
Intelligent Systems and Control

Prof. Laxmidhar Behera

Department of Electrical Engineering

Indian Institute of Technology, Kanpur

Module – 3 Lecture – 4

Indirect Adaptive Control of a Robot Manipulator

This is a lecture on indirect adaptive control of a robot manipulator. This is the fourth

lecture in this module on neural control. In the previous two classes, we covered the

background that is necessary to understand this lecture. First we talked about network

inversion. Given a network that has learnt a dynamic model, can I use that network to

compute what is input given for a target output? Next we talked about the problem of

having a model of a robot manipulator. The reason is, robot manipulator is an open-loop

unstable system; data generation can be only done using a PD controller.

 (Refer Slide Time: 01:35)

Given those two backgrounds we will have the topics that will be covering: System

identification using a feed-forward network, we have already discussed this; we will be

overviewing neural network training and data-insufficiency, we have discussed earlier

and query based learning, these are all from previous classes. Today, we will be talking

about two different indirect adaptive control schemes. One is based on forward-inverse

modeling and second is network inversion approach and finally, we will show these

methods how they can be validated through simulation.

(Refer Slide Time: 02: 25)

Robot manipulator, we have been talking about this model since last two classes. This is

vector equation of motion of N-link rigid manipulator; this is the state space model.

(Refer Slide Time: 02: 41)

We have 2N states, with N angular position and angular velocity vector then, the control

vector is that joint torque actuated which is N dimensional and it is desired that robot

manipulators should follow this desired trajectory.

(Refer Slide Time: 03: 01)

We have already talked about given generic system of this particular form. Where this is

our output state, you can easily see for robot manipulator n is 2N and u is…the dimension

is P; this is n state system, small n, for robot manipulator it will be 2 into capital N. We

collect the data online from a robot manipulator by taking the links; the manipulator link

around desired trajectory. We get various data from the robot manipulator. We use those

data to model the robot manipulator in this particular form which is x (k plus 1) is f(x(k),

u(k)). You can easily see that, this radial basis function network that has n plus p, input

x1 to xn, u1 to up and the outputs are x1 to xn at sampling instant k plus 1, input are at

sampling instant at k. These are the values taken from actual plant, these are the control

action actuated and you get the output of the radial basis function network. If it is trained

properly, then, it can mimic the robot dynamic behavior. Last class also we talked about

dimensionally insufficient data which means, the robot manipulator is an open-loop

unstable system.

(Refer Slide Time: 05: 11)

We said that if this is my plant, this is my robot manipulator then, I use a PD controller

here and I put some dither signal and here is your command signal and this is your

sensors. The output of robot manipulator if we actuate with joints, we observe what are

the link angular positions vector and angular velocity vector. They are fed back at the

command signal and command signal is normally x - desired, the desired trajectory that

link should follow, you have this PD controller. PD output we add this dither signal just

to make sure that, the data that are being collected that only spread over n dimension

rather n plus, actually 2n plus p, 2n plus p is also here n. Actually, given the state space

model, we talked about n plus p, n is for x, p is for u. Input-output dimension is 2n plus p

because, your number of input is n plus p and that is when you have a network. If I have a

network that has modeled this robot manipulator then, you have n plus P input where, n is

capital 2N, n is capital 2N and P is also N. So that is 3N number of input, number of

output is 2N, 2 capital N. So, the total input- output dimension is 5N; the objective is to

collect data in 5N dimension. To be able to do that is very difficult job because, we do

not have a method by which we can independently give input signal to the plant or to the

robot manipulator.

The input actuation cannot be made state independent because we are using a PD

controller. If I do not give dither signal, I am simply collecting data in n dimension. This

n is actually 2N and if I add dither signal the maximum dimensionality into which the

data will span is 2N plus N is 3N. This is the problem of dimensionally insufficient data.

What is a neural network? Neural network means, we are simply fitting the input data

from input to output; it is simply a data mapping. How well data are generated? This

point we discussed in the last class and that is why we proposed a query based learning

algorithm.

(Refer Slide Time: 09:38)

In query based learning algorithm what we proposed that after the way we generated a

data here, we generated data like this and then we provided those data to the radial basis

function network to emulate an actual robot manipulator. So that first iteration robot

emulator or neural emulator is placed in parallel to the robot manipulator.

What this query based learning algorithm has to do is that; this neural emulator will give

new learning trajectories. Along each learning trajectory, through neural emulator, the

query through network inversion will be asked. What would be the input for the desired

target point defined by learning trajectory? Through network inversion we compute what

should be the tau, we actuate that to the actual physical plant, and if we see the response

of the physical plant in the next sampling instant is far away from the actual value of that

is set as according to the learning trajectory. Then we accept that as a new example

because, in that zone the neural emulator does not have proper information. The basic

motivation here is that, if I have a neural emulator that has modeled robot manipulator.

Kindly, hear very attentively this particular statement, what I am trying to say is that, if

this neural emulator or this model of a robot manipulator, if it has actually trained

properly to capture the dynamic behavior of the robot manipulator, it is not sufficient, to

simply ask this question given a desired sequence of desired input. If the neural emulator

is able to follow the behavior of robot manipulator then, this is a proper emulator; now

we are going a step beyond. Here, what we are saying the first step is that, neural

emulator should follow the behavior of robot manipulator. What it meant is, given a

sequence of control actuation to both the robot manipulators as well as neural emulator,

the response of neural emulator and robot manipulator should match, this is standard

practice. But, we are introducing a second constraint to say that, the neural emulator

actually is emulating robot manipulator properly.

Second point is that, we ask this question to neural emulator. Given a target point, what

should be the control input? We give that control input to the actual robot manipulator

and we see if their manipulator goes to the target point. If that is the case then we would

say that, the neural emulator is properly mimicking the robot manipulators. In this case,

using network inversion and neural emulator predict the control input for a given target

trajectory. Control input sequence I would say. This is second point that we are imposing

to say that a robot manipulator model in using neural network, how that can be robust?

Not only should it be able to predict the target point, it should also predict the target input

because, to this robot manipulator given tau it produces q q dot. So, one way we can say

that, if this is a neural emulator give the same q q dot to the neural emulator and tell him

it should predict what tau is. The other way is that gives the tau to the neural emulator

and predicts q q dot and we have to do both; if neural emulators satisfy both conditions

then, we say this is an exact replica of the robot manipulator. Of course, we cannot say

exact replica but, in some sense it has much more robust behavior than taking only this

condition alone. We have already discussed these things.

 (Refer Slide Time: 15:37)

The control objective is given a desired state trajectory vector that is output activation of

the radial basis function network model which is x d (k plus 1) and actual system state

vector x (k): design a control law so that neural model g is Lyapunov stable. What we are

trying to say is that, this is our robot manipulator. This is our neural emulator; neural

emulator that mimics the robot manipulator behavior. Now, I utilize this neural

manipulator and design a controller here. This controller will actuate a control signal tau

to the robot manipulator and robot follows certain trajectory. In the state space up angular

position and angular velocity, this is called in literature which we say indirect adaptive

control, this is indirect adaptive control. What you are seeing here is that, what is

meaning of Lyapunov stable is that, if I represent this NE by a function g because, the

normal stability study is that, I can put instead of robot manipulator this NE. There neural

emulator and neural emulator in the feedback loop, they should be Lyapunov stable that

is the control objective.

 (Refer Slide Time: 17:54)

Here, the first type of indirect adaptive control scheme that we will be discussing today.

This is called forward-inverse modeling. In this forward-inverse modeling what you are

seeing here is that, this is the robot manipulator, this is again indirect adaptive control

you see. This is also indirect adaptive control but, the principle is forward-inverse

modeling. I will just explain forward-inverse modeling.

This is our robot manipulator which has a neural emulator that we have already discussed

a lot. This neural emulator has the capacity to exactly mimic the behavior of robot

manipulator not only in the terms what is of desired target but given the desired target

and desired input. In both ways this is an ideal neural emulator. This is our desired

trajectory q d, here is my neural controller. I have two-stage controller here; the neural

controller actuates the feed-forward task and the PD controller actuates a feedback torque

and together they are actuated to robot manipulator. The question now here is, given the q

d whatever the output of neural controller and PD controller output the same output is

given to the neural emulator which gives an output q hat and we take it, compare to the

desired trajectory and I get an error. I use a weight update algorithm to update the

weights of neural controller. The meaning of forward-inverse modeling is neural

emulator represents the forward dynamics of the robot manipulator. Now what we can

do, we extract from this neural emulator the information known as: Del x upon Del u,

which I will show you just now. This is very important information that we get from

neural emulator. We use that information which is necessary in our weight update rule to

compute which is w dot. We compute and update the weights of the neural controller

based on this w dot, and what is this neural network controller, this is again another radial

basis function network. We have two radial basis function network, one radial basis

function network represents neural emulator; another radial basis function network is the

neural controller. What we do not know in this radial basis function network. We fix the

centers in their place in specific domain because, we know that to this controller what

will be the various possible input that is q d the desired trajectories, actually to this neural

controller, we have 3 n inputs, n inputs from angular position, n input from angular

velocity, and capital N inputs from angular acceleration and then neural controller

predicts, what is the forward torque necessary for making the robot manipulator to

exactly follow the trajectory. Now, we will show you how we design a weight update rule

for this forward-inverse modeling such that, the controllers the total feedback control

system here is Lyapunov stable. See how we are doing it here, consider the Lyapunov

function to be half x tilde, transpose x tilde where x tilde is x d minus x hat.

(Refer Slide Time: 22:48)

This x hat is response of the radial basis function network, which is here q hat. The time

derivative of the Lyapunov function can be derived as follows: V dot rate derivative is x

tilde transpose into x tilde dot and then we can write that x tilde transpose. Then, we can

write that: Del x upon Del u because, you see that this x tilde dot is x minus x hat dot.

That is, minus d x hat by d t so d x hat by d t can be written as: doe x upon doe u into doe

u upon doe W into doe W by dw by dt. That is, we are expanding that x as a function of u

the control input, u is a function of W and W is a function of time. Say if you go back

here this is the meaning of forward-inverse modeling that is given x hat here, this is a

function of u here. That is why, doe x upon doe u is computed from the neural emulator,

again the neural controller output is u. We can say the output is here is u, so doe x upon

doe u into doe u upon doe W that again can be computed from this neural controller into

W dot is, what is dx upon dt. I have to explain to you again what we are trying to

compute is dx upon dt.

To compute dx upon dt, which is x hat that is the rate change of the output of the neural

emulator can be written as, doe x upon doe u into… because this neural emulator has a

functional relation between q and u, again doe x upon doe u here it is, doe u upon doe W.

The neural controller is characterized by a weight vector w and this u output neural

controller is a function of this W, this is not…. because PD controller gains are fixed,

these really do not affect, this q hat what affects is the weights because, these are

changing neural controller. So, doe x upon doe u again doe u upon doe W, u is the output

of the neural controller, neural controller is characterized by the parameter W and the

input is qd which are all known. Naturally, doe u upon doe W it can be easily computed

from the neural controller into dw by dt. This is the weight update law, now we have to

find out what should be this dw by dt such that, the whole system is Lyapunov stable.

Meaning of that is that Lyapunov stable means, if I consider this to be a Lyapunov

function, the rate derivative of this function V dot has to be negative definite, if I can

prove that this is negative definite, then this is a stable controller. The objective is here I

have defined j to be this quantity, this is Jacobin, the objective is to select a weight of that

W dot such that, the derivative of the Lyapunov function remains negative semi-definite.

We will now represent two such weight update laws that are converging in the sense of

Lyapunov functions. We are selecting first what is W dot and this is my W dot the weight

update law. If I select this weight update law and put this weight update law in this

particular replace here, then what I get V dot is minus x tilde norm square, meaning this

quantity this particular quantity is either.

 (Refer Slide Time: 28:15)

If x tilde is not 0, then it is positive; hence it is negative and if x tilde is 0, all the terms in

x tilde because this is a vector, if all the terms are 0 then only at that time it is 0, which is

desired, x tilde finally should be 0. That is desired then, the system is stable. Thus, the

update law the previous law what we saw? What we saw is this stabilizes the control

system; the complete control system including the planned dynamics is stable, according

to this weight update law. Now, the weight update law however does not ensure the

boundedness of the weight because, you see that, we are updating this weight and there is

no way we are talking about boundedness of the weight. So that we will be doing now,

thus the update law is modified by adding the gradient of the cost function H as follows.

W dot earlier term was this one we have added another term.

(Refer Slide Time: 29:44)

Where you have taken a gradient of a function H and this H is normally we select here,

you can check here, this is half W transpose tilde into W tilde. Taking this H to be this

particular function the, Del H upon Del W if you compute that, and where this particular

function that you are looking at is a function of W is defined by this quantity. If you take

that, add this term to this W dot, then again you take this new weight update law into the

Lyapunov function, then Lyapunov function again becomes x tilde norm square negative,

negative of x norm x tilde norm square implying again the system is stable. Again this

control law stabilizes the control system in the sense of Lyapunov. The system is

Lyapunov stable, finally this update law ensures convergence of tracking vector x tilde 0.

A new function is chosen such that, x transpose J this function is 0, which ensures the

time derivative of the Lyapunov function remains negative semi definite simultaneously,

by selecting H to be half W tilde transpose W tilde, we are intuitively providing a

damping to the weight that is increasing; this ensures the boundedness of the weight

vector W.

(Refer Slide Time: 32:02)

Finally, summarize two weight update rules are derived which guarantees stability for

forward inverse modeling based indirect adaptive control. Weight update rule 1 was, W

dot is, how if we go back what was the problem? Originally the problem was that, we

place a neural controller whose weights are unknown, how do we update these weights

such that, the overall control system is stable and the perfect tracking is achieved at the

plant level. That is what we are doing first; we found out the weight update law for the

weights of the neural controller. Similarly, weight update law, second neural update law

we found out. This does not take into account of the boundedness of the weights, this

does take into account.

(Refer Slide Time: 33:06)

Now, we will go to the second approach that is using network inversion, we have already

talked about network inversion. Now, the concept here is very simple I have a robot

manipulator, I have a neural emulator. Now, can I use this neural emulator as a whole to

construct my control law here that would stabilize the entire control system here? That is

the question. That is what I am trying to say is that, if I have a controller sitting here in

conjunction with the neural emulator can I say, given a desired trajectory here, next

desired state present and past states and past input or you can always also say here that q

d. Given a desired trajectory, can I say that I have a control law in conjunction with the

neural emulator in such a way that, finally my neural emulator output are always

following the desired trajectory and system is Lyapunov stable?

(Refer Slide Time: 34: 25)

This is the network inversion, control law using network inversion. What we are trying to

do is we are constructing a Lyapunov function which is half x tilde, transpose x tilde plus

u tilde transpose u tilde. We have introduced a new element or new term in the Lyapunov

function, where u tilde is u hat minus u. What is this u hat? If you go back you see that,

when I invert the network I get what should be the control input that will take my neural

emulator to the target vector. You know already that, there may be a situation where my

predicted control input may not take the robot manipulator to its actual target. Because of

the problem that we enumerated in the beginning that, actually neural emulator is that one

which not only predicts the target, also predicts the desired input. If that training is not

complete then obviously, the neural emulator will fail sometime to predict the control

input. Now, we have to find some method by which this prediction can be made properly.

With this introduction of this new term, we take the time derivative of the Lyapunov

function and then we see that if I differentiate this term, x tilde transpose x tilde dot and x

tilde dot can be written as: minus doe x upon doe u. That is why, the minus sign comes

into doe u by d t and so du by d t that is how is the first term. Second term is, u tilde

transpose into u dot. Where, we can write this term as minus x tilde transpose J plus D u

dot where, J is doe x upon doe u, and D is 1 upon x tilde norm square x tilde u tilde

transpose. Control law using network inversion; first of all, we present a theorem.

(Refer Slide Time: 36: 59)

If an arbitrary initial input activation u not is updated by this formula, this identity u(t) is

u not plus 0 to t dash u dot d t where, u dot is given by this expression then, x tilde

converges to 0 under the condition that, u dot exists along the convergence trajectory.

Substituting u dot in previous V dot, you get V dot is minus x tilde whole square that is,

the overall system will be Lyapunov stable. The iterative input activation update rule will

be because, this is continuous update, so iterative will be u(t) is u t minus 1 mu u dot t

minus 1. This is iterative actually because, t we have given in terms of time, maybe we

can put this is k, k, k where mu is a small constant representing the update rate. Where, u

dot is computed from this expression at the sampling instant k minus 1. We proposed two

different control indirect adaptive control schemes and we found out the control law and

weight update law. First case, we found out what should be the weight update law for the

controller; in second case we found out what is the control law and now we will show

that how this controller is effective.

(Refer Slide Time: 38:48)

We selected a high speed robot manipulator, whose dynamics are given this way where in

this particular dynamic model C21 stands for cos q2 minus q1, and S21 stands for sine q2

minus q1 this two-link manipulator and the parameters a1, a3, a4 and a2 they are 0.15,

0.04, 0.03 and 0.025 kg meter square respectively.

(Refer Slide Time: 39: 42)

We have selected the same robot manipulator that we have been discussing in the last two

classes. The online data generation scheme for training the radial basis function network

is the same. A PD controller is used to generate the training data to find a neural model of

the robot arm. Data are collected as the robot arm is made to track various random “pick

and place” trajectories and sinusoid trajectories. While tracking random trajectories at

each sampling instant, various dither signals in the form of white noise, impulses, step

functions, ramp and parabolic type of functions are added to PD controller to increase the

spread of the training data in the input-output space. This is from; we shift the data from

n manifold to n plus p manifold. 3000 examples are collected while the sampling interval

is kept at 10 milliseconds.

(Refer Slide Time: 40:38)

Then radial basis function network which has 6 inputs that is, two terms for joint inputs,

two terms for angular positions, two terms for angular velocity at sampling instant k.

When you give to the network, the network will predict what should be the actual value

of the angular position and angular velocity at k plus 1. The model incorporates 100

radial centers. Training of RBFN is carried out using 3000 examples for 10 numbers of

passes that means 30,000 iterations. After training is over the RMS error for a test data

set is found to be 0.003. The validation test of neural model thus learned is done by

finding input through recall process for a given test data. It is not simply because, when

you have the RMS error 0.003 then, you can easily predict the output. The radial basis

function network will effectively predict what should be the output given an input, but

what is the case. Given an output, can the same network predict the input? These results

we showed in the last class.

(Refer Slide Time: 42: 06)

This is a for a sinusoid trajectory when robot manipulator is tracking a sinusoid

trajectory, we asked a question to the neural emulator corresponding to the robot

manipulator. What is the input given the target output? That input is already given to the

robot manipulator; so what this result is all about is I can tell you again. This is my robot

manipulator and this is my neural emulator, this is my u I give to the robot manipulator

and I get q, I give that same q to the neural emulator and predict, what should be that u. If

this u hat matches this u, then this neural emulator is a good emulator of the robot

manipulator. I hope you understand very clearly; again I repeat what is the meaning of

this validation through inversion. Validation through inversion means, of course we have

trained this neural emulator by giving the training, set u and q to this. Obviously, if I give

u this will predict what q is but, given q can I predict the u? This is the question we

obtained. Both ways the neural emulator should do a perfect job and then it is a robust

identifier or robust model of the actual robot manipulator. What you are seeing is that, we

have already discussed in the last class that, before the query based learning that we

discussed today, also yesterday, that before query based learning the input prediction was

very bad. You see that these are lot of variation from this solid line, solid line is the actual

control input that is given to the robot arm for a desired sinusoid trajectory but, after

query based learning for the joint 1 you see that, the predicted one, the broken one and

the solid one, they are almost very close. Where the dotted one this is before query based

learning. After query based learning, the model has become very robust, not only the

neural emulator is predicting the target given input, it is also predicting what should be

the input given the target and the same thing also valid for the joint 2. You see that,

before query based learning again you see these dotted lines they were not good. They

were not similar to the actual the solid line that is the control signals sequence given to

the actual robot manipulator. But, after query based learning you see that, this broken line

almost follows the solid line. This is the advantage; this is the neural emulator, we have

now utilized for testing our controller. I will not discuss because, these things we have

already talked in the last class. We will now show the simulation result for the two

control algorithms that we derive today to repeat for your own understanding.

(Refer Slide Time: 45:32)

We first of all propose a forward - inverse modeling. In forward - inverse modeling, this

is my robot manipulator, this is my neural controller. Neural controller is supposed to

actuate, you know a feed-forward torque such that, the q tracks q d the output of the

manipulator tracks q d. The neural controller is a radial basis function network whose W

is not known, now how do I update this W in such a manner that my q follows q d and

this is Lyapunov stable. For that, as you saw that today in this class, we derived a weight

update law called W dot and this W dot is computed by using two terms first term del doe

x upon doe u is computed from the neural emulator. Another term we computed this

term, doe u upon doe W from the neural controller itself using these two. We computed

what is W dot and this W dot in the first case this was: x tilde norm square upon J

transpose x tilde norm square into J transpose x tilde and the second rule that we saw we

added a gradient term of the weight, where H is half W transpose W. When we took this

value for H and we differentiated that, we found that this weight update rule is also

Lyapunov stable or gives us Lyapunov stability. Using these two rules, we did

simulation; this is forward-inverse modeling simulation. What you are seeing is that we

provide the robot manipulator the same trajectory for 50 times, we start here, what we

started with this neural controller. The weights are all initially randomly initialized.

(Refer Slide Time: 48:21)

We did not know, now with this initial random weight, we used various algorithms first

are gradient descent. So, what we did is that, we simply updated the weight according to

the gradient descent and you see the over 50 trails the error in joint 1 position is this is

trial 1, this is the RMS error and slowly the RMS error reduced and it is here. But, when

we use the gradient descent but with weight update thrice per sampling interval then, you

see that error further decreased. Then the third one is the adaptive tuning. First we have

two update rules; the first type of update rule. You can easily see this is the upper one and

then you have the same adaptive tuning algorithm but, weight update thrice per sampling

interval, then you see that it is further improved. But, you see the amazing aspect of the

adaptive tuning that is the type 2. When you do the type 2, you see that, error is actually

almost 0 and independent of trial, it does not require any trial that is; instantaneously the

error goes to 0 point 000001. This is a very fantastic influence of this controller; the

controller that we talked is this type 2. You see, the type 2 controller here also the error is

on the x-axis means 0 point 000001. Here also, you see a joint 1 positive, the error is very

small and here also the error is very small; whereas, other schemes they have relatively

large errors.

(Refer Slide Time: 50:46)

We compared, now we will take an example here. This is the sinusoid trajectory that is

being tracked by this robot manipulator, this is joint 1 angle. You can easily see in the

beginning there are some error and that error died down as time progressed and you can

easily see there are two, this is the tracking error, this is trajectory tracking, this is the

tracking error at joint 1, this solid line is using the new update rule; whereas, the dotted

one is using gradient descent.

(Refer Slide Time: 51:33)

Similarly, here on joint 2 the tracking is very perfect; whereas, because you cannot even see

the two trajectories, the actual trajectory and the desired trajectory they are super

imposing perfectly that they appear to be the same trajectory, tracking is perfect.

Tracking error at joint 2, if we see in a very micro scale then you see that for gradient

descent the error is quite visible; whereas, this is almost 0 for the adaptive tuning that we

have done using Lyapunov stability theory. That is a simulation result of the first part; the

second part is a network inversion. A network inversion what we did is that, we have

already a neural network. We said why we should put another neural network there.

Instead we have neural network that has already identified the model of the robot

manipulator. We utilize that neural network to predict our control law such that, the

overall the system is Lyapunov stable. What should be the control input u dot here or the

u here? We say this is my u or tau. That will be a function of u hat that has been given

from the network inversion algorithm and J is the Jacobian that is computed from the

neural emulator that is Del x upon Del u.

(Refer Slide Time: 53: 18)

We derive this algorithm, my control algorithm is u (t), u is same as tau is u (t minus 1)

mu u do and where u dot is this expression, which can be computed very easily because,

these are simply norm square J is a Jacobian matrix computed from the neural emulator.

D is an expression that we already expressed in this class. When you implement this

thing, here what you are seeing is that, we have two robot manipulators and this is joint 1

and this is joint 2. The A is tracking error in joint 1 and joint 2 using control law for

sinusoid trajectory after query based learning and before query based learning and

controller response; this is the controller response.

(Refer Slide Time: 54:38)

Controller response for joint 1 and joint 2 corresponding to figure; this is the controller

response; this is tracking error, and this is u; this curve gives you u. You see that, this

dotted line what you are seeing here this is the control action before query based learning,

we implemented. You implement this network inversion control before query based

learning. This is, you see that controller is fluctuating but, s1 is you did the query based

learning, then the controller is smooth the solid line. Correspondingly, when the

controller was not smooth the error was very large but, when controller becomes smooth

the error is almost very negligible in joint 1. Similar is the case with joint 2, you see that

the controller is fluctuating here, quite very much fluctuating before query based learning

and that means, when a not properly trained neural network is used, then we have a large

error. But, when the query based learning was completed, again implement the controller.

Do you see that the torque is very smooth here and the error is very small?

 (Refer Slide Time: 56:06)

Similar thing here that in this case, that is the previous one is the sinusoid trajectory, this

is exponential trajectory. For the exponential trajectory you see that, this fluctuation is

before query based learning and fluctuation died down after I am implementing the

controller after the query based learning, so that is the solid line, that is quite smooth.

Corresponding to solid line, this solid curve here implies the error in joint 1 tracking is

almost negligible not there; whereas, without query based learning the error is there

always existing. Similarly, joint 2, with query based learning this is a solid line almost no

error and error is there before query based learning, and you can see this fluctuation here

that indicates that controller control actuation is not smooth.

 (Refer Slide Time: 57:21)

In summary, indirect adaptive control for a robot manipulator we discussed today. This

indirect adaptive control has two different architectures we proposed, one is indirect

adaptive control using forward-inverse modeling approach, another is indirect adaptive

control using network inversion, we say these are indirect adaptive control because, we

are utilizing the neural emulator the forward modeling that is the forward dynamic model,

we trained a neural network that captures the forward dynamics of the robot manipulator

and utilize that neural network to tune our controller or to update our controller. Both the

control schemes are shown to be Lyapunov stable, simulation results are provided to

validate efficacy of the proposed schemes. We saw that, how our tracking is almost

perfect when we have the neural emulator that is perfectly trained using query based

learning and then we implement this controller, the result is fantastic.

(Refer Slide Time: 58: 51)

Those who want to pursue further work in this the last three classes their kind of one in a

box type of course, you can follow these references that we have given here for further

work. First one is our own paper that is published in 2003 in Computers and Electrical

Engineering Journal, second one is again our paper published in IEEE Transaction Neural

Network in 1996 and this is volume 7, number 6. The third paper is again our paper is

IEEE proceedings control theory application in 1995, volume 142 and number 6. This is

another paper that is called Inverting Feed-forward Neural Networks using linear and

nonlinear programming by Bau-Lian Lu and H.Kita Nishikawa Y this is in IEEE

Transaction Neural Network volume 10, issue 6 and another one is a query based

learning for aerospace applications that is there in IEEE Transaction and Neural

Networks volume 14, issue 6, November 2003. So thus, that should give you a good

exposure on how to design indirect adaptive control schemes for robot manipulators in

particular and in general for nonlinear systems.

Thank you.

