde norm square, meaning this

quantity this particular quantity is either.
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If x tilde is not O, then it is positive; hence it is negative and if x tilde is 0, all the terms in
x tilde because this is a vector, if all the terms are 0 then only at that time it is O, which is
desired, x tilde finally should be 0. That is desired then, the system is stable. Thus, the
update law the previous law what we saw? What we saw is this stabilizes the control
system; the complete control system including the planned dynamics is stable, according
to this weight update law. Now, the weight update law however does not ensure the
boundedness of the weight because, you see that, we are updating this weight and there is
no way we are talking about boundedness of the weight. So that we will be doing now,
thus the update law is modified by adding the gradient of the cost function H as follows.

W dot earlier term was this one we have added another term.
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Where you have taken a gradient of a function H and this H is normally we select here,
you can check here, this is half W transpose tilde into W tilde. Taking this H to be this
particular function the, Del H upon Del W if you compute that, and where this particular
function that you are looking at is a function of W is defined by this quantity. If you take
that, add this term to this W dot, then again you take this new weight update law into the
Lyapunov function, then Lyapunov function again becomes x tilde norm square negative,
negative of x norm x tilde norm square implying again the system is stable. Again this
control law stabilizes the control system in the sense of Lyapunov. The system is
Lyapunov stable, finally this update law ensures convergence of tracking vector x tilde 0.
A new function is chosen such that, x transpose J this function is 0, which ensures the
time derivative of the Lyapunov function remains negative semi definite simultaneously,
by selecting H to be half W tilde transpose W tilde, we are intuitively providing a
damping to the weight that is increasing; this ensures the boundedness of the weight

vector W.
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Finally, summarize two weight update rules are derived which guarantees stability for
forward inverse modeling based indirect adaptive control. Weight update rule 1 was, W
dot is, how if we go back what was the problem? Originally the problem was that, we
place a neural controller whose weights are unknown, how do we update these weights
such that, the overall control system is stable and the perfect tracking is achieved at the
plant level. That is what we are doing first; we found out the weight update law for the
weights of the neural controller. Similarly, weight update law, second neural update law
we found out. This does not take into account of the boundedness of the weights, this
does take into account.
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Now, we will go to the second approach that is using network inversion, we have already
talked about network inversion. Now, the concept here is very simple | have a robot
manipulator, | have a neural emulator. Now, can | use this neural emulator as a whole to
construct my control law here that would stabilize the entire control system here? That is
the question. That is what | am trying to say is that, if | have a controller sitting here in
conjunction with the neural emulator can | say, given a desired trajectory here, next
desired state present and past states and past input or you can always also say here that q
d. Given a desired trajectory, can | say that | have a control law in conjunction with the
neural emulator in such a way that, finally my neural emulator output are always

following the desired trajectory and system is Lyapunov stable?
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This is the network inversion, control law using network inversion. What we are trying to
do is we are constructing a Lyapunov function which is half x tilde, transpose x tilde plus
u tilde transpose u tilde. We have introduced a new element or new term in the Lyapunov
function, where u tilde is u hat minus u. What is this u hat? If you go back you see that,
when | invert the network | get what should be the control input that will take my neural
emulator to the target vector. You know already that, there may be a situation where my
predicted control input may not take the robot manipulator to its actual target. Because of
the problem that we enumerated in the beginning that, actually neural emulator is that one
which not only predicts the target, also predicts the desired input. If that training is not
complete then obviously, the neural emulator will fail sometime to predict the control
input. Now, we have to find some method by which this prediction can be made properly.
With this introduction of this new term, we take the time derivative of the Lyapunov
function and then we see that if | differentiate this term, x tilde transpose x tilde dot and x
tilde dot can be written as: minus doe x upon doe u. That is why, the minus sign comes
into doe u by d t and so du by d t that is how is the first term. Second term is, u tilde
transpose into u dot. Where, we can write this term as minus x tilde transpose J plus D u
dot where, J is doe x upon doe u, and D is 1 upon x tilde norm square x tilde u tilde

transpose. Control law using network inversion; first of all, we present a theorem.
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If an arbitrary initial input activation u not is updated by this formula, this identity u(t) is
u not plus 0 to t dash u dot d t where, u dot is given by this expression then, x tilde
converges to 0 under the condition that, u dot exists along the convergence trajectory.
Substituting u dot in previous V dot, you get V dot is minus x tilde whole square that is,
the overall system will be Lyapunov stable. The iterative input activation update rule will
be because, this is continuous update, so iterative will be u(t) is u t minus 1 mu u dot t
minus 1. This is iterative actually because, t we have given in terms of time, maybe we
can put this is k, k, k where mu is a small constant representing the update rate. Where, u
dot is computed from this expression at the sampling instant k minus 1. We proposed two
different control indirect adaptive control schemes and we found out the control law and
weight update law. First case, we found out what should be the weight update law for the
controller; in second case we found out what is the control law and now we will show

that how this controller is effective.
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We selected a high speed robot manipulator, whose dynamics are given this way where in
this particular dynamic model C,; stands for cos g, minus q;. and S,; stands for sine g
minus g, this two-link manipulator and the parameters a;, as, a; and a, they are 0.15,
0.04, 0.03 and 0.025 kg meter square respectively.
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We have selected the same robot manipulator that we have been discussing in the last two

classes. The online data generation scheme for training the radial basis function network



is the same. A PD controller is used to generate the training data to find a neural model of
the robot arm. Data are collected as the robot arm is made to track various random “pick
and place” trajectories and sinusoid trajectories. While tracking random trajectories at
each sampling instant, various dither signals in the form of white noise, impulses, step
functions, ramp and parabolic type of functions are added to PD controller to increase the
spread of the training data in the input-output space. This is from; we shift the data from
n manifold to n plus p manifold. 3000 examples are collected while the sampling interval

is kept at 10 milliseconds.
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Then radial basis function network which has 6 inputs that is, two terms for joint inputs,
two terms for angular positions, two terms for angular velocity at sampling instant k.
When you give to the network, the network will predict what should be the actual value
of the angular position and angular velocity at k plus 1. The model incorporates 100
radial centers. Training of RBFN is carried out using 3000 examples for 10 numbers of
passes that means 30,000 iterations. After training is over the RMS error for a test data
set is found to be 0.003. The validation test of neural model thus learned is done by
finding input through recall process for a given test data. It is not simply because, when
you have the RMS error 0.003 then, you can easily predict the output. The radial basis

function network will effectively predict what should be the output given an input, but



what is the case. Given an output, can the same network predict the input? These results
we showed in the last class.
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This is a for a sinusoid trajectory when robot manipulator is tracking a sinusoid
trajectory, we asked a question to the neural emulator corresponding to the robot
manipulator. What is the input given the target output? That input is already given to the
robot manipulator; so what this result is all about is | can tell you again. This is my robot
manipulator and this is my neural emulator, this is my u | give to the robot manipulator
and | get g, | give that same q to the neural emulator and predict, what should be that u. If
this u hat matches this u, then this neural emulator is a good emulator of the robot
manipulator. 1 hope you understand very clearly; again | repeat what is the meaning of
this validation through inversion. Validation through inversion means, of course we have
trained this neural emulator by giving the training, set u and q to this. Obviously, if | give
u this will predict what q is but, given g can | predict the u? This is the question we
obtained. Both ways the neural emulator should do a perfect job and then it is a robust
identifier or robust model of the actual robot manipulator. What you are seeing is that, we
have already discussed in the last class that, before the query based learning that we
discussed today, also yesterday, that before query based learning the input prediction was

very bad. You see that these are lot of variation from this solid line, solid line is the actual



control input that is given to the robot arm for a desired sinusoid trajectory but, after
query based learning for the joint 1 you see that, the predicted one, the broken one and
the solid one, they are almost very close. Where the dotted one this is before query based
learning. After query based learning, the model has become very robust, not only the
neural emulator is predicting the target given input, it is also predicting what should be
the input given the target and the same thing also valid for the joint 2. You see that,
before query based learning again you see these dotted lines they were not good. They
were not similar to the actual the solid line that is the control signals sequence given to
the actual robot manipulator. But, after query based learning you see that, this broken line
almost follows the solid line. This is the advantage; this is the neural emulator, we have
now utilized for testing our controller. I will not discuss because, these things we have
already talked in the last class. We will now show the simulation result for the two

control algorithms that we derive today to repeat for your own understanding.
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We first of all propose a forward - inverse modeling. In forward - inverse modeling, this
is my robot manipulator, this is my neural controller. Neural controller is supposed to
actuate, you know a feed-forward torque such that, the q tracks q d the output of the
manipulator tracks q d. The neural controller is a radial basis function network whose W

is not known, now how do | update this W in such a manner that my q follows g d and



this is Lyapunov stable. For that, as you saw that today in this class, we derived a weight
update law called W dot and this W dot is computed by using two terms first term del doe
X upon doe u is computed from the neural emulator. Another term we computed this
term, doe u upon doe W from the neural controller itself using these two. We computed
what is W dot and this W dot in the first case this was: x tilde norm square upon J
transpose x tilde norm square into J transpose X tilde and the second rule that we saw we
added a gradient term of the weight, where H is half W transpose W. When we took this
value for H and we differentiated that, we found that this weight update rule is also
Lyapunov stable or gives us Lyapunov stability. Using these two rules, we did
simulation; this is forward-inverse modeling simulation. What you are seeing is that we
provide the robot manipulator the same trajectory for 50 times, we start here, what we

started with this neural controller. The weights are all initially randomly initialized.
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We did not know, now with this initial random weight, we used various algorithms first
are gradient descent. So, what we did is that, we simply updated the weight according to
the gradient descent and you see the over 50 trails the error in joint 1 position is this is
trial 1, this is the RMS error and slowly the RMS error reduced and it is here. But, when
we use the gradient descent but with weight update thrice per sampling interval then, you

see that error further decreased. Then the third one is the adaptive tuning. First we have



two update rules; the first type of update rule. You can easily see this is the upper one and
then you have the same adaptive tuning algorithm but, weight update thrice per sampling
interval, then you see that it is further improved. But, you see the amazing aspect of the
adaptive tuning that is the type 2. When you do the type 2, you see that, error is actually
almost 0 and independent of trial, it does not require any trial that is; instantaneously the
error goes to O point 000001. This is a very fantastic influence of this controller; the
controller that we talked is this type 2. You see, the type 2 controller here also the error is
on the x-axis means 0 point 000001. Here also, you see a joint 1 positive, the error is very
small and here also the error is very small; whereas, other schemes they have relatively

large errors.
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We compared, now we will take an example here. This is the sinusoid trajectory that is
being tracked by this robot manipulator, this is joint 1 angle. You can easily see in the
beginning there are some error and that error died down as time progressed and you can
easily see there are two, this is the tracking error, this is trajectory tracking, this is the
tracking error at joint 1, this solid line is using the new update rule; whereas, the dotted

one is using gradient descent.
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Similarly, here on joint 2 the tracking is very perfect; whereas, because you cannot even see
the two trajectories, the actual trajectory and the desired trajectory they are super
imposing perfectly that they appear to be the same trajectory, tracking is perfect.
Tracking error at joint 2, if we see in a very micro scale then you see that for gradient
descent the error is quite visible; whereas, this is almost O for the adaptive tuning that we
have done using Lyapunov stability theory. That is a simulation result of the first part; the
second part is a network inversion. A network inversion what we did is that, we have
already a neural network. We said why we should put another neural network there.
Instead we have neural network that has already identified the model of the robot
manipulator. We utilize that neural network to predict our control law such that, the
overall the system is Lyapunov stable. What should be the control input u dot here or the
u here? We say this is my u or tau. That will be a function of u hat that has been given
from the network inversion algorithm and J is the Jacobian that is computed from the

neural emulator that is Del x upon Del u.
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We derive this algorithm, my control algorithm is u (t), u is same as tau is u (t minus 1)
mu u do and where u dot is this expression, which can be computed very easily because,
these are simply norm square J is a Jacobian matrix computed from the neural emulator.
D is an expression that we already expressed in this class. When you implement this
thing, here what you are seeing is that, we have two robot manipulators and this is joint 1
and this is joint 2. The A is tracking error in joint 1 and joint 2 using control law for
sinusoid trajectory after query based learning and before query based learning and

controller response; this is the controller response.
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Controller response for joint 1 and joint 2 corresponding to figure; this is the controller
response; this is tracking error, and this is u; this curve gives you u. You see that, this
dotted line what you are seeing here this is the control action before query based learning,
we implemented. You implement this network inversion control before query based
learning. This is, you see that controller is fluctuating but, s; is you did the query based
learning, then the controller is smooth the solid line. Correspondingly, when the
controller was not smooth the error was very large but, when controller becomes smooth
the error is almost very negligible in joint 1. Similar is the case with joint 2, you see that
the controller is fluctuating here, quite very much fluctuating before query based learning
and that means, when a not properly trained neural network is used, then we have a large
error. But, when the query based learning was completed, again implement the controller.

Do you see that the torque is very smooth here and the error is very small?
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Similar thing here that in this case, that is the previous one is the sinusoid trajectory, this

is exponential trajectory. For the exponential trajectory you see that, this fluctuation is

before query based learning and fluctuation died down after I am implementing the

controller after the query based learning, so that is the solid line, that is quite smooth.

Corresponding to solid line, this solid curve here implies the error in joint 1 tracking is

almost negligible not there; whereas, without query based learning the error is there

always existing. Similarly, joint 2, with query based learning this is a solid line almost no

error and error is there before query based learning, and you can see this fluctuation here

that indicates that controller control actuation is not smooth.
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Summary
In this lecture following topics have been covered
= Indirect adaptive control for a robot manipulator

» Indirect adaptive control using forward-inverse
madeling approach

= Indiract adaptive control using network Nvarsion

= Both the control schemes are shown lo be
Lyapunov stable

» Simulation results ane provided to validate
efficacy of the proposed schemes

In summary, indirect adaptive control for a robot manipulator we discussed today. This
indirect adaptive control has two different architectures we proposed, one is indirect
adaptive control using forward-inverse modeling approach, another is indirect adaptive
control using network inversion, we say these are indirect adaptive control because, we
are utilizing the neural emulator the forward modeling that is the forward dynamic model,
we trained a neural network that captures the forward dynamics of the robot manipulator
and utilize that neural network to tune our controller or to update our controller. Both the
control schemes are shown to be Lyapunov stable, simulation results are provided to
validate efficacy of the proposed schemes. We saw that, how our tracking is almost
perfect when we have the neural emulator that is perfectly trained using query based

learning and then we implement this controller, the result is fantastic.
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Those who want to pursue further work in this the last three classes their kind of one in a
box type of course, you can follow these references that we have given here for further
work. First one is our own paper that is published in 2003 in Computers and Electrical
Engineering Journal, second one is again our paper published in IEEE Transaction Neural
Network in 1996 and this is volume 7, number 6. The third paper is again our paper is
IEEE proceedings control theory application in 1995, volume 142 and number 6. This is
another paper that is called Inverting Feed-forward Neural Networks using linear and
nonlinear programming by Bau-Lian Lu and H.Kita Nishikawa Y this is in IEEE
Transaction Neural Network volume 10, issue 6 and another one is a query based
learning for aerospace applications that is there in IEEE Transaction and Neural
Networks volume 14, issue 6, November 2003. So thus, that should give you a good
exposure on how to design indirect adaptive control schemes for robot manipulators in

particular and in general for nonlinear systems.

Thank you.



