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Fuzzy Rule base and Approximate Reasoning 

Today, we will be discussing fuzzy rule base and approximate reasoning. This will be 

lecture 3 in module 2 of Intelligent Control, which is Fuzzy Logic in module 2. Last 

class, we discussed the relation. We learned what a fuzzy relation is. Today, we will be 

dealing with the inference mechanism from a fuzzy rule base. What is a rule base?  

(Refer Slide Time: 01:03) 

 

Topics to be covered today are linguistic variables, fuzzy rule base, fuzzy implication 

relations, fuzzy compositional rules, approximate reasoning for discrete fuzzy sets, 

approximate reasoning for continuous fuzzy sets, and summary.  
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What is fuzzy linguistic variable? Algebraic variables take numbers as values, while 

linguistic variables take words or sentences as values. You already know that if I have a 

variable x, then if it is an algebraic variable, it may take natural numbers or real numbers 

depending on what kind of variable it is. Similarly, a fuzzy variable x will take values 

that are linguistic values. For example, let x be a linguistic variable with a label 

‘temperature’. The universe of discourse is temperature. In that universe, I am looking at 

a fuzzy variable x when I describe the temperature. The fuzzy set temperature denoted as 

T can be written as T = very cold, cold, normal, hot or very hot.  

From place to place, people may use different connotations for describing the 

temperature but we have taken for example's sake this particular set to describe 

temperature in natural language. Looking at the temperature, one may say it is very cold 

or cold, normal, hot or very hot. Here, temperature is the base variable, which is also 

called as the universe of discourse. Each item in this fuzzy set is a fuzzy linguistic value 

for the variable x. If temperature is a fuzzy variable, then the linguistic values for this 

fuzzy variable are very cold, cold, normal, hot, and very hot. 
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We will take some other examples of linguistic variables. For example, we can talk about 

age, which is one linguistic variable; height is another linguistic variable. Let me say that 

this is the linguistic variable. One is age and another is height. Then, I can say that the 

linguistic values for age would be young, old, and very old. This would be the linguistic 

value for age, whereas for height, we can say short, medium, or tall.  

These are the linguistic values for height and for each category, we can say there is a 

defined dynamic range. For age, we can define of course 0 to 100; very rarely, people 

live for more than 100 years. We can say 0 to 100. If I say young, probably the prime 

should be… anybody who is less than 25 years would be young. I can define old to be 

around 50 years and very old as those who are around 70 years. Like that, we can define 

the dynamic range for age whose linguistic values are young, old, and very old. This is 

years (Refer Slide Time: 06:26).  

Similarly, we can easily say 3 to 7 feet for height – short, medium, and tall. We rarely see 

a person who is less than 3 feet and also persons who are above 7 feet are very rare. 

Between 3 and 7 feet, we can define the dynamic range for the height and the linguistic 

values can be ascribed as short, medium, and tall, and then after dynamic range, we 

define membership function. How do we define? 



Given an age, we have to find out how much that membership… – young or…. For 

example, if somebody's age is 40, how young is he? The membership value may be for a 

40 year old, we can say how young he is 0.5 and for how old he is – maybe, he is in the 

middle between young and old. So, we can say 0.5 membership muold. A 40-year-old 

person may be ascribed as a membership function under the category young to be 0.5 and 

membership function onto the category old to be 0.5. Similarly, for height also, we can 

define mushort membership function and mutall and so on. Given a crisp value for age or 

for height, as many linguistic values are there, we get that many membership functions. 

For each linguistic value, we get a specific membership function. 
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Once we talked about linguistic values, now we will introduce another term called 

linguistic modifier. Consider a fuzzy set young. Now, if you look at the set young, those 

who are 20 years old the membership function young is 0.8, for 30 years old it is 0.6, for 

40 it is 0.2, and 60 obviously is no more young, so 0. If a fuzzy set young is given, which 

is a subset of a fuzzy set called age…. I can say this is a subset of age. Age is the superset 

or the universal set for defining young. Now, the linguistic variable very young where 

very is the modifier…. Once I define what young is, in very young, very is the modifier. 

So, we can probably define that their membership function as very young to be young 

square, that is…. (Refer Slide Time: 10:07) What does young square mean? This 



membership function gets squared, that is 0.8, becomes 0.64, 0.6 becomes 0.36, 0.2 

becomes 0.4, and 0 is 0. 

Given a specific set, if I ascribe to the set and the modifier, probably we can define some 

kind of rule by which the very young can be defined. It is not that always very young will 

be young square. This is just one way to evaluate a linguistic value very young given 

young. Similarly, the linguistic variable very very young can be written by induction as 

again young to the power of 4. If I define very young to be young square, then very very 

young has to be young to the power 4. Obviously, in that case 20 is 0.4096, which is 0.64, 

the membership function square. You define a 0.64 square is 0.4096, 0.36 is 0.1296, 0.04 

is 0.0016 and similarly 0 is 0. This is the notion of linguistic modifier.  

Another example. Similarly if a is a fuzzy set, I can define extremely a to be a cube, very 

a is a square, more or less is a to the power half and slightly a is a to the power 1 upon 3, 

so cube root. So, cube root of a, square root of a (Refer Slide time: 12:06), a square, and a 

cube, depending on whether the modifier is extremely or very or more or less or slightly. 

This is where we can deal with linguistic modifiers.  

We gave some idea about the linguistic values and linguistic variables. These are 

necessary because in the traditional sense, when we express worldly knowledge, we 

express them in natural language. So here it is. From computational perspective, such 

worldly knowledge can be expressed in terms of rule base systems.  
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Worldly knowledge is very conveniently expressed in natural language. When we 

describe the worldly knowledge, natural language is the best way to describe them. The 

rule base is one of the ways to represent knowledge using natural language for 

computational purpose of course. A generic form of a rule base is as follows. What we 

said is that the worldly knowledge can be represented in terms of rule base and a rule 

base is described as if premise or antecedent, then conclusion is consequent. 

The above form is commonly referred to as the IF-THEN rule-based form. It typically 

expresses an inference such that if we know a fact, we can infer or derive another fact. 

Given a rule, I can derive another rule or given a rule, if I know a rule and the associated 

relation, then given another rule, I can predict what should be the consequence.  
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This is a fuzzy rule base. Any worldly knowledge can be expressed in form in the form of 

a rule base. Now, when I talk about fuzzy rule base, fuzzy information can be represented 

in the form of a rule base, which consists of a set of rules in conventional antecedent and 

consequent form such as if x is A, then y is B, where A and B represent fuzzy 

propositions (sets). Suppose we introduce a new antecedent say A dash and we consider 

the following rule if x is A dash, then y is B dash, from the information derived from rule 

1, is it possible to derive the consequent in rule 2, which is B dash?  

This is the question that we are trying to answer in a fuzzy rule base. A fuzzy rule base 

consists of a set of rules. From these rules, if I know rule 1, if I know what A is, what B 

is, if I have derived them, and if I have the knowledge of A dash, can I compute what is B 

dash? This is a very simple way. Now, I am presenting the problem to all of you, that is, 

we know rule 1. We know what is the set A and set B. In rule 2, we know only A dash 

but not B dash. Can we infer B dash? This is the question. The answer is yes. The 

consequent B dash in rule 2 can be found from composition operation B dash equal to A 

dash… this is called the compositional rule of inference, the compositional operator with 

R.  
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We talked about fuzzy rule base. It consists of a set of rules. Now, how do we infer 

knowledge from this rule base? There are certain steps. First, we will understand what 

fuzzy implication relations are. A fuzzy implication relation for a given rule if x is Ai, 

then y is Bi is formally denoted by Ri. x, y is the relation matrix whose elements are 

given by mu Ri x, y and this mu Ri x, y is constructed or is computed by various 

implication rules. There are various kinds of implication rules. Now, we will understand 

them.  

What is the implication rule? If p then q. This is called implication rule, where both p and 

q are fuzzy propositions. If x is Ai, then y is Bi, but p also can be multiple propositions. If 

x1 is A1, x2 is A2 and so on, then what is y? Let us take this simple relation, fuzzy rule. If 

x is Ai, then y is Bi. I will say this is p (Refer Slide Time: 18:56) and I will say this is q. 

If p, then q. 

Now, we will talk about Dienes–Rescher Implication. In this, if p then q states that p is 

true but q is false is impossible, that is, in this proposition, in this rule, if I say if p is true, 

then to say that q is false is impossible. That means if p is true, then q is false is a false 

statement, it is not possible. This is one argument. What does it mean? That means p 

which is true and not q (q is false, so not q is true) is false. Using De Morgan's Law, we 



can show that p and not q is the same as not p or q. Thus, the relational matrix can be 

computed for this particular relation not is mu Ri x, y is maximum. This is maximum 

because or means maximum and not p means 1 minus muAi x, p is if x equal to Ai. 

Obviously, the membership function given a crisp value is muAi x, where x is the specific 

crisp value. muAi x is the fuzzy membership function of p. not p is 1 minus muAi x and 

similarly for q, the membership function is muBi y. The maximum value comes because 

of the or operation – this or this (Refer Slide Time: 21:29). Obviously, the relation from 

A to B is defined by this expression. 
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We will go to another type of implication relation, which is very popular in control 

engineering as well as fuzzy systems. It is called Mamdani implication. In this, when 

fuzzy IF-THEN rules are locally true, then using Mamdani implication, p implies q 

implies p and q is true. This is the AND operation; p and q are both simultaneously true. 

That is because we say that each rule is locally true. If p is true, then q is true. We do not 

ascribe any other means by which q can be true. Thus, the relational matrix can be 

computed using any of the following expressions.  

We have already explained the first one in the relation class that this is min operation or 

product operation. This is a min or product. What you are seeing is that I find out the 



element of the relation matrix associated with the rule p implies q is that the minimum of 

muAi x and muBi y using Mamdani implication…. If x is A1, then y is B1 or here, we 

have written Ai and Bi. If x is Ai, then y is Bi. The relation matrix associated with this A 

which is R, the relation matrix we can put like this where… This is my x (Refer Slide 

Time: 24:19), this is my y, so any typical element associated with xi is minimum of mu x 

in fuzzy set Ai and mu y in fuzzy set Bi. Each element in R is computed as using 

computed using either this formula (Refer Slide Time: 24:43) or this formula. The 

Mamdani implication rule is widely used in fuzzy system and fuzzy control engineering. 

In this, if the temperature is hot, then fan should run fast. This rule does not imply if 

temperature is cold, then fan should run slow; this means each rule is independent, they 

are locally true, we cannot infer. 
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A fuzzy implication relation is another category, which will call Zadeh implication. This 

is if p implies q may imply either p and q are true or p is false. What we are saying is that 

just like a local Mamdani rule, we say p and q are true imply either p and q are true or p 

is false. Thus, p implies q means…. p and q are simultaneously true, which is Mamdani 

local rule or if p is false, then p implies q has no meaning or p is false. This has taken an 

extra logic that is p and q or not p.  



Thus, the relational matrix can be computed as follows. If I look at this, what is p and q? 

p and q means minimum of muA x and muB y. What is not p? 1 minus muAi x. This entire 

thing (Refer Slide Time: 26:50) has to be maximum of minimum of these and this, which 

is this statement. mu, the relational matrix elements are computed using this particular 

expression. Given a set of rules, we just learnt various schemes by which we can 

construct a relational matrix between the antecedent and the consequent. The next step 

would be to utilize this relational matrix for inference. This method is commonly known 

as compositional rule of inference, that is, associated with each rule we have a relational 

matrix. So, given a rule means given a relational matrix and given another antecedent, 

how can I compute a consequent? This is the prime question that we are asking. 
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This is derived using fuzzy compositional rules. The following are the different rules for 

fuzzy composition operation, that is, B equal to A composition R. R is the relational 

matrix associated with a specific rule, A is a new antecedent that is known, R is known, B 

is the new consequent for the new antecedent A. I have to find out what is B for this new 

A, given R. That is computed by A composition R and we have already discussed in the 

relation class that there are various methods and max-min is very popular.  



First, we compute min and then max. Similarly, max-product: instead of min, we take the 

product and compute what is the maximum value. Similarly, min-max: instead of max-

min, it is min-max. First, max and then min. Next, max-max and min-min. One can 

employ these looking at the behavior of a specific data.  

(Refer Slide Time: 29:34) 

 

Now, we will take an example. We are given a rule if x is A, then y is B, where A is this 

fuzzy set: 0.2 for 1, 0.5 for 2, and 0.7 for 3. This is a discrete fuzzy set. B is another fuzzy 

set that defines fuzzy membership 0.6 for 5, 0.8 for 7, and 0.4 for 9. The question is infer 

B dash for another rule if x is A dash, then y is B dash, where A dash is known. A is 

known, B is known, and A dash is known. What we have to find out is what B dash is. 

Infer B dash is the question that is being asked (Refer Slide Time: 30:21). Hope you 

understand. 

Using Mamdani implication relation, first we will find out between A… the first rule, that 

is, if x = A, then y is B. The relational matrix associated with this rule is…. For R, how 

do we compute? A elements are 1, 2, and 3 and B elements are 5, 7, and 9. We have to 

find out now for 0.2. Here, we compare with all the elements in point B and with each 

element, we found what the minimum is. The minimum is always 0.2. Hence, the 

maximum of that is always 0.2. I have to find out the relational matrix between A and B. 



The Mamdani principle means minimum, so between 1 and 5, 1 is associated with 0.2, 

and 5 is associated with 0.6, so the minimum is 0.2. Similarly, 1 is associated with 0.2, 7 

is associated with 0.8, so for 1 and 7, the minimum is 0.2. Similarly, 1 is associated with 

0.2, 9 is associated with 0.4, so from 1 to 9, the minimum membership is 0.2. Similarly, 

you can see that from 2 to all the elements 5, 7, 9, the minimum are 0.5, 0.5, and 0.4. 

Similarly, from 3 to 5, 7, and 9, we have 0.6, 0.7, and 0.4. These are the minimum fuzzy 

memberships between an element in A to element in B. That is how we compute the 

relational matrix.  

Once we compute the relational matrix, then we use max-min composition relation to 

find out what is B dash, which is A dash (which is 0.5, 0.9, and 0.3) composition R and 

you can compute. This is my R. I have to find out my matrix. This is 0.5, 0.9, and 0.3. So 

this composition R (Refer Slide Time: 33:09) is… you can easily see I take this row 

vector, put along the column matrix and I see what is the minimum for each case. You 

can easily see 0.2 will be minimum here, 0.5 will be minimum here, 0.3 and maximum is 

0.5.  

The first element is 0.5. Again, I take this place in parallel with this column and then, I 

find first minimum here is 0.2, here 0.5, here 0.3 and then maximum is again 0.5. Again, 

I take the same row vector, put along this column vector and then, I find here the 

minimum is 0.2, here minimum is 0.4, here minimum is 0.3 and the maximum is 0.4. 

This is the relation, this is the answer (Refer Slide Time: 34:05). This is our B dash. 

Given A, this is my B dash using fuzzy compositional principle or relation. 
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There are other mechanisms also that we discussed. For the same example, if you use 

max-min, you get B dash; for max-product, you get another B dash; for min-max, you get 

another. Min-max and max are same for this example. Then, for max-max, you see that 

all the fuzzy membership are the maximum values and for min-min, they are the 

minimum values here. Now, the question is what is the approximate reasoning? 

Approximate reasoning means given any logical system, we do not have, it is very 

difficult to make an exact result. That is why from engineering perspective, we are more 

liberal. We do not want to be so precise. As long as our system works, we are happy; if 

our control system works, we are happy.  



(Refer Slide Time: 35:40) 

 

Approximate reasoning. We have set up rules so we use a specific compositional rule of 

inference and then we infer the knowledge or the consequence. Given a rule R (R is the 

relational matrix associated with a specific rule) and given a condition A, the inferencing 

B is done using compositional rule of inference B equal to A composition R. The fuzzy 

sets associated with each rule base may be discrete or continuous, that is, A may be 

discrete or A and B may be discrete or continuous.  

A rule base may contain a single rule or multiple rules. If it is continuous, I cannot define 

what the R relational matrix is. It is very difficult because it will have infinite values. R is 

not defined. That is why for continuous, we apply compositional rule of inference but the 

method to compute is different. A rule base may contain single rule or multiple rules. 

Various inference mechanisms for a single rule are enumerated. Various mechanism 

means we talked about min-max, max-min, max-max, min-min and so on. The inference 

mechanism for multiple rules…. 
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Single rule. Now, we will take the examples one by one. Single rule with discrete fuzzy 

set. We talked about a fuzzy set that may consist of a single rule or multiple rules. It can 

be discrete fuzzy set or a continuous fuzzy set. We will try to understand how to make 

approximate reasoning for such a rule base using the methods that we just enumerated. 

For each rule, we compute what is the relational matrix if it is discrete fuzzy set and then 

we use compositional rule of inference to compute the consequence given an antecedent. 

That is for discrete fuzzy set. We have already talked about this but again, for your 

understanding, I am presenting another example for single rule with discrete fuzzy set.  

Rule 1: If temperature is hot, then the fan should run fast. If temperature is moderately 

hot, then the fan should run moderately fast. In this example, we are given the 

temperature is in degree Fahrenheit and the speed is expressed as 1000 rpm. The fuzzy 

set for hot H is for 70 degree Fahrenheit, 80 degree Fahrenheit, 90 degree Fahrenheit, and 

100 degree Fahrenheit, the membership values are 0.4, 0.6, 0.8, and 0.9. Similarly, for the 

fuzzy set F, for which the fan should run fast, the fuzzy set is for 1000 rpm, the 

membership is 0.3, for 2000 rpm, the membership is 0.5, for 3000 rpm, the membership 

0.7, and for 4000 rpm, the membership is 0.9.  



Given H dash, which is moderately hot, to be for 70… moderately hot means it is a little 

more hot. So, same temperature obviously and their corresponding membership values 

will reduce, because if I am describing moderately hot, they will have the same 

temperature but the membership values will be less. You can easily see here that for 70, 

instead of 0.4, now it is 0.2; for 80, instead of 0.6, it is 0.4; for 90, instead of 0.8, it is 0.6; 

for 100, instead of 0.9, it is 0.8. This is moderately hot. Now, the question is find F dash.  

I hope you are clear with this question. The question is very simple. We are given rule 1, 

we have defined what is the fuzzy set hot and fuzzy set fast by these two statements and 

in the second rule for moderately hot, we know the fuzzy set. We do not know what the 

fuzzy set is corresponding to moderately hot, that is, moderately fast. We do not know 

(Refer Slide Time: 40:22) moderately fast. Find out F dash. If H, then F. If H dash, then F 

dash. Find out F dash. First, what do we do? 

(Refer Slide Time: 40:44) 

 

Corresponding to rule 1, we found out what is R. This is for rule 1. We knew that the 

membership functions for H were 0.4, 0.6, 0.8, and 0.9, and for fast, the membership 

functions where 0.3, 0.5, 0.7, and 0.9. If you look at this, these are my H values, the crisp 

values: 70 degree Fahrenheit, 80 degree Fahrenheit, 90 degree Fahrenheit, and 100 

degree Fahrenheit. This is my speed: 1000 rpm, 2000 rpm, 3000 rpm, and 4000 rpm. 



Between 70 and 1000 rpm, the entry would be minimum of these two (Refer Slide Time: 

41:57), which is 0.3. Similarly, between 0.4 and 0.5, the minimum would be again 0.4 

and then between 0.4 and 0.7, it will be 0.4, and for 0.4 and 0.9, it is 0.4. 

Similarly, we go to the next one, which is 0.6. For 0.6, 0.3 minimum 0.3, for 0.6 and 0.5, 

the minimum is 0.5, for 0.6 and 0.7, minimum is 0.6, for 0.6 and 0.9, it is 0.6. Similarly, 

you can fill all other cells here with their values: 0.3, 0.5, 0.7, 0.8, 0.3, 0.5, 0.7, and 0.9. 

This is my relation matrix associated with rule 1: if H, then F. Now, what I have to do is I 

have to find out F dash given H dash, using the fuzzy compositional rule of inference, 

which is represented like this.  

F dash is H dash compositional rule of inference with R. This is max-min composition 

operation. First, we take the min and then compute. H dash is given as 0.2, 0.4, 0.6, and 

0.8. This is my H dash (moderately hot) and I have to do compositional inference 

between H dash and R. Again, I am repeating so that you understand how to compute it. 

You put this row vector along this column vector first (Refer Slide Time: 44:03). For 

each element, you find out what is the minimum. You see that here it is 0.2, 0.3, 0.3, and 

0.3 and the maximum of that is 0.3.  

Similarly, you take again these values and put them here vertically. Here, the minimum is 

0.2, here 0.4, here 0.5, here 0.5, and maximum is 0.5. I am sure you will see here it is 0.7, 

but in this case, you find that if you take this here, it is 0.2, here 0.4, here 0.6, here 0.8, 

and maximum is 0.8. F dash is 0.3, 0.5, 0.7, and 0.8. That is how we infer or we do 

approximate reasoning for a rule base. This is a very simple case. 
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We will go to a more difficult one, which is multiple rule with discrete fuzzy sets. There 

are two rules now. Rule 1 is if height is tall, then speed is high. Rule 2: if height is 

medium, then speed is moderate. This is describing a rule for a person as to how fast he 

can walk. Normally, those who are tall can walk very fast and those who are short, 

naturally their speed will be less. This is one fuzzy rule that expresses the speed of a 

person while walking. If height is tall, then speed is high and if height is medium, then 

speed is moderate. For this, the fuzzy memberships are defined as tall, high, medium, and 

moderate.  

Tall is 0.5, 0.8, and 1 for various feet like 5, 6, and 7. For speed is high, for 5 meter per 

second, 7 meter per second, and 9 meter per second, the corresponding membership 

values are 0.4, 0.7, and 0.9. For H2, which is medium height, the corresponding fuzzy 

membership… you can easily see that when I say medium in this fuzzy set, 5 has 0.6, 6 

has 0.7, and 7 has 0.6. The moderate speed is 0.6 for 5 meter per second, 0.8 for 7 meter 

per second, and 0.7 for 9 meter per second. If this is the fuzzy set given, now the question 

is given H dash, which is above average, and the corresponding fuzzy set is 0.5, 0.9, 0.8 

for three different heights, find S dash, the speed above normal. I hope the question is 

very clear to you.  



We have two rules. If height is tall, then speed is high; tall is defined and high is defined. 

If height is medium, then speed is moderate. I have already defined the fuzzy sets for 

both medium as well as moderate. They are all discrete fuzzy sets. Now, you are 

presented with new data and what is that new data? You are presented with a data called 

above average, which is 0.5, 0.9, and 0.8 for three different heights for 5, 6, and 7. Then, 

find S dash equal to above normal, that is, if height is above average, then the speed 

should be above normal. How do we do it? 

(Refer Slide Time: 48:12) 

 

This is the solution of this example. We have two rules. Naturally, we will have two 

relational matrices: R1 for rule 1 and R2 for rule 2. I will not go in detail of how we 

compute. You simply you go the antecedent and consequent, look at the membership 

function, find the minimum for each entry. Here, these are the heights and these are the 

speeds; 5, 6, 7 feet is the height and 5, 7, and 9 meter per second are the speeds of the 

individuals. 

Now, you check the fuzzy sets and corresponding to each fuzzy set, find out what is the 

minimum membership function. For 5, 5, you will find the membership function is 0.4, 

minimum 0.5, 0.5, 0.4, 0.8, 0.8, 0.4, 0.8, 0.9. You can verify this. Similarly, R2 can be 

found out. Taking the minimum membership entry between these two fuzzy sets, that is, 



if I say this is H1 (Refer Slide Time: 49:45) and S1 and this is H2 and S2. Look at these 

two fuzzy sets, find out what the minimum entries are for each relation and then, how do 

we compute S dash above normal? We have now two relational matrices. It is very 

simple. We do two composition operations: H dash composition with R1 (this one) and 

again, H dash composition R2 and then, we take the maximum of that, maximum of these 

two. 

You can easily see that the maximum of H dash composition R1, H dash composition R2. 

You can easily see that because H dash is common, this particular expression is the same 

as H dash composition max of R1 and R2. This is R1 and R2. We look at all those entries 

wherever it is the maximum: for 0.4 and 0.6, the maximum is 0.6; for 0.5 and 0.6, the 

maximum is 0.6; for 0.5 and 0.6, the maximum is 0.6. You see the last element here 0.9 

here and 0.6, so this is 0.9. Like that, for all entries of R1 and R2, whatever the maximum 

values, you put these values here (that is called maximum R1 and R2) and take a 

composition with H dash. So H dash composition max of R1 and R2. H dash is already 

given as 0.5, 0.9, and 0.8. If you do this composition, you get 0.6, 0.8, and 0.8. I hope this 

clears your concept of how we compute or we do approximate reasoning in a rule base. 

Similarly, if there are multiple rules, we have no problem and we can go ahead with the 

same principle.  

(Refer Slide Time: 51:54) 

 



The last section that we will be covering today is the multiple rules with continuous fuzzy 

sets. We talked about discrete fuzzy set, but if it is continuous fuzzy sets, how do we deal 

with that? Normally, a continuous fuzzy system with two non-interactive inputs x1 and 

x2, which are antecedents, and a single output y, the consequent, is described by a 

collection of r linguistic IF-THEN rules Where the rule looks like this: If x1 is A1 k and 

x2 is A2 k, then y k is B k, where k is 1, 2 up to r. This is the k th rule. Similarly, we can 

have rule 1, rule 2, rule 3, up to rule r.  

In this particular rule, A1 k and A2 k are the fuzzy sets representing the k th antecedent 

pairs and B k are the fuzzy sets representing the k th consequent. In the following 

presentation, what we will do now is we will take a two-input system and two-rule 

system just to illustrate how we infer from a rule base where the fuzzy sets are 

continuous. The inputs to the system are crisp values and we use a max-min inference 

method. 
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Kindly pay attention, because this is a very important concept that we will be presenting. 

We have two rules here. You can easily see that we have represented graphically. You 

can see there are two variables x1 and x2. There are two fuzzy variables and for each rule, 

we have a consequent y. The first rule says that if x1 is A1 1 and x2 is A2 1, then y is B1. 



Similarly, if x1 is A1 2, x2 is A2 2, then y is B2. Now, how do we infer? Given a crisp 

input, a new input is given, crisp input in the domain of x1 and another crisp input in the 

domain of x2. There can be a system whose two variables can be temperature as well as 

pressure. You can easily think x1 to be the temperature and x2 to be the pressure. For 

example, for a particular given system, you found out the temperature to be 50 degrees 

centigrade and pressure to be some value. Given these two quantities, crisp quantities, 

how do we infer what should be my y?  

To do that, I will just explain how to do this. The crisp input is given – temperature. Now, 

you find out corresponding membership values here. Corresponding to this crisp input, 

we get the membership value in rule 1 as muA1 1 and for the same crisp input, this rule 2 

will provide you muA1 2. Now, in the second fuzzy variable, given crisp input, rule 1 will 

compute… you see that this one will compute muA2 1 and for the second one, the second 

rule, the same crisp input would give this one, which is muA2 2. Once we find out these 

membership values, what do we do? We graphically see which is minimum between 

muA1 1 and muA2 1. The minimum is muA2 1. We take that and we shade these areas in 

consequence. 

Now, we take the second rule. We find between muA1 2 and muA2 2, the minimum is 

muA1 2. We take that minimum and shade the area and consequent part of this rule 2. 

Now graphically, we add these two taking the maximum. First, min and then max. You 

can easily see that when I overlap this figure (Refer Slide Time: 57:14) over this figure, I 

get this particular figure. You overlap this second figure on the first figure or first figure 

on the second figure and take the resultant shaded area. After taking this resultant shaded 

area…. Once you find this shaded area, the next part is to see what is y given a crisp 

value. There are many methods, but we will focus in this class or in this course on only 

one method, that is, center of gravity method. 

Obviously, if I take this figure and find out what is the center of gravity, it is this value y 

star. The crisp output can be obtained using various methods. One of the most common 

method is the center of gravity method. The resulting crisp output is denoted as y star in 

the figure. This is y star. What we learnt in this is given a crisp input 1 and crisp input 2 



and given two fuzzy rules, how do we infer correspondingly a crisp output? Our data is 

crisp, but we are doing fuzzy computation. Hence, rules are fuzzy. We take this data to 

the fuzzy rule base and then fuzzify them through fuzzification process. Graphically, we 

find what is the net shaded area using the max principle. We found out the shaded area 

for each rule in consequent taking the min principle. Taking the max principle, we found 

out the resultant area and then, y star is the center of gravity of these areas.  
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Finally, the summary. In this lecture, we covered the following topics: linguistic variables 

and fuzzy rule-based systems, various fuzzy implication relations, approximate reasoning 

for discrete fuzzy sets and then finally, approximate reasoning for continuous fuzzy sets. 

Thank you very much. 


