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Module — 2 Lecture — 4
Introduction to Fuzzy Logic Control

In this lecture today, we will be discussing fuzzy logic control. It is the fourth lecture in
this module. Earlier, we discussed fuzzy sets, fuzzy relation, and then using relation
matrix and the rule of composition, compositional rule of inference, how do we infer
about the consequence in a rule base. Last class, we learnt about fuzzy rule base and the
inference mechanism using approximate reasoning. We are now ready to understand the

concept of fuzzy logic controller.
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In the lecture today, we will be covering why are we after fuzzy logic controller, why we
are interested in fuzzy logic controller or why it is interesting; typical fuzzy control
systems, classical and fuzzy PID controller, and architecture of a Mamdani type of fuzzy
control system. In this lecture, we will be basically dealing with two kinds of

architecture: Mamdani type fuzzy control system and T-S fuzzy model (these two have



become very popular in the fuzzy control literature) and then a summary of what we will

teach today.
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Why fuzzy control? Fuzzy logic is a technique to embody human-like thinking into a
control system. A fuzzy controller can be designed to emulate human deductive thinking,
that is, the process people use to infer conclusions from what they know. The traditional
control approach requires formal modeling of the physical reality. We know that there are
many systems in which human operators work. When they work, they operate the plant

based on their experience; better the experience, better the control mechanism.

Can we utilize such principles of human ways of decision-making into designing control
systems? Or can our control system behave the way human operators control certain
physical devices based on their experiences? Although there are various reasons why we
talk about fuzzy control, here are some of the important parameters why scientifically
fuzzy logic control has been accepted in control literature.
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Fuzzy control incorporates ambiguous human logic into computer programs. It suits
control problems that cannot be easily represented by mathematical models. For example,
there are systems for which we have very weak models. That means the physics of the
systems are very poorly understood. Then, there are physical systems where the
parameter variations are arbitrary and cannot be known a priori, or there are systems

where the data obtained from the systems are incomplete or unavailable.

Sometimes, the plant may be very complex in the sense even if | know the physics of the
system, if | want to build the mathematical model for this complex plant, the model
would be very complex. Another reason could be for fuzzy logic control is good
qualitative understanding of plant or process operation. Because of its unconventional
approach, design of such controllers leads to faster development or implementation

cycles.
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Today, we will be talking about two categories of fuzzy control systems. These two
typical fuzzy control systems are popularly known in control literature as Mamdani type
and Takagi—Sugeno type (T-S for short form). Mamdani type fuzzy systems employ
fuzzy sets in the consequent part of the rules. This is a fuzzy logic controller, the
Mamdani type fuzzy logic controller. What they do is that the consequent part itself takes
the control action; the incremental control action is described in the consequent part of

each rule.

For those who are more interested to know why Mamdani type of system, we say because
it is their first paper — Mamdani and Asslan, ‘A case study on the application of fuzzy set
theory to automatic control’. This is the first paper on fuzzy control that has been
recorded. This is the first one that has been recorded way back in 1974. Most of the fuzzy
logic controllers follow a very close format as that of the Mamdani FLC presented in this
paper. Then, those who are interested can look at this reference to ‘A case study on the
application of fuzzy set theory to automatic control’ (Refer Slide Time: 06:49). That is

why these are Mamdani type controllers.

The next is T-S fuzzy system, Takagi—Sugeno fuzzy systems. They employ function of
the input fuzzy linguistic variable as the consequent of the rules. What happens here is



that a fuzzy dynamic model is expressed in the form of local rules. Local rule means if
there are two variables x; = a and x, = b, then the plant dynamics can be represented
either as a linear dynamical system or a nonlinear dynamical system, as a known
dynamical system. Those who are interested to know the origin of Takagi—Sugeno model
can follow this particular link, that is, IEEE Transaction SMC, 1985 (Refer Slide Time:
07:59). Takagi and Sugeno published a paper on ‘Fuzzy identification of systems and its

application to modeling and control’.
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Now, | will introduce you to how we convert or how we can design a Mamdani type of
fuzzy logic controller. The first part we will be discussing is Mamdani type of fuzzy logic
controller. You know that fuzzy logic controller means we are designing the controller
for a nonlinear system, the plant is unknown and cannot be modeled properly. There are

various other constraints about the system dynamics.

What you are seeing here is a simple feedback control system where you are seeing a
plant, a PID controller, u t is the control action, this is the output, this is the unity
feedback and this is the command signal. The objective of this control system is that the
output should follow the command signal. Whatever is the command signal, the plant
output should follow that as accurately as possible. What is the PID controller? The PID



controller u t is proportional gain K into e t. This is e t (Refer Slide Time: 09:29). So e t
plus 1 upon T; O to t e t dash d t dash. This is an integral action.

You can easily see that the error is directly multiplied with K and here, the error has been
integrated over time and there is a time constant associated with it, T;. Similarly, this
error is differentiated in this term d e t by dt and T4. This is your PID controller; this is
very well known. You will be surprised to know that in spite of varieties and very novel
schemes that have appeared in the literature and have been implemented in real time, still,

most of the systems, most of the industrial processes employ PID controllers.

If 1 write this PID controller in the discrete domain, you have an expression like this.
Discrete domain means here t is represented as k delta T. delta T is the sampling time
interval, k is the sampling instant and so, t is k delta T. For the sake of convenience, we

just remove delta T and then, we write the discrete form of the equation.

The k th sampling instant means at t equal to k delta T, u k is K e k into 1 upon T;. If |
want to integrate this e t dash d t dash, how do | write? e K delta T plus e K minus 1 delta
T plus e K minus 2 delta T until e 0, the initial value of error, into delta T plus this is Ty
into this d et by dt, if I want to differentiate using a backward difference model, then it
will be e K minus e K minus 1 upon delta T. This is using the difference method or
Euler’s difference method. Using the difference method or Euler's difference method, this
is the difference d e t upon dt. This is the recursive form of u k. Why am | doing it? To
show you that this PID controller has a very interesting structure. Just wait for a moment.

Just see here.
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I made a little simplification in the controller structure removing the derivative part. So, |
have now the proportional part and the integral part. This is a Pl controller. The discrete
version of this at the k th instant, | would write u k equal to K e k plus 1 upon T; e k plus
e k minus 1 and so on into delta T. Similarly, I can write this equation at the k minus 1 th
instant to be u k minus 1 equal to K e k minus 1 plus 1 upon T; e k minus 1 plus e k

minus 2 and so on until delta T.

Now, if I subtract this equation from this equation, what do | get? u k minus u k minus 1
is K (this is the proportional gain) into e k minus e k minus 1. You can easily see e k
minus e k minus 1 and here, e k minus 1, this will be 0 and all these terms will be
cancelled, only one term will appear and that is e k by T; into delta T. So what you are
finding is that if I now write this expression (Refer Slide Time: 13:44), | will write that u
k equal to u k minus 1, that is, the present control action is equal to previous control
action plus the incremental control action. | would say this is the incremental control
action, where you can easily see that this delta u k is some function of e and the change in
error, because you know that these are all constants; K, T; and delta T are constants and
S0, you can easily say delta u k, the incremental control action, is a function of error and
change in error. This is the very basis or this is the very foundation on which... this



specific understanding led to innovation of fuzzy logic control rule base and how the

fuzzy logic control rule base is structured. I will explain that.

(Refer Slide Time: 15:06)
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But first, let us go back to the previous example, that is, a classical PID controller. In a
classical PID controller, this is my control action (Refer Slide Time: 15:12): u t equal to
K e t plus e t dt integration and d et upon dt into some T4. In discrete domain, | showed
you that this can be written in this particular form. We can write for u k minus 1 the
corresponding discrete form and subtract. If you do that, again u k can be written as
present control action is equal to previous control action plus incremental control action,
where this incremental control action is a function of error, change in error and higher
order terms. The incremental control output is some function of error. This is delta u k,
which we call as incremental control action. It is some function of error, change in error

and higher order terms. Now, we will understand....
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This is Mamdani type. This is typically Mamdani type controller, where you see that
instead of a PID, we have put a fuzzy logic controller there and the rest is same. Similar
to classical PID controller, a fuzzy PID controller can have the following structure. It is
not that this is the only structure but there are various other structures also. I am just
presenting one of the structures that is most commonly followed. In that structure, u k is u
k minus 1 plus delta u k. We realized that whether it is a Pl or PID, it will have this

particular form u k equal to u k minus 1 plus delta u k.

This delta u k, in case of fuzzy logic controller, is obtained using a fuzzy rule base that
provides incremental control action, which is a function of two fuzzy variables, error and
change in error. | would say this is error e and change in error, which is delta e. This is a
fuzzy set (Refer Slide Time: 17:58). We build another fuzzy set delta e and the delta u K,
which is another fuzzy variable, incremental control action, is a function of two fuzzy

variables e and delta e.

Why are we doing fuzzy PID controller instead of classical PID? In classical PID
controller, normally, it is a design for linear system. There are also PID controllers that
can be designed for nonlinear systems, where the PID gains are varying. They are
trajectory dependent and as the system moves from one part of the trajectory to another



part of the trajectory, the gains do vary. That is possible also using classical PID, but
fuzzy PID controller is nonlinear, that is, this particular controller is always preferred for
nonlinear system, where the classical PID controller design is either difficult or is not
very accurate — even if we design, it is not very efficient. Now, we want to compute what
is the incremental control action delta u in a fuzzy logic controller of Mamdani type and
to compute this incremental control action, we have a rule base. How do we construct a
rule base? Think that the fuzzy logic controller is implementing simply a proportional
controller, a proportional controller for nonlinear a system. What is happening?

According to the situation error....

(Refer Slide Time: 20:04)
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You know the proportional controller u is simply K e t. This is my error, this is my gain,
and this is my direct control action actually. Naturally, when | have a proportional
controller, my fuzzy rules look like... if error is positive-high, then keep the heater on for
longer duration. This is the temperature control system. If error is positive-low, then keep

the heater on for smaller duration. We will see how the rule works.

In this rule, you see that the antecedent part has only one fuzzy variable, that is, error,
because, in proportional controller, u is directly a function of e t and the control action is
not an incremental control action but is a direct control action u equal to K e t, but in case



of a fuzzy PI controller, this is the incremental control action, that is, for Pl controller, we
realized that u K should u K minus 1. The present control action is equal to previous
control action plus delta u K (Refer Slide Time: 21:29). The fuzzy logic rule base or
fuzzy logic controller will compute what is delta u K. You already know what the

previous input is and that has to be added.

This incremental addition is computed and you know that this incremental addition is a
function of error and change in error. Hence, the rule should look like this: if error is
positive-high and change in error is positive-high, then keep the heater on for longer
duration. Instead of that, probably you should understand that the incremental control
action here is.... The rule states that | am presenting this to you to let you know how we

form the rule.

In case of fuzzy proportional controller, my fuzzy variables, independent variables is only
one and that is error. In case of a fuzzy PI controller, my independent variables are error
and change in error. This is e and this is delta e and based on that, the control action is
computed. For example, here, we have written that if error is positive-high and change in
error is positive-high, then keep the heater on for longer duration. Rule 2: if error is
positive-low and change in error is positive-low, then keep the heater on for smaller

duration.
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This is the architecture of a fuzzy logic controller. This is the short form for fuzzy logic
controller (Refer Slide Time: 23:16), Mamdani type. This is the Mamdani type controller,
where the actual data that the controller is receiving is crisp data or classical data that has
a definite value. That crisp data goes to the fuzzy logic controller and it has these four

components that you can see: fuzzifier, rule base, inference engine and defuzzifier.

Fuzzifier. In a fuzzy logic controller, the computation is through linguistic values, not
through exact computation. Naturally, the fuzzifier would fuzzify the crisp data. In case
of temperature, | can say it is hot, medium-hot, cold, medium-cold, very hot and normal.
These are the fuzzifier. That means given a crisp data or the value of temperature say 40
degrees, then | have to now convert to various linguistic values and each linguistic value

will be associated with a specific membership function. That is fuzzifier.

Once the data has been fuzzified, then it goes to the rule base and using an inference
mechanism.... The inference is taking place in fuzzy term, not in classical term and after
a fuzzy inference takes place about the decision or about the control action, we place a
defuzzifier. What this defuzzifier does is it converts the fuzzy control action to a crisp

control action.
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In general, what we can say is the principal design parameters of a fuzzy logic controller
are the following: fuzzification strategies and interpretation of a fuzzification operator.
How do we fuzzify a crisp data? In the database, the discretization or normalization of
universe of discourse is done, because we must know the range of data one will encounter
in an actual plant. Accordingly, the normalization must be done so that we are taking into

account all possible values of data that one may encounter in a physical plant.

Fuzzy partition of the input and output spaces. If I know the dynamic range of an input to
the controller and the input to the plant (input to the plant is actually output to the
controller)... if I know the dynamic range, then in that dynamic range, |1 must learn how
to do fuzzy partition of the input and output space and this fuzzification suits such the
process should be complete in the sense.... You see that | am drawing a universe of
discourse here. This is the real value for a specific variable x;. If | have defined a fuzzy
set like this and like this, you can easily see that this part of the data is not associated with
any fuzzy membership. This is mu and this is x; and unfortunately, this part is not

associated with any membership.

This fuzzification process is not complete. That means the entire universe of discourse in
a specific domain, wherever there are control systems.... There are various kinds of



control systems: process control, robot control, and aircraft control. Every control system
is associated with some input data and some output data. All possible input data and all
possible output data should be associated with a specific linguistic value as well as a

membership function.

Choice of the membership function of a primary fuzzy set. We must be very clear what
category and what kind of.... We have already discussed in the first lecture the varieties
of membership function. We talked about triangular membership function, trapezoidal
membership, pi function, and so on. We have to be very clear about what kind of

membership function we would like to employ.

(Refer Slide Time: 28:30)
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Now, rule base. Once fuzzification is done, how do we create a rule base? As | said,
typically, in the rule base, the two variables that are most important are error and change
in error and we also showed why it is so. Rule base. Choice of process state input
variables and control variables. You know that if 1 am implementing a fuzzy state
feedback controller, then, a fuzzy state feedback controller u would be minus K x. So, x
is the states of the system, whereas if | am implementing a fuzzy PID controller, then it

will be u old plus K delta u k. Here, this delta u k is a function of error and change in



error, whereas, in a state feedback controller, this is a common signal r and so, the control

action is dependent on state X1, X2, and Xp.

Source and derivation of fuzzy control rules. How do | derive these rules? What is the
basis? Types of fuzzy control rules. A type of fuzzy control rule means whether it is a
PID controller, fuzzy PID controller or it is a fuzzy state feedback controller. Similarly,
completeness of fuzzy control rules means given any crisp data in the domain of input
space as well as output space, do | have in my rule base a specific rule associated with
this data? If I do not have any rule for this data, then the FLC will fail. That is meaning of

completeness of fuzzy control rules.

Then, fuzzy inference mechanism. We have already talked about what is fuzzy inference
mechanism. Given multiple rules, how do we infer the consequence part? Defuzzification
strategies and the interpretation of fuzzification operator. Once the fuzzy inference is
done, from the fuzzy inference, how do | get a crisp value or a crisp control action? This
is called defuzzification.

(Refer Slide Time: 31:18)
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Now, | hope you are very clear about the complete architecture of a fuzzy logic
controller. This is your process or a plant. You have sensors. They provide the plant state
data and then, you have this fuzzification, crisp-to-fuzzy interface and then, inference



mechanism. This inference mechanism takes the help of the fuzzy rule base and given a
specific sensor data, it evaluates what should be the fuzzy control action. From fuzzy
control action, we go to defuzzification, which we call fuzzy-to-crisp interface, and
finally, the control action. This is your control action here in this domain (Refer Slide
Time: 32:05). This control action is actuated through actuator to the (Refer Slide Time:

32:09) process. This is the overall structure of a fuzzy logic controller.

(Refer Slide Time: 32:42)

m A
Fuzzification
o

e 1

Tha criap inpide for the variablag L, And o Are convaring
Inko furFry sale uring ifanquiar mambarehip functione

Now, | will be a little precise in terms of some of the concepts that Mamdani type fuzzy
logic controller is involved with. In a Mamdani type fuzzy logic controller, the
fuzzification processes.... Not only Mamdani but this is the normal fuzzification process.
Let us say | have rule 1 and this is rule 2. Of course, all my rules.... Normally, a fuzzy

PID controller has two fuzzy variables: one is error and another is change in error.

because | know what my error at the command signal is and I know what my output from
the system is. | compare it with the command signal and then, I know what the error is.
Given a command signal and output, I know what the error is. | also know what is the
change in error, because | know what was the previous error and what is the error now.
By subtracting the previous error from the current error, I know what my delta e is. |
know these things already. That means the fuzzy logic controller has the information of



error and change in error. If you know the change in error and what is the crisp value,

then the corresponding fuzzy membership is computed according to the rule.

The rule defines that if my error is A1 1 where A; 1 is a specific fuzzy set (in this case, it
is triangular shaped, triangular membership function), you can easily see... now, this
particular crisp input has a fuzzy membership 0.7 in the fuzzy set A; 1. Similarly, the
second fuzzy variable, that is, change in error whose crisp input is this value, this specific
value (Refer Slide Time: 34:36), has a fuzzy membership function 0.4 in fuzzy

membership function A 1.

The error is A; 1 and change in error is A, 1. Now, given the crisp data, which is error
and change in error, we have a corresponding membership function for rule 1. Rule 1
shows that the error has membership function 0.7 and the change in error has 0.4. In the
second case, in rule 2, the same crisp input gives you 0.6 membership function and the

other crisp input gives you 0.8 membership function.

This is how we fuzzify a crisp data to fuzzy data or we make them fuzzy, that is, the crisp
input for variable x; and X».... Actually, this is not x; and x, but e and delta e are
converted to fuzzy sets using triangular membership functions. It is not always triangular,
it can be anything, but normally in control literature, most of these membership functions

are triangular functions.
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Defuzzification. Once | know how to do the fuzzification, defuzzification is explained in
the following diagram. You see that among various defuzzification methods, the most
popular is center of gravity method. How do I do it? Crisp input is given at any situation,
any k th sampling instant and the fuzzy logic controller gets the command signal, gets the
actual output of the plant, computes the error, computes the change in error and then,
those crisp values are fed into the fuzzification layer. Then, you have the membership
function. You pass on those fuzzy data to the rule base and then, for a specific rule
base... You see that in rule 1, you see that if you compare the membership mu A; 1 and
mu A, 1, mu A, 1 is the minimum and correspondingly, you shade the zone of action.
This is delta u. How much should be the incremental control action? This is my shaded

portion or shaded portion of my control action.

Now | take a second one, second rule and there again, | evaluate the fuzzy membership
function A; 2 and A, 2. You see that the membership function in A; 2 is less.
Corresponding to that, we shade the incremental control action. Now, you see that if |
take the maximum of these two shaded zones, | get this (Refer Slide Time: 38:03),
maximum of this. After I get, this is the fuzzy decision, this is the fuzzy incremental
control action, but how do I convert this fuzzy incremental control action to a crisp

action? That is by the center of gravity method. In the center of gravity method, I



integrate mu delta u d delta u upon integration of mu d delta u. If I integrate this function,
I get somewhere here to be the center of gravity. delta mu star is this value, which is

graphically shown here. We discussed about Mamdani type fuzzy logic controller.

(Refer Slide Time: 39:04)
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Now, in the second part of this lecture, we will be discussing about the Takagi—Sugeno
fuzzy model. We will not discuss about how we design the control system but we will
just present how an actual physical system is modeled using Takagi—Sugeno (T-S) fuzzy
model. A general Takagi—-Sugeno model of N rules for any physical plant, a general T-S
model of N rules is given by Rule;. This is the i th rule. If x5 K is a specific fuzzy set M i
and X k is another specific fuzzy set M, i and so on until x, k is another fuzzy set M, i,
then the system dynamics locally is described as x k plus 1 is A;j x k plus B; u k, where i

equal to 1, 2 until N, because there are N rules.

The slide we represented here is the discrete time. | hope that all of you know that this is
a discrete time state-space model (Refer Slide Time: 40:59). This k refers to a discrete
time index or sampling instant, x; is the j th linguistic variable or state, M; is a fuzzy set
of xj, and M;j i is a fuzzy term of M; selected for rule i. If two state variables in a plant are
temperature and pressure, then M1 would stand for temperature and M, will stand for
pressure. Similarly, if some physical system has two state variables like position and



velocity, then we can say M is the fuzzy set associated with position and M, is the fuzzy
set associated with velocity. Then, M1 i and My i are the various fuzzy terms within each
fuzzy set. If I am looking at the fuzzy set for position, then, | can describe position to be
positive big, positive small, positive medium, negative small, or negative medium. So,
this is a specific term. These are M;j i. Similarly, if it is temperature, if my state variable is
a temperature, then M; would be a temperature fuzzy set and M; i would be a term like

hot, cold, and medium. This is how this T-S fuzzy model is described.

(Refer Slide Time: 43:06)
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We are assuming that my physical system is described by n state space — n states, which
are X1 Kk, Xz k until x, k and the inputs are m-dimensional input vector, that is, it is a

multi-input system. | have some a priori understanding about the system.



(Refer Slide Time: 43:35)
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Now we will go to a simple system. You know a single link manipulator. What is a single
link manipulator? You know that there is a hinge and to the hinge is attached one
manipulator or one link and there is a motor here (Refer Slide Time: 43:45). This is your
motor and this manipulator can go in this direction, it can rotate vertically in the vertical
plane. It can rotate either anticlockwise or clockwise.

Normally, if 1 assume this is my hinge, then this is my link. If I assume this to be my
neutral position, that is, theta = 0. When this link comes to this position.... | can say this
is positive 90 degrees (Refer Slide Time: 44:43) and this position is negative 90 degrees,
the moment it takes. (Refer Slide Time: 44:52) you define. For such a single link
manipulator, you can easily derive the dynamics. If this is my theta with respect to my
vertical axis.... This is my vertical axis (Refer Slide Time: 45:13) and this is my theta.
So, the torque will be m | square theta double dot plus m g I sine theta. Given the amount
of torque that the motor would apply at this hinge, the position and velocity of the link

would vary according to this dynamics.

That is m | square theta double dot, this is the acceleration plus m g | sine theta is tau.
You can easily derive this. Now, if | take x; = theta, the angle of the manipulator from
the (Refer Slide Time: 46:06), and x, equal to theta dot, which is the angular velocity of



the manipulator, and tau is the control torque, then I can write this equation in the state-
space format. This is the state-space model (Refer Slide Time: 46:31), where you can
easily see x; dot is theta dot, which is x;, and X, dot, which is theta double dot is equal
to, you can see, minus m g I sine x; divided by ml square which is minus g by | sine x;
plus 1 upon m | square into tau, the control action. You have a system single link
manipulator that has two states. We would like to represent this dynamics as a fuzzy

system. How do we do it?

(Refer Slide Time: 47:20)
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Let us consider the fuzzy set variable x; is M1, which is positive large, positive small,
zero, negative small, and negative large, which is written here. Similarly, the fuzzy set
associated with the variable X».... X; is angular position and X, is angular velocity and for
that, the fuzzy set is M, and the fuzzy terms are positive large, positive small, zero,

negative small, and negative large. At the moment, we are not bothered....

You can consider these fuzzy terms to be either triangular or pi function or s function or
Gaussian function or trapezoidal function. We will not be interested so much on that
aspect now, but what is important to learn is that if | have a rule, a system dynamics
defined in two fuzzy variables, each fuzzy variable is again partitioned into five fuzzy
zones. Then, the total number of rules that are necessary to describe such a dynamical



system could be 25. What | have to say now is that if x; is positive large and X, is
positive large, then the system dynamics is this. For example, here, rule 1: if x; t is
positive large and X, t is 0, then x dot t is A matrix into x t plus B matrix into input tau.
Similarly, you can derive another rule: if x; t is positive small and x; t is 0, then my
system dynamics can be written in terms of a linear state-space equation, which is x dot t

equal to AxtplusBut.

Just like we have written in terms of continuous linear model, we can also write in terms
of a discrete linear model. These expressions also can be written in terms of known
simple nonlinear models. It is up to the designer (the control system designer) what kind
of rules he needs in the domain of T-S fuzzy model. What we are talking about is given a
dynamical system, how do we derive the T-S fuzzy model of a dynamical system so that

we can design a specific controller for the system?

(Refer Slide Time: 50:11)
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The T-S fuzzy model. Let mu; be the product of all the fuzzy memberships associated
with the fuzzy term in a rule base. Previously, we have two fuzzy terms: positive large
and 0 (Refer Slide Time: 50:32). Given a crisp data, that is, X; and X, you have a specific

membership function from positive large and another specific membership from 0. You



multiply them. Sometimes, you multiply and sometimes, you also take the minimum.

This is the product rule that we have taken. You can also take mean.

For this individual membership function, I can take a mean and that membership function
is associated with this dynamics (Refer Slide Time: 51:25). Given a crisp data, we
compute the membership function for each fuzzy term and the product of these fuzzy
terms or the mean of this fuzzy terms is associated with the dynamical equation in that
fuzzy zone. Then, the overall system dynamics is expressed as X k plus 1 is sigma, is

summation....

If I have N rules, then I have N such linear systems and each linear system is associated
with a fuzzy membership function, which is mu; k and that is normalized further, because
each linear system is associated with mu; k and we normalize. The normalized
membership function is sigma; k. This is the (Refer Slide Time: 52:40) such that the

summation of all sigma; k is equal to 1.

Try to understand what we are trying to do now. Given a set of rules, for each rule....
What does a set of rule mean? A dynamic system is fuzzy partitioned into 25 different
fuzzy zones. That is the meaning and in each fuzzy zone, we have a linear model. Now,
we are trying to define what is the global model. The global model is described by this
expression (Refer Slide Time: 53:26), where this is the linear model for the i th fuzzy

rule.

I have N rules and for each fuzzy rule, the associated fuzzy membership is mu;, which is
computed by either the product rule or mean rule. That is how we compute the global
fuzzy dynamics of a system. If the system is autonomous, then u k is 0. We can
conveniently write x k plus 1 is sigma summation sigma; k into A; x k, where again
sigma; is the normalized membership function associated with the i th linear model in the

i th fuzzy zone.
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Now, we will explain this concept through an example. Let us consider the following two
rules of T-S fuzzy model. If x; is large and x; is moderate, then x k plus 1 is (0.5, 0.4, 2,
1) into x k. If X is large, X is large, then x k plus 1 is (0.6, 0.8, 1, 2) into x k, where x k
iIS.... Of course, this is a two-state dynamical system. The measured values of x; and X;
at k = 1 are 40 units and 20 units, respectively, that is, x; 1 is 40 and x; 1 is 20 units.

The question that is asked is evaluate the actual system state at k = 2, looking at this
fuzzy model. Given a crisp data, can I... if the crisp data is given at the k th instant....
The state of the actual system is given at the k th instant. Now using the T-S fuzzy model,

compute the crisp state of the system.
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In this example, we assume that x; is large and x, is moderate and here, x; is large and
X2 is large. For these four fuzzy terms, their associated membership functions are
muarce 1 1S 0.3, MUmoperate 1 1S 0.3, mugmarL 2 i1s 0.7 and muarce 2 is 0.8. Given
that, according to the T-S fuzzy model, this is my global fuzzy dynamics. This is not h;,
this is sigma; k (Refer Slide Time: 56:44) A; x k, where sigma; k is the associated fuzzy

membership.

What do we do? We have two rules. For each rule, | have to compute what is the
associated membership value. The associated membership value for the rule 1 would be
product of this membership function and this membership function 0.3. SO mumoperate 1
is actually not 0.3, this is 0.4 (Refer Slide Time: 57:20); 0.3 into 0.4 is 0.12. Similarly,
mu, 1 is the fuzzy membership associated with the second rule or second linear system,

that is, musmarL 2, which is 0.7, into mu_arce 2 is 0.8 is 0.56. The normalized value....



(Refer Slide Time: 57:51)

mu; is normalized, then we get sigma; 1; mu, 1 is normalized, we get sigma, 1; sigma;
1is 12 upon 68 and sigma, 1 is 56 upon 68. Finally, we find out the actual crisp value x;
using this dynamics, which is i equal to 1 to 2. We have two rules. sigma; 1 is the
associated normalized fuzzy membership, A; is the associated system matrix and x is the
state vector, which is x; and x, and the 1 stands for the sampling instant.

If we compute that, you get 12 upon 68, my A; matrix is given as this (Refer Slide Time:
58:46), my Xx; is (40, 20). Similarly, the second rule 56 upon 68 is my membership
function associated, A; is given as this (Refer Slide Time: 58:57) and at the k th sampling
instant, my x; or the states are 40 and 20. If you compute, this is my answer: 37.88 and
83.52. You got an idea how by using T-S fuzzy model, we can describe the dynamics of
an actual plant. We will discuss about the T-S fuzzy model and Mamdani type of fuzzy

logic controller in this course in detail and in depth later.
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Today, we end this class with the summary. What we learnt today is the utility of fuzzy
control, why we employ fuzzy control, classical PID controller and fuzzy PID controller,
whether they have a connection or they do not have a connection. We showed the idea
that normally in Mamdani type of fuzzy controller, the incremental control action is
dependent on two fuzzy variables, that is, error and change in error. It basically comes
from the structure of PI controller or PID controller. Then, we learnt complete
architecture of fuzzy control system and what are the various components of fuzzy
control system. Some useful fuzzy control systems are popularly known as Mamdani type
fuzzy logic system and Takagi—Sugeno fuzzy model. Thank you.



