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In this lecture today, we will be discussing fuzzy logic control. It is the fourth lecture in 

this module. Earlier, we discussed fuzzy sets, fuzzy relation, and then using relation 

matrix and the rule of composition, compositional rule of inference, how do we infer 

about the consequence in a rule base. Last class, we learnt about fuzzy rule base and the 

inference mechanism using approximate reasoning. We are now ready to understand the 

concept of fuzzy logic controller.  

(Refer Slide Time: 01:13) 

 

In the lecture today, we will be covering why are we after fuzzy logic controller, why we 

are interested in fuzzy logic controller or why it is interesting; typical fuzzy control 

systems, classical and fuzzy PID controller, and architecture of a Mamdani type of fuzzy 

control system. In this lecture, we will be basically dealing with two kinds of 

architecture: Mamdani type fuzzy control system and T-S fuzzy model (these two have 



become very popular in the fuzzy control literature) and then a summary of what we will 

teach today. 

(Refer Slide Time: 01:56) 

 

Why fuzzy control? Fuzzy logic is a technique to embody human-like thinking into a 

control system. A fuzzy controller can be designed to emulate human deductive thinking, 

that is, the process people use to infer conclusions from what they know. The traditional 

control approach requires formal modeling of the physical reality. We know that there are 

many systems in which human operators work. When they work, they operate the plant 

based on their experience; better the experience, better the control mechanism.  

Can we utilize such principles of human ways of decision-making into designing control 

systems? Or can our control system behave the way human operators control certain 

physical devices based on their experiences? Although there are various reasons why we 

talk about fuzzy control, here are some of the important parameters why scientifically 

fuzzy logic control has been accepted in control literature.  



(Refer Slide Time: 03:35) 

 

Fuzzy control incorporates ambiguous human logic into computer programs. It suits 

control problems that cannot be easily represented by mathematical models. For example, 

there are systems for which we have very weak models. That means the physics of the 

systems are very poorly understood. Then, there are physical systems where the 

parameter variations are arbitrary and cannot be known a priori, or there are systems 

where the data obtained from the systems are incomplete or unavailable.  

Sometimes, the plant may be very complex in the sense even if I know the physics of the 

system, if I want to build the mathematical model for this complex plant, the model 

would be very complex. Another reason could be for fuzzy logic control is good 

qualitative understanding of plant or process operation. Because of its unconventional 

approach, design of such controllers leads to faster development or implementation 

cycles.  



(Refer Slide Time: 05:05) 

 

Today, we will be talking about two categories of fuzzy control systems. These two 

typical fuzzy control systems are popularly known in control literature as Mamdani type 

and Takagi–Sugeno type (T-S for short form). Mamdani type fuzzy systems employ 

fuzzy sets in the consequent part of the rules. This is a fuzzy logic controller, the 

Mamdani type fuzzy logic controller. What they do is that the consequent part itself takes 

the control action; the incremental control action is described in the consequent part of 

each rule. 

For those who are more interested to know why Mamdani type of system, we say because 

it is their first paper – Mamdani and Asslan, ‘A case study on the application of fuzzy set 

theory to automatic control’. This is the first paper on fuzzy control that has been 

recorded. This is the first one that has been recorded way back in 1974. Most of the fuzzy 

logic controllers follow a very close format as that of the Mamdani FLC presented in this 

paper. Then, those who are interested can look at this reference to ‘A case study on the 

application of fuzzy set theory to automatic control’ (Refer Slide Time: 06:49). That is 

why these are Mamdani type controllers.  

The next is T-S fuzzy system, Takagi–Sugeno fuzzy systems. They employ function of 

the input fuzzy linguistic variable as the consequent of the rules. What happens here is 



that a fuzzy dynamic model is expressed in the form of local rules. Local rule means if 

there are two variables x1 = a and x2 = b, then the plant dynamics can be represented 

either as a linear dynamical system or a nonlinear dynamical system, as a known 

dynamical system. Those who are interested to know the origin of Takagi–Sugeno model 

can follow this particular link, that is, IEEE Transaction SMC, 1985 (Refer Slide Time: 

07:59). Takagi and Sugeno published a paper on ‘Fuzzy identification of systems and its 

application to modeling and control’.  

(Refer Slide Time: 08:09) 

 

Now, I will introduce you to how we convert or how we can design a Mamdani type of 

fuzzy logic controller. The first part we will be discussing is Mamdani type of fuzzy logic 

controller. You know that fuzzy logic controller means we are designing the controller 

for a nonlinear system, the plant is unknown and cannot be modeled properly. There are 

various other constraints about the system dynamics.  

What you are seeing here is a simple feedback control system where you are seeing a 

plant, a PID controller, u t is the control action, this is the output, this is the unity 

feedback and this is the command signal. The objective of this control system is that the 

output should follow the command signal. Whatever is the command signal, the plant 

output should follow that as accurately as possible. What is the PID controller? The PID 



controller u t is proportional gain K into e t. This is e t (Refer Slide Time: 09:29). So e t 

plus 1 upon Ti 0 to t e t dash d t dash. This is an integral action.  

You can easily see that the error is directly multiplied with K and here, the error has been 

integrated over time and there is a time constant associated with it, Ti. Similarly, this 

error is differentiated in this term d e t by dt and Td. This is your PID controller; this is 

very well known. You will be surprised to know that in spite of varieties and very novel 

schemes that have appeared in the literature and have been implemented in real time, still, 

most of the systems, most of the industrial processes employ PID controllers. 

If I write this PID controller in the discrete domain, you have an expression like this. 

Discrete domain means here t is represented as k delta T. delta T is the sampling time 

interval, k is the sampling instant and so, t is k delta T. For the sake of convenience, we 

just remove delta T and then, we write the discrete form of the equation.  

The k th sampling instant means at t equal to k delta T, u k is K e k into 1 upon Ti. If I 

want to integrate this e t dash d t dash, how do I write? e K delta T plus e K minus 1 delta 

T plus e K minus 2 delta T until e 0, the initial value of error, into delta T plus this is Td 

into this d et by dt, if I want to differentiate using a backward difference model, then it 

will be e K minus e K minus 1 upon delta T. This is using the difference method or 

Euler’s difference method. Using the difference method or Euler's difference method, this 

is the difference d e t upon dt. This is the recursive form of u k. Why am I doing it? To 

show you that this PID controller has a very interesting structure. Just wait for a moment. 

Just see here. 



(Refer Slide Time: 12:29) 

 

I made a little simplification in the controller structure removing the derivative part. So, I 

have now the proportional part and the integral part. This is a PI controller. The discrete 

version of this at the k th instant, I would write u k equal to K e k plus 1 upon Ti e k plus 

e k minus 1 and so on into delta T. Similarly, I can write this equation at the k minus 1 th 

instant to be u k minus 1 equal to K e k minus 1 plus 1 upon Ti e k minus 1 plus e k 

minus 2 and so on until delta T.  

Now, if I subtract this equation from this equation, what do I get? u k minus u k minus 1 

is K (this is the proportional gain) into e k minus e k minus 1. You can easily see e k 

minus e k minus 1 and here, e k minus 1, this will be 0 and all these terms will be 

cancelled, only one term will appear and that is e k by Ti into delta T. So what you are 

finding is that if I now write this expression (Refer Slide Time: 13:44), I will write that u 

k equal to u k minus 1, that is, the present control action is equal to previous control 

action plus the incremental control action. I would say this is the incremental control 

action, where you can easily see that this delta u k is some function of e and the change in 

error, because you know that these are all constants; K, Ti and delta T are constants and 

so, you can easily say delta u k, the incremental control action, is a function of error and 

change in error. This is the very basis or this is the very foundation on which… this 



specific understanding led to innovation of fuzzy logic control rule base and how the 

fuzzy logic control rule base is structured. I will explain that. 

(Refer Slide Time: 15:06) 

 

But first, let us go back to the previous example, that is, a classical PID controller. In a 

classical PID controller, this is my control action (Refer Slide Time: 15:12): u t equal to 

K e t plus e t dt integration and d et upon dt into some Td. In discrete domain, I showed 

you that this can be written in this particular form. We can write for u k minus 1 the 

corresponding discrete form and subtract. If you do that, again u k can be written as 

present control action is equal to previous control action plus incremental control action, 

where this incremental control action is a function of error, change in error and higher 

order terms. The incremental control output is some function of error. This is delta u k, 

which we call as incremental control action. It is some function of error, change in error 

and higher order terms. Now, we will understand….  
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This is Mamdani type. This is typically Mamdani type controller, where you see that 

instead of a PID, we have put a fuzzy logic controller there and the rest is same. Similar 

to classical PID controller, a fuzzy PID controller can have the following structure. It is 

not that this is the only structure but there are various other structures also. I am just 

presenting one of the structures that is most commonly followed. In that structure, u k is u 

k minus 1 plus delta u k. We realized that whether it is a PI or PID, it will have this 

particular form u k equal to u k minus 1 plus delta u k.  

This delta u k, in case of fuzzy logic controller, is obtained using a fuzzy rule base that 

provides incremental control action, which is a function of two fuzzy variables, error and 

change in error. I would say this is error e and change in error, which is delta e. This is a 

fuzzy set (Refer Slide Time: 17:58). We build another fuzzy set delta e and the delta u k, 

which is another fuzzy variable, incremental control action, is a function of two fuzzy 

variables e and delta e. 

Why are we doing fuzzy PID controller instead of classical PID? In classical PID 

controller, normally, it is a design for linear system. There are also PID controllers that 

can be designed for nonlinear systems, where the PID gains are varying. They are 

trajectory dependent and as the system moves from one part of the trajectory to another 



part of the trajectory, the gains do vary. That is possible also using classical PID, but 

fuzzy PID controller is nonlinear, that is, this particular controller is always preferred for 

nonlinear system, where the classical PID controller design is either difficult or is not 

very accurate – even if we design, it is not very efficient. Now, we want to compute what 

is the incremental control action delta u in a fuzzy logic controller of Mamdani type and 

to compute this incremental control action, we have a rule base. How do we construct a 

rule base? Think that the fuzzy logic controller is implementing simply a proportional 

controller, a proportional controller for nonlinear a system. What is happening? 

According to the situation error…. 

(Refer Slide Time: 20:04) 

 

You know the proportional controller u is simply K e t. This is my error, this is my gain, 

and this is my direct control action actually. Naturally, when I have a proportional 

controller, my fuzzy rules look like… if error is positive-high, then keep the heater on for 

longer duration. This is the temperature control system. If error is positive-low, then keep 

the heater on for smaller duration. We will see how the rule works. 

In this rule, you see that the antecedent part has only one fuzzy variable, that is, error, 

because, in proportional controller, u is directly a function of e t and the control action is 

not an incremental control action but is a direct control action u equal to K e t, but in case 



of a fuzzy PI controller, this is the incremental control action, that is, for PI controller, we 

realized that u K should u K minus 1. The present control action is equal to previous 

control action plus delta u K (Refer Slide Time: 21:29). The fuzzy logic rule base or 

fuzzy logic controller will compute what is delta u K. You already know what the 

previous input is and that has to be added.  

This incremental addition is computed and you know that this incremental addition is a 

function of error and change in error. Hence, the rule should look like this: if error is 

positive-high and change in error is positive- high, then keep the heater on for longer 

duration. Instead of that, probably you should understand that the incremental control 

action here is…. The rule states that I am presenting this to you to let you know how we 

form the rule.  

In case of fuzzy proportional controller, my fuzzy variables, independent variables is only 

one and that is error. In case of a fuzzy PI controller, my independent variables are error 

and change in error. This is e and this is delta e and based on that, the control action is 

computed. For example, here, we have written that if error is positive-high and change in 

error is positive-high, then keep the heater on for longer duration. Rule 2: if error is 

positive-low and change in error is positive-low, then keep the heater on for smaller 

duration.  



(Refer Slide Time: 23:08) 

 

This is the architecture of a fuzzy logic controller. This is the short form for fuzzy logic 

controller (Refer Slide Time: 23:16), Mamdani type. This is the Mamdani type controller, 

where the actual data that the controller is receiving is crisp data or classical data that has 

a definite value. That crisp data goes to the fuzzy logic controller and it has these four 

components that you can see: fuzzifier, rule base, inference engine and defuzzifier. 

Fuzzifier. In a fuzzy logic controller, the computation is through linguistic values, not 

through exact computation. Naturally, the fuzzifier would fuzzify the crisp data. In case 

of temperature, I can say it is hot, medium-hot, cold, medium-cold, very hot and normal. 

These are the fuzzifier. That means given a crisp data or the value of temperature say 40 

degrees, then I have to now convert to various linguistic values and each linguistic value 

will be associated with a specific membership function. That is fuzzifier.  

Once the data has been fuzzified, then it goes to the rule base and using an inference 

mechanism…. The inference is taking place in fuzzy term, not in classical term and after 

a fuzzy inference takes place about the decision or about the control action, we place a 

defuzzifier. What this defuzzifier does is it converts the fuzzy control action to a crisp 

control action. 
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In general, what we can say is the principal design parameters of a fuzzy logic controller 

are the following: fuzzification strategies and interpretation of a fuzzification operator. 

How do we fuzzify a crisp data? In the database, the discretization or normalization of 

universe of discourse is done, because we must know the range of data one will encounter 

in an actual plant. Accordingly, the normalization must be done so that we are taking into 

account all possible values of data that one may encounter in a physical plant. 

Fuzzy partition of the input and output spaces. If I know the dynamic range of an input to 

the controller and the input to the plant (input to the plant is actually output to the 

controller)… if I know the dynamic range, then in that dynamic range, I must learn how 

to do fuzzy partition of the input and output space and this fuzzification suits such the 

process should be complete in the sense.… You see that I am drawing a universe of 

discourse here. This is the real value for a specific variable x1. If I have defined a fuzzy 

set like this and like this, you can easily see that this part of the data is not associated with 

any fuzzy membership. This is mu and this is x1 and unfortunately, this part is not 

associated with any membership.  

This fuzzification process is not complete. That means the entire universe of discourse in 

a specific domain, wherever there are control systems…. There are various kinds of 



control systems: process control, robot control, and aircraft control. Every control system 

is associated with some input data and some output data. All possible input data and all 

possible output data should be associated with a specific linguistic value as well as a 

membership function. 

Choice of the membership function of a primary fuzzy set. We must be very clear what 

category and what kind of…. We have already discussed in the first lecture the varieties 

of membership function. We talked about triangular membership function, trapezoidal 

membership, pi function, and so on. We have to be very clear about what kind of 

membership function we would like to employ.  

(Refer Slide Time: 28:30) 

 

Now, rule base. Once fuzzification is done, how do we create a rule base? As I said, 

typically, in the rule base, the two variables that are most important are error and change 

in error and we also showed why it is so. Rule base. Choice of process state input 

variables and control variables. You know that if I am implementing a fuzzy state 

feedback controller, then, a fuzzy state feedback controller u would be minus K x. So, x 

is the states of the system, whereas if I am implementing a fuzzy PID controller, then it 

will be u old plus K delta u k. Here, this delta u k is a function of error and change in 



error, whereas, in a state feedback controller, this is a common signal r and so, the control 

action is dependent on state x1, x2, and xn.  

Source and derivation of fuzzy control rules. How do I derive these rules? What is the 

basis? Types of fuzzy control rules. A type of fuzzy control rule means whether it is a 

PID controller, fuzzy PID controller or it is a fuzzy state feedback controller. Similarly, 

completeness of fuzzy control rules means given any crisp data in the domain of input 

space as well as output space, do I have in my rule base a specific rule associated with 

this data? If I do not have any rule for this data, then the FLC will fail. That is meaning of 

completeness of fuzzy control rules.  

Then, fuzzy inference mechanism. We have already talked about what is fuzzy inference 

mechanism. Given multiple rules, how do we infer the consequence part? Defuzzification 

strategies and the interpretation of fuzzification operator. Once the fuzzy inference is 

done, from the fuzzy inference, how do I get a crisp value or a crisp control action? This 

is called defuzzification.  

(Refer Slide Time: 31:18) 

 

Now, I hope you are very clear about the complete architecture of a fuzzy logic 

controller. This is your process or a plant. You have sensors. They provide the plant state 

data and then, you have this fuzzification, crisp-to-fuzzy interface and then, inference 



mechanism. This inference mechanism takes the help of the fuzzy rule base and given a 

specific sensor data, it evaluates what should be the fuzzy control action. From fuzzy 

control action, we go to defuzzification, which we call fuzzy-to-crisp interface, and 

finally, the control action. This is your control action here in this domain (Refer Slide 

Time: 32:05). This control action is actuated through actuator to the (Refer Slide Time: 

32:09) process. This is the overall structure of a fuzzy logic controller. 

(Refer Slide Time: 32:42) 

 

Now, I will be a little precise in terms of some of the concepts that Mamdani type fuzzy 

logic controller is involved with. In a Mamdani type fuzzy logic controller, the 

fuzzification processes…. Not only Mamdani but this is the normal fuzzification process. 

Let us say I have rule 1 and this is rule 2. Of course, all my rules…. Normally, a fuzzy 

PID controller has two fuzzy variables: one is error and another is change in error. 

because I know what my error at the command signal is and I know what my output from 

the system is. I compare it with the command signal and then, I know what the error is. 

Given a command signal and output, I know what the error is. I also know what is the 

change in error, because I know what was the previous error and what is the error now. 

By subtracting the previous error from the current error, I know what my delta e is. I 

know these things already. That means the fuzzy logic controller has the information of 



error and change in error. If you know the change in error and what is the crisp value, 

then the corresponding fuzzy membership is computed according to the rule. 

The rule defines that if my error is A1 1 where A1 1 is a specific fuzzy set (in this case, it 

is triangular shaped, triangular membership function), you can easily see… now, this 

particular crisp input has a fuzzy membership 0.7 in the fuzzy set A1 1. Similarly, the 

second fuzzy variable, that is, change in error whose crisp input is this value, this specific 

value (Refer Slide Time: 34:36), has a fuzzy membership function 0.4 in fuzzy 

membership function A2 1.  

The error is A1 1 and change in error is A2 1. Now, given the crisp data, which is error 

and change in error, we have a corresponding membership function for rule 1. Rule 1 

shows that the error has membership function 0.7 and the change in error has 0.4. In the 

second case, in rule 2, the same crisp input gives you 0.6 membership function and the 

other crisp input gives you 0.8 membership function. 

This is how we fuzzify a crisp data to fuzzy data or we make them fuzzy, that is, the crisp 

input for variable x1 and x2…. Actually, this is not x1 and x2 but e and delta e are 

converted to fuzzy sets using triangular membership functions. It is not always triangular, 

it can be anything, but normally in control literature, most of these membership functions 

are triangular functions.  
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Defuzzification. Once I know how to do the fuzzification, defuzzification is explained in 

the following diagram. You see that among various defuzzification methods, the most 

popular is center of gravity method. How do I do it? Crisp input is given at any situation, 

any k th sampling instant and the fuzzy logic controller gets the command signal, gets the 

actual output of the plant, computes the error, computes the change in error and then, 

those crisp values are fed into the fuzzification layer. Then, you have the membership 

function. You pass on those fuzzy data to the rule base and then, for a specific rule 

base… You see that in rule 1, you see that if you compare the membership mu A1 1 and 

mu A2 1, mu A2 1 is the minimum and correspondingly, you shade the zone of action. 

This is delta u. How much should be the incremental control action? This is my shaded 

portion or shaded portion of my control action.  

Now I take a second one, second rule and there again, I evaluate the fuzzy membership 

function A1 2 and A2 2. You see that the membership function in A1 2 is less. 

Corresponding to that, we shade the incremental control action. Now, you see that if I 

take the maximum of these two shaded zones, I get this (Refer Slide Time: 38:03), 

maximum of this. After I get, this is the fuzzy decision, this is the fuzzy incremental 

control action, but how do I convert this fuzzy incremental control action to a crisp 

action? That is by the center of gravity method. In the center of gravity method, I 



integrate mu delta u d delta u upon integration of mu d delta u. If I integrate this function, 

I get somewhere here to be the center of gravity. delta mu star is this value, which is 

graphically shown here. We discussed about Mamdani type fuzzy logic controller.  

(Refer Slide Time: 39:04) 

 

Now, in the second part of this lecture, we will be discussing about the Takagi–Sugeno 

fuzzy model. We will not discuss about how we design the control system but we will 

just present how an actual physical system is modeled using Takagi–Sugeno (T-S) fuzzy 

model. A general Takagi–Sugeno model of N rules for any physical plant, a general T–S 

model of N rules is given by Rulei. This is the i th rule. If x1 k is a specific fuzzy set M1 i 

and x2 k is another specific fuzzy set M2 i and so on until xn k is another fuzzy set Mn i, 

then the system dynamics locally is described as x k plus 1 is Ai x k plus Bi u k, where i 

equal to 1, 2 until N, because there are N rules.  

The slide we represented here is the discrete time. I hope that all of you know that this is 

a discrete time state-space model (Refer Slide Time: 40:59). This k refers to a discrete 

time index or sampling instant, xj is the j th linguistic variable or state, Mj is a fuzzy set 

of xj, and Mj i is a fuzzy term of Mj selected for rule i. If two state variables in a plant are 

temperature and pressure, then M1 would stand for temperature and M2 will stand for 

pressure. Similarly, if some physical system has two state variables like position and 



velocity, then we can say M1 is the fuzzy set associated with position and M2 is the fuzzy 

set associated with velocity. Then, M1 i and M2 i are the various fuzzy terms within each 

fuzzy set. If I am looking at the fuzzy set for position, then, I can describe position to be 

positive big, positive small, positive medium, negative small, or negative medium. So, 

this is a specific term. These are Mj i. Similarly, if it is temperature, if my state variable is 

a temperature, then Mj would be a temperature fuzzy set and Mj i would be a term like 

hot, cold, and medium. This is how this T-S fuzzy model is described. 

(Refer Slide Time: 43:06) 

 

We are assuming that my physical system is described by n state space – n states, which 

are x1 k, x2 k until xn k and the inputs are m-dimensional input vector, that is, it is a 

multi-input system. I have some a priori understanding about the system. 



(Refer Slide Time: 43:35) 

 

Now we will go to a simple system. You know a single link manipulator. What is a single 

link manipulator? You know that there is a hinge and to the hinge is attached one 

manipulator or one link and there is a motor here (Refer Slide Time: 43:45). This is your 

motor and this manipulator can go in this direction, it can rotate vertically in the vertical 

plane. It can rotate either anticlockwise or clockwise.  

Normally, if I assume this is my hinge, then this is my link. If I assume this to be my 

neutral position, that is, theta = 0. When this link comes to this position.… I can say this 

is positive 90 degrees (Refer Slide Time: 44:43) and this position is negative 90 degrees, 

the moment it takes. (Refer Slide Time: 44:52) you define. For such a single link 

manipulator, you can easily derive the dynamics. If this is my theta with respect to my 

vertical axis…. This is my vertical axis (Refer Slide Time: 45:13) and this is my theta. 

So, the torque will be m l square theta double dot plus m g l sine theta. Given the amount 

of torque that the motor would apply at this hinge, the position and velocity of the link 

would vary according to this dynamics.  

That is m l square theta double dot, this is the acceleration plus m g l sine theta is tau. 

You can easily derive this. Now, if I take x1 = theta, the angle of the manipulator from 

the (Refer Slide Time: 46:06), and x2 equal to theta dot, which is the angular velocity of 



the manipulator, and tau is the control torque, then I can write this equation in the state-

space format. This is the state-space model (Refer Slide Time: 46:31), where you can 

easily see x1 dot is theta dot, which is x2, and x2 dot, which is theta double dot is equal 

to, you can see, minus m g l sine x1 divided by ml square which is minus g by l sine x1 

plus 1 upon m l square into tau, the control action. You have a system single link 

manipulator that has two states. We would like to represent this dynamics as a fuzzy 

system. How do we do it?  

(Refer Slide Time: 47:20) 

 

Let us consider the fuzzy set variable x1 is M1, which is positive large, positive small, 

zero, negative small, and negative large, which is written here. Similarly, the fuzzy set 

associated with the variable x2.… x1 is angular position and x2 is angular velocity and for 

that, the fuzzy set is M2 and the fuzzy terms are positive large, positive small, zero, 

negative small, and negative large. At the moment, we are not bothered….  

You can consider these fuzzy terms to be either triangular or pi function or s function or 

Gaussian function or trapezoidal function. We will not be interested so much on that 

aspect now, but what is important to learn is that if I have a rule, a system dynamics 

defined in two fuzzy variables, each fuzzy variable is again partitioned into five fuzzy 

zones. Then, the total number of rules that are necessary to describe such a dynamical 



system could be 25. What I have to say now is that if x1 is positive large and x2 is 

positive large, then the system dynamics is this. For example, here, rule 1: if x1 t is 

positive large and x2 t is 0, then x dot t is A matrix into x t plus B matrix into input tau. 

Similarly, you can derive another rule: if x1 t is positive small and x2 t is 0, then my 

system dynamics can be written in terms of a linear state-space equation, which is x dot t 

equal to A x t plus B u t.  

Just like we have written in terms of continuous linear model, we can also write in terms 

of a discrete linear model. These expressions also can be written in terms of known 

simple nonlinear models. It is up to the designer (the control system designer) what kind 

of rules he needs in the domain of T-S fuzzy model. What we are talking about is given a 

dynamical system, how do we derive the T-S fuzzy model of a dynamical system so that 

we can design a specific controller for the system? 

(Refer Slide Time: 50:11) 

 

The T-S fuzzy model. Let mui be the product of all the fuzzy memberships associated 

with the fuzzy term in a rule base. Previously, we have two fuzzy terms: positive large 

and 0 (Refer Slide Time: 50:32). Given a crisp data, that is, x1 and x2, you have a specific 

membership function from positive large and another specific membership from 0. You 



multiply them. Sometimes, you multiply and sometimes, you also take the minimum. 

This is the product rule that we have taken. You can also take mean.  

For this individual membership function, I can take a mean and that membership function 

is associated with this dynamics (Refer Slide Time: 51:25). Given a crisp data, we 

compute the membership function for each fuzzy term and the product of these fuzzy 

terms or the mean of this fuzzy terms is associated with the dynamical equation in that 

fuzzy zone. Then, the overall system dynamics is expressed as x k plus 1 is sigma, is 

summation….  

If I have N rules, then I have N such linear systems and each linear system is associated 

with a fuzzy membership function, which is mui k and that is normalized further, because 

each linear system is associated with mui k and we normalize. The normalized 

membership function is sigmai k. This is the (Refer Slide Time: 52:40) such that the 

summation of all sigmai k is equal to 1.  

Try to understand what we are trying to do now. Given a set of rules, for each rule…. 

What does a set of rule mean? A dynamic system is fuzzy partitioned into 25 different 

fuzzy zones. That is the meaning and in each fuzzy zone, we have a linear model. Now, 

we are trying to define what is the global model. The global model is described by this 

expression (Refer Slide Time: 53:26), where this is the linear model for the i th fuzzy 

rule.  

I have N rules and for each fuzzy rule, the associated fuzzy membership is mui, which is 

computed by either the product rule or mean rule. That is how we compute the global 

fuzzy dynamics of a system. If the system is autonomous, then u k is 0. We can 

conveniently write x k plus 1 is sigma summation sigmai k into Ai x k, where again 

sigmai is the normalized membership function associated with the i th linear model in the 

i th fuzzy zone. 
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Now, we will explain this concept through an example. Let us consider the following two 

rules of T-S fuzzy model. If x1 is large and x2 is moderate, then x k plus 1 is (0.5, 0.4, 2, 

1) into x k. If x1 is large, x2 is large, then x k plus 1 is (0.6, 0.8, 1, 2) into x k, where x k 

is…. Of course, this is a two-state dynamical system. The measured values of x1 and x2 

at k = 1 are 40 units and 20 units, respectively, that is, x1 1 is 40 and x2 1 is 20 units. 

The question that is asked is evaluate the actual system state at k = 2, looking at this 

fuzzy model. Given a crisp data, can I… if the crisp data is given at the k th instant…. 

The state of the actual system is given at the k th instant. Now using the T-S fuzzy model, 

compute the crisp state of the system. 
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In this example, we assume that x1 is large and x2 is moderate and here, x1 is large and 

x2 is large. For these four fuzzy terms, their associated membership functions are 

muLARGE 1 is 0.3, muMODERATE 1 is 0.3, muSMALL 2 is 0.7 and muLARGE 2 is 0.8. Given 

that, according to the T-S fuzzy model, this is my global fuzzy dynamics. This is not hi, 

this is sigmai k (Refer Slide Time: 56:44) Ai x k, where sigmai k is the associated fuzzy 

membership.  

What do we do? We have two rules. For each rule, I have to compute what is the 

associated membership value. The associated membership value for the rule 1 would be 

product of this membership function and this membership function 0.3. So muMODERATE 1 

is actually not 0.3, this is 0.4 (Refer Slide Time: 57:20); 0.3 into 0.4 is 0.12. Similarly, 

mu2 1 is the fuzzy membership associated with the second rule or second linear system, 

that is, muSMALL 2, which is 0.7, into muLARGE 2 is 0.8 is 0.56. The normalized value….  
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mu1 is normalized, then we get sigma1 1; mu2 1 is normalized, we get sigma2 1; sigma1 

1 is 12 upon 68 and sigma2 1 is 56 upon 68. Finally, we find out the actual crisp value x2 

using this dynamics, which is i equal to 1 to 2. We have two rules. sigmai 1 is the 

associated normalized fuzzy membership, Ai is the associated system matrix and x is the 

state vector, which is x1 and x2 and the 1 stands for the sampling instant.  

If we compute that, you get 12 upon 68, my A1 matrix is given as this (Refer Slide Time: 

58:46), my x1 is (40, 20). Similarly, the second rule 56 upon 68 is my membership 

function associated, A2 is given as this (Refer Slide Time: 58:57) and at the k th sampling 

instant, my x1 or the states are 40 and 20. If you compute, this is my answer: 37.88 and 

83.52. You got an idea how by using T-S fuzzy model, we can describe the dynamics of 

an actual plant. We will discuss about the T-S fuzzy model and Mamdani type of fuzzy 

logic controller in this course in detail and in depth later. 
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Today, we end this class with the summary. What we learnt today is the utility of fuzzy 

control, why we employ fuzzy control, classical PID controller and fuzzy PID controller, 

whether they have a connection or they do not have a connection. We showed the idea 

that normally in Mamdani type of fuzzy controller, the incremental control action is 

dependent on two fuzzy variables, that is, error and change in error. It basically comes 

from the structure of PI controller or PID controller. Then, we learnt complete 

architecture of fuzzy control system and what are the various components of fuzzy 

control system. Some useful fuzzy control systems are popularly known as Mamdani type 

fuzzy logic system and Takagi–Sugeno fuzzy model. Thank you. 


