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Module — 2 Lecture - 3
Fuzzy Rule base and Approximate Reasoning

Today, we will be discussing fuzzy rule base and approximate reasoning. This will be
lecture 3 in module 2 of Intelligent Control, which is Fuzzy Logic in module 2. Last
class, we discussed the relation. We learned what a fuzzy relation is. Today, we will be

dealing with the inference mechanism from a fuzzy rule base. What is a rule base?
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Topics to be covered today are linguistic variables, fuzzy rule base, fuzzy implication
relations, fuzzy compositional rules, approximate reasoning for discrete fuzzy sets,

approximate reasoning for continuous fuzzy sets, and summary.
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What is fuzzy linguistic variable? Algebraic variables take numbers as values, while
linguistic variables take words or sentences as values. You already know that if | have a
variable x, then if it is an algebraic variable, it may take natural numbers or real numbers
depending on what kind of variable it is. Similarly, a fuzzy variable x will take values
that are linguistic values. For example, let x be a linguistic variable with a label
‘temperature’. The universe of discourse is temperature. In that universe, I am looking at
a fuzzy variable x when | describe the temperature. The fuzzy set temperature denoted as

T can be written as T = very cold, cold, normal, hot or very hot.

From place to place, people may use different connotations for describing the
temperature but we have taken for example's sake this particular set to describe
temperature in natural language. Looking at the temperature, one may say it is very cold
or cold, normal, hot or very hot. Here, temperature is the base variable, which is also
called as the universe of discourse. Each item in this fuzzy set is a fuzzy linguistic value
for the variable x. If temperature is a fuzzy variable, then the linguistic values for this

fuzzy variable are very cold, cold, normal, hot, and very hot.



(Refer Slide Time: 03:53)

\fﬁ'rlnlﬂﬂ.b'-

L{r\?’hlil‘-f

ﬁ.f Hee gt
Yinng shorf .Hd.lill
ol d veryold | {all

[o—160Tys | (3- ?)-_f;#
!!','_j-"'h,u""ﬂ Fﬂtﬂ" 1/"‘-&“

We will take some other examples of linguistic variables. For example, we can talk about
age, which is one linguistic variable; height is another linguistic variable. Let me say that
this is the linguistic variable. One is age and another is height. Then, | can say that the
linguistic values for age would be young, old, and very old. This would be the linguistic
value for age, whereas for height, we can say short, medium, or tall.

These are the linguistic values for height and for each category, we can say there is a
defined dynamic range. For age, we can define of course 0 to 100; very rarely, people
live for more than 100 years. We can say 0 to 100. If | say young, probably the prime
should be... anybody who is less than 25 years would be young. I can define old to be
around 50 years and very old as those who are around 70 years. Like that, we can define
the dynamic range for age whose linguistic values are young, old, and very old. This is
years (Refer Slide Time: 06:26).

Similarly, we can easily say 3 to 7 feet for height — short, medium, and tall. We rarely see
a person who is less than 3 feet and also persons who are above 7 feet are very rare.
Between 3 and 7 feet, we can define the dynamic range for the height and the linguistic
values can be ascribed as short, medium, and tall, and then after dynamic range, we

define membership function. How do we define?



Given an age, we have to find out how much that membership... — young or.... For
example, if somebody's age is 40, how young is he? The membership value may be for a
40 year old, we can say how young he is 0.5 and for how old he is — maybe, he is in the
middle between young and old. So, we can say 0.5 membership mugqg. A 40-year-old
person may be ascribed as a membership function under the category young to be 0.5 and
membership function onto the category old to be 0.5. Similarly, for height also, we can
define musnor membership function and mug, and so on. Given a crisp value for age or
for height, as many linguistic values are there, we get that many membership functions.

For each linguistic value, we get a specific membership function.

(Refer Slide Time: 08:36)
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Once we talked about linguistic values, now we will introduce another term called
linguistic modifier. Consider a fuzzy set young. Now, if you look at the set young, those
who are 20 years old the membership function young is 0.8, for 30 years old it is 0.6, for
40 it is 0.2, and 60 obviously is no more young, so 0. If a fuzzy set young is given, which
is a subset of a fuzzy set called age.... | can say this is a subset of age. Age is the superset
or the universal set for defining young. Now, the linguistic variable very young where
very is the modifier.... Once | define what young is, in very young, very is the modifier.
So, we can probably define that their membership function as very young to be young
square, that is.... (Refer Slide Time: 10:07) What does young square mean? This



membership function gets squared, that is 0.8, becomes 0.64, 0.6 becomes 0.36, 0.2
becomes 0.4, and 0 is 0.

Given a specific set, if | ascribe to the set and the modifier, probably we can define some
kind of rule by which the very young can be defined. It is not that always very young will
be young square. This is just one way to evaluate a linguistic value very young given
young. Similarly, the linguistic variable very very young can be written by induction as
again young to the power of 4. If | define very young to be young square, then very very
young has to be young to the power 4. Obviously, in that case 20 is 0.4096, which is 0.64,
the membership function square. You define a 0.64 square is 0.4096, 0.36 is 0.1296, 0.04
is 0.0016 and similarly 0 is 0. This is the notion of linguistic modifier.

Another example. Similarly if a is a fuzzy set, | can define extremely a to be a cube, very
a is a square, more or less is a to the power half and slightly a is a to the power 1 upon 3,
so cube root. So, cube root of a, square root of a (Refer Slide time: 12:06), a square, and a
cube, depending on whether the modifier is extremely or very or more or less or slightly.

This is where we can deal with linguistic modifiers.

We gave some idea about the linguistic values and linguistic variables. These are
necessary because in the traditional sense, when we express worldly knowledge, we
express them in natural language. So here it is. From computational perspective, such
worldly knowledge can be expressed in terms of rule base systems.
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Worldly knowledge is very conveniently expressed in natural language. When we
describe the worldly knowledge, natural language is the best way to describe them. The
rule base is one of the ways to represent knowledge using natural language for
computational purpose of course. A generic form of a rule base is as follows. What we
said is that the worldly knowledge can be represented in terms of rule base and a rule

base is described as if premise or antecedent, then conclusion is consequent.

The above form is commonly referred to as the IF-THEN rule-based form. It typically
expresses an inference such that if we know a fact, we can infer or derive another fact.
Given a rule, I can derive another rule or given a rule, if I know a rule and the associated

relation, then given another rule, | can predict what should be the consequence.
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This is a fuzzy rule base. Any worldly knowledge can be expressed in form in the form of
a rule base. Now, when | talk about fuzzy rule base, fuzzy information can be represented
in the form of a rule base, which consists of a set of rules in conventional antecedent and
consequent form such as if x is A, then y is B, where A and B represent fuzzy
propositions (sets). Suppose we introduce a new antecedent say A dash and we consider
the following rule if x is A dash, then y is B dash, from the information derived from rule

1, is it possible to derive the consequent in rule 2, which is B dash?

This is the question that we are trying to answer in a fuzzy rule base. A fuzzy rule base
consists of a set of rules. From these rules, if I know rule 1, if I know what A is, what B
is, if I have derived them, and if I have the knowledge of A dash, can I compute what is B
dash? This is a very simple way. Now, | am presenting the problem to all of you, that is,
we know rule 1. We know what is the set A and set B. In rule 2, we know only A dash
but not B dash. Can we infer B dash? This is the question. The answer is yes. The
consequent B dash in rule 2 can be found from composition operation B dash equal to A
dash... this is called the compositional rule of inference, the compositional operator with
R.
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We talked about fuzzy rule base. It consists of a set of rules. Now, how do we infer
knowledge from this rule base? There are certain steps. First, we will understand what
fuzzy implication relations are. A fuzzy implication relation for a given rule if x is A,
then y is B; is formally denoted by R; X, y is the relation matrix whose elements are
given by mu R; X, y and this mu R; X, y is constructed or is computed by various
implication rules. There are various kinds of implication rules. Now, we will understand

them.

What is the implication rule? If p then g. This is called implication rule, where both p and
q are fuzzy propositions. If x is A;, then y is B;, but p also can be multiple propositions. If
X1 IS A1, X2 is Az and so on, then what is y? Let us take this simple relation, fuzzy rule. If
x is Aj, then y is B;. I will say this is p (Refer Slide Time: 18:56) and | will say this is g.
If p, then q.

Now, we will talk about Dienes—Rescher Implication. In this, if p then q states that p is
true but q is false is impossible, that is, in this proposition, in this rule, if I say if p is true,
then to say that q is false is impossible. That means if p is true, then q is false is a false
statement, it is not possible. This is one argument. What does it mean? That means p
which is true and not g (q is false, so not q is true) is false. Using De Morgan's Law, we



can show that p and not q is the same as not p or g. Thus, the relational matrix can be
computed for this particular relation not is mu Ri x, y is maximum. This is maximum
because or means maximum and not p means 1 minus mua; X, p is if x equal to A;.
Obviously, the membership function given a crisp value is mua; X, where X is the specific
crisp value. mua; x is the fuzzy membership function of p. not p is 1 minus mua; X and
similarly for g, the membership function is mug; y. The maximum value comes because
of the or operation — this or this (Refer Slide Time: 21:29). Obviously, the relation from
A to B is defined by this expression.

(Refer Slide Time: 22:00)
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We will go to another type of implication relation, which is very popular in control
engineering as well as fuzzy systems. It is called Mamdani implication. In this, when
fuzzy IF-THEN rules are locally true, then using Mamdani implication, p implies g
implies p and q is true. This is the AND operation; p and g are both simultaneously true.
That is because we say that each rule is locally true. If p is true, then q is true. We do not
ascribe any other means by which g can be true. Thus, the relational matrix can be

computed using any of the following expressions.

We have already explained the first one in the relation class that this is min operation or
product operation. This is a min or product. What you are seeing is that | find out the



element of the relation matrix associated with the rule p implies q is that the minimum of
mua; X and mug; y using Mamdani implication.... If x is Aj, then y is B; or here, we
have written A; and B;. If x is Aj, then y is B;. The relation matrix associated with this A
which is R, the relation matrix we can put like this where... This is my x (Refer Slide
Time: 24:19), this is my y, so any typical element associated with x; is minimum of mu x
in fuzzy set Aj and mu y in fuzzy set B;. Each element in R is computed as using
computed using either this formula (Refer Slide Time: 24:43) or this formula. The
Mamdani implication rule is widely used in fuzzy system and fuzzy control engineering.
In this, if the temperature is hot, then fan should run fast. This rule does not imply if
temperature is cold, then fan should run slow; this means each rule is independent, they

are locally true, we cannot infer.
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A fuzzy implication relation is another category, which will call Zadeh implication. This
is if p implies g may imply either p and q are true or p is false. What we are saying is that
just like a local Mamdani rule, we say p and q are true imply either p and g are true or p
is false. Thus, p implies g means.... p and g are simultaneously true, which is Mamdani
local rule or if p is false, then p implies g has no meaning or p is false. This has taken an
extra logic that is p and q or not p.



Thus, the relational matrix can be computed as follows. If | look at this, what is p and g?
p and g means minimum of mua X and mug y. What is not p? 1 minus mua; x. This entire
thing (Refer Slide Time: 26:50) has to be maximum of minimum of these and this, which
is this statement. mu, the relational matrix elements are computed using this particular
expression. Given a set of rules, we just learnt various schemes by which we can
construct a relational matrix between the antecedent and the consequent. The next step
would be to utilize this relational matrix for inference. This method is commonly known
as compositional rule of inference, that is, associated with each rule we have a relational
matrix. So, given a rule means given a relational matrix and given another antecedent,

how can | compute a consequent? This is the prime question that we are asking.

(Refer Slide Time: 27:54)
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This is derived using fuzzy compositional rules. The following are the different rules for
fuzzy composition operation, that is, B equal to A composition R. R is the relational
matrix associated with a specific rule, A is a new antecedent that is known, R is known, B
is the new consequent for the new antecedent A. | have to find out what is B for this new
A, given R. That is computed by A composition R and we have already discussed in the

relation class that there are various methods and max-min is very popular.



First, we compute min and then max. Similarly, max-product: instead of min, we take the
product and compute what is the maximum value. Similarly, min-max: instead of max-
min, it is min-max. First, max and then min. Next, max-max and min-min. One can

employ these looking at the behavior of a specific data.

(Refer Slide Time: 29:34)
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Now, we will take an example. We are given a rule if x is A, then y is B, where A is this
fuzzy set: 0.2 for 1, 0.5 for 2, and 0.7 for 3. This is a discrete fuzzy set. B is another fuzzy
set that defines fuzzy membership 0.6 for 5, 0.8 for 7, and 0.4 for 9. The question is infer
B dash for another rule if x is A dash, then y is B dash, where A dash is known. A is
known, B is known, and A dash is known. What we have to find out is what B dash is.
Infer B dash is the question that is being asked (Refer Slide Time: 30:21). Hope you

understand.

Using Mamdani implication relation, first we will find out between A... the first rule, that
is, if x = A, then y is B. The relational matrix associated with this rule is.... For R, how
do we compute? A elements are 1, 2, and 3 and B elements are 5, 7, and 9. We have to
find out now for 0.2. Here, we compare with all the elements in point B and with each
element, we found what the minimum is. The minimum is always 0.2. Hence, the

maximum of that is always 0.2. | have to find out the relational matrix between A and B.



The Mamdani principle means minimum, so between 1 and 5, 1 is associated with 0.2,
and 5 is associated with 0.6, so the minimum is 0.2. Similarly, 1 is associated with 0.2, 7
is associated with 0.8, so for 1 and 7, the minimum is 0.2. Similarly, 1 is associated with
0.2, 9 is associated with 0.4, so from 1 to 9, the minimum membership is 0.2. Similarly,
you can see that from 2 to all the elements 5, 7, 9, the minimum are 0.5, 0.5, and 0.4.
Similarly, from 3 to 5, 7, and 9, we have 0.6, 0.7, and 0.4. These are the minimum fuzzy
memberships between an element in A to element in B. That is how we compute the

relational matrix.

Once we compute the relational matrix, then we use max-min composition relation to
find out what is B dash, which is A dash (which is 0.5, 0.9, and 0.3) composition R and
you can compute. This is my R. | have to find out my matrix. This is 0.5, 0.9, and 0.3. So
this composition R (Refer Slide Time: 33:09) is... you can easily see | take this row
vector, put along the column matrix and | see what is the minimum for each case. You
can easily see 0.2 will be minimum here, 0.5 will be minimum here, 0.3 and maximum is
0.5.

The first element is 0.5. Again, | take this place in parallel with this column and then, |
find first minimum here is 0.2, here 0.5, here 0.3 and then maximum is again 0.5. Again,
| take the same row vector, put along this column vector and then, | find here the
minimum is 0.2, here minimum is 0.4, here minimum is 0.3 and the maximum is 0.4.
This is the relation, this is the answer (Refer Slide Time: 34:05). This is our B dash.

Given A, this is my B dash using fuzzy compositional principle or relation.
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There are other mechanisms also that we discussed. For the same example, if you use
max-min, you get B dash; for max-product, you get another B dash; for min-max, you get
another. Min-max and max are same for this example. Then, for max-max, you see that
all the fuzzy membership are the maximum values and for min-min, they are the
minimum values here. Now, the question is what is the approximate reasoning?
Approximate reasoning means given any logical system, we do not have, it is very
difficult to make an exact result. That is why from engineering perspective, we are more
liberal. We do not want to be so precise. As long as our system works, we are happy; if
our control system works, we are happy.
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Approximate reasoning. We have set up rules so we use a specific compositional rule of
inference and then we infer the knowledge or the consequence. Given a rule R (R is the
relational matrix associated with a specific rule) and given a condition A, the inferencing
B is done using compositional rule of inference B equal to A composition R. The fuzzy
sets associated with each rule base may be discrete or continuous, that is, A may be

discrete or A and B may be discrete or continuous.

A rule base may contain a single rule or multiple rules. If it is continuous, I cannot define
what the R relational matrix is. It is very difficult because it will have infinite values. R is
not defined. That is why for continuous, we apply compositional rule of inference but the
method to compute is different. A rule base may contain single rule or multiple rules.
Various inference mechanisms for a single rule are enumerated. Various mechanism
means we talked about min-max, max-min, max-max, min-min and so on. The inference

mechanism for multiple rules....
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Single rule. Now, we will take the examples one by one. Single rule with discrete fuzzy
set. We talked about a fuzzy set that may consist of a single rule or multiple rules. It can
be discrete fuzzy set or a continuous fuzzy set. We will try to understand how to make
approximate reasoning for such a rule base using the methods that we just enumerated.
For each rule, we compute what is the relational matrix if it is discrete fuzzy set and then
we use compositional rule of inference to compute the consequence given an antecedent.
That is for discrete fuzzy set. We have already talked about this but again, for your

understanding, | am presenting another example for single rule with discrete fuzzy set.

Rule 1: If temperature is hot, then the fan should run fast. If temperature is moderately
hot, then the fan should run moderately fast. In this example, we are given the
temperature is in degree Fahrenheit and the speed is expressed as 1000 rpm. The fuzzy
set for hot H is for 70 degree Fahrenheit, 80 degree Fahrenheit, 90 degree Fahrenheit, and
100 degree Fahrenheit, the membership values are 0.4, 0.6, 0.8, and 0.9. Similarly, for the
fuzzy set F, for which the fan should run fast, the fuzzy set is for 1000 rpm, the
membership is 0.3, for 2000 rpm, the membership is 0.5, for 3000 rpm, the membership
0.7, and for 4000 rpm, the membership is 0.9.



Given H dash, which is moderately hot, to be for 70... moderately hot means it is a little
more hot. So, same temperature obviously and their corresponding membership values
will reduce, because if 1 am describing moderately hot, they will have the same
temperature but the membership values will be less. You can easily see here that for 70,
instead of 0.4, now it is 0.2; for 80, instead of 0.6, it is 0.4; for 90, instead of 0.8, it is 0.6;
for 100, instead of 0.9, it is 0.8. This is moderately hot. Now, the question is find F dash.

I hope you are clear with this question. The question is very simple. We are given rule 1,
we have defined what is the fuzzy set hot and fuzzy set fast by these two statements and
in the second rule for moderately hot, we know the fuzzy set. We do not know what the
fuzzy set is corresponding to moderately hot, that is, moderately fast. We do not know
(Refer Slide Time: 40:22) moderately fast. Find out F dash. If H, then F. If H dash, then F
dash. Find out F dash. First, what do we do?

(Refer Slide Time: 40:44)
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Corresponding to rule 1, we found out what is R. This is for rule 1. We knew that the
membership functions for H were 0.4, 0.6, 0.8, and 0.9, and for fast, the membership
functions where 0.3, 0.5, 0.7, and 0.9. If you look at this, these are my H values, the crisp
values: 70 degree Fahrenheit, 80 degree Fahrenheit, 90 degree Fahrenheit, and 100
degree Fahrenheit. This is my speed: 1000 rpm, 2000 rpm, 3000 rpm, and 4000 rpm.



Between 70 and 1000 rpm, the entry would be minimum of these two (Refer Slide Time:
41:57), which is 0.3. Similarly, between 0.4 and 0.5, the minimum would be again 0.4
and then between 0.4 and 0.7, it will be 0.4, and for 0.4 and 0.9, it is 0.4.

Similarly, we go to the next one, which is 0.6. For 0.6, 0.3 minimum 0.3, for 0.6 and 0.5,
the minimum is 0.5, for 0.6 and 0.7, minimum is 0.6, for 0.6 and 0.9, it is 0.6. Similarly,
you can fill all other cells here with their values: 0.3, 0.5, 0.7, 0.8, 0.3, 0.5, 0.7, and 0.9.
This is my relation matrix associated with rule 1: if H, then F. Now, what I have to do is |
have to find out F dash given H dash, using the fuzzy compositional rule of inference,

which is represented like this.

F dash is H dash compositional rule of inference with R. This is max-min composition
operation. First, we take the min and then compute. H dash is given as 0.2, 0.4, 0.6, and
0.8. This is my H dash (moderately hot) and | have to do compositional inference
between H dash and R. Again, | am repeating so that you understand how to compute it.
You put this row vector along this column vector first (Refer Slide Time: 44:03). For
each element, you find out what is the minimum. You see that here it is 0.2, 0.3, 0.3, and

0.3 and the maximum of that is 0.3.

Similarly, you take again these values and put them here vertically. Here, the minimum is
0.2, here 0.4, here 0.5, here 0.5, and maximum is 0.5. | am sure you will see here it is 0.7,
but in this case, you find that if you take this here, it is 0.2, here 0.4, here 0.6, here 0.8,
and maximum is 0.8. F dash is 0.3, 0.5, 0.7, and 0.8. That is how we infer or we do

approximate reasoning for a rule base. This is a very simple case.
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We will go to a more difficult one, which is multiple rule with discrete fuzzy sets. There
are two rules now. Rule 1 is if height is tall, then speed is high. Rule 2: if height is
medium, then speed is moderate. This is describing a rule for a person as to how fast he
can walk. Normally, those who are tall can walk very fast and those who are short,
naturally their speed will be less. This is one fuzzy rule that expresses the speed of a
person while walking. If height is tall, then speed is high and if height is medium, then
speed is moderate. For this, the fuzzy memberships are defined as tall, high, medium, and

moderate.

Tall is 0.5, 0.8, and 1 for various feet like 5, 6, and 7. For speed is high, for 5 meter per
second, 7 meter per second, and 9 meter per second, the corresponding membership
values are 0.4, 0.7, and 0.9. For H,, which is medium height, the corresponding fuzzy
membership... you can easily see that when I say medium in this fuzzy set, 5 has 0.6, 6
has 0.7, and 7 has 0.6. The moderate speed is 0.6 for 5 meter per second, 0.8 for 7 meter
per second, and 0.7 for 9 meter per second. If this is the fuzzy set given, now the question
is given H dash, which is above average, and the corresponding fuzzy set is 0.5, 0.9, 0.8
for three different heights, find S dash, the speed above normal. | hope the question is

very clear to you.



We have two rules. If height is tall, then speed is high; tall is defined and high is defined.
If height is medium, then speed is moderate. | have already defined the fuzzy sets for
both medium as well as moderate. They are all discrete fuzzy sets. Now, you are
presented with new data and what is that new data? You are presented with a data called
above average, which is 0.5, 0.9, and 0.8 for three different heights for 5, 6, and 7. Then,
find S dash equal to above normal, that is, if height is above average, then the speed

should be above normal. How do we do it?

(Refer Slide Time: 48:12)
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This is the solution of this example. We have two rules. Naturally, we will have two
relational matrices: R; for rule 1 and R, for rule 2. I will not go in detail of how we
compute. You simply you go the antecedent and consequent, look at the membership
function, find the minimum for each entry. Here, these are the heights and these are the
speeds; 5, 6, 7 feet is the height and 5, 7, and 9 meter per second are the speeds of the
individuals.

Now, you check the fuzzy sets and corresponding to each fuzzy set, find out what is the
minimum membership function. For 5, 5, you will find the membership function is 0.4,
minimum 0.5, 0.5, 0.4, 0.8, 0.8, 0.4, 0.8, 0.9. You can verify this. Similarly, R, can be
found out. Taking the minimum membership entry between these two fuzzy sets, that is,



if | say this is H; (Refer Slide Time: 49:45) and S; and this is H, and S,. Look at these
two fuzzy sets, find out what the minimum entries are for each relation and then, how do
we compute S dash above normal? We have now two relational matrices. It is very
simple. We do two composition operations: H dash composition with R; (this one) and
again, H dash composition R, and then, we take the maximum of that, maximum of these

two.

You can easily see that the maximum of H dash composition Ry, H dash composition R5.
You can easily see that because H dash is common, this particular expression is the same
as H dash composition max of R; and R,. This is R; and R,. We look at all those entries
wherever it is the maximum: for 0.4 and 0.6, the maximum is 0.6; for 0.5 and 0.6, the
maximum is 0.6; for 0.5 and 0.6, the maximum is 0.6. You see the last element here 0.9
here and 0.6, so this is 0.9. Like that, for all entries of R; and R, whatever the maximum
values, you put these values here (that is called maximum R; and R;) and take a
composition with H dash. So H dash composition max of R; and R,. H dash is already
given as 0.5, 0.9, and 0.8. If you do this composition, you get 0.6, 0.8, and 0.8. | hope this
clears your concept of how we compute or we do approximate reasoning in a rule base.
Similarly, if there are multiple rules, we have no problem and we can go ahead with the

same principle.
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The last section that we will be covering today is the multiple rules with continuous fuzzy
sets. We talked about discrete fuzzy set, but if it is continuous fuzzy sets, how do we deal
with that? Normally, a continuous fuzzy system with two non-interactive inputs x; and
X2, Which are antecedents, and a single output y, the consequent, is described by a
collection of r linguistic IF-THEN rules Where the rule looks like this: If x; is A; k and
X2 1S Az Kk, then y kis B k, where k'is 1, 2 up to r. This is the k th rule. Similarly, we can

have rule 1, rule 2, rule 3, up to rule r.

In this particular rule, A; k and A; k are the fuzzy sets representing the k th antecedent
pairs and B k are the fuzzy sets representing the k th consequent. In the following
presentation, what we will do now is we will take a two-input system and two-rule
system just to illustrate how we infer from a rule base where the fuzzy sets are
continuous. The inputs to the system are crisp values and we use a max-min inference

method.

(Refer Slide Time: 53:39)
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Kindly pay attention, because this is a very important concept that we will be presenting.
We have two rules here. You can easily see that we have represented graphically. You
can see there are two variables x; and x,. There are two fuzzy variables and for each rule,

we have a consequent y. The first rule says that if x; is A; 1 and x, is A, 1, theny is By,



Similarly, if x; is A1 2, X2 is A, 2, then y is B,. Now, how do we infer? Given a crisp
input, a new input is given, crisp input in the domain of x; and another crisp input in the
domain of x,. There can be a system whose two variables can be temperature as well as
pressure. You can easily think x; to be the temperature and X, to be the pressure. For
example, for a particular given system, you found out the temperature to be 50 degrees
centigrade and pressure to be some value. Given these two quantities, crisp quantities,

how do we infer what should be my y?

To do that, I will just explain how to do this. The crisp input is given — temperature. Now,
you find out corresponding membership values here. Corresponding to this crisp input,
we get the membership value in rule 1 as mua; 1 and for the same crisp input, this rule 2
will provide you mua; 2. Now, in the second fuzzy variable, given crisp input, rule 1 will
compute... you see that this one will compute mua, 1 and for the second one, the second
rule, the same crisp input would give this one, which is mua, 2. Once we find out these
membership values, what do we do? We graphically see which is minimum between
muai 1 and muaz 1. The minimum is mua, 1. We take that and we shade these areas in

consequence.

Now, we take the second rule. We find between mua; 2 and muaz 2, the minimum is
muai 2. We take that minimum and shade the area and consequent part of this rule 2.
Now graphically, we add these two taking the maximum. First, min and then max. You
can easily see that when I overlap this figure (Refer Slide Time: 57:14) over this figure, |
get this particular figure. You overlap this second figure on the first figure or first figure
on the second figure and take the resultant shaded area. After taking this resultant shaded
area.... Once you find this shaded area, the next part is to see what is y given a crisp
value. There are many methods, but we will focus in this class or in this course on only

one method, that is, center of gravity method.

Obviously, if I take this figure and find out what is the center of gravity, it is this value y
star. The crisp output can be obtained using various methods. One of the most common
method is the center of gravity method. The resulting crisp output is denoted as y star in

the figure. This is y star. What we learnt in this is given a crisp input 1 and crisp input 2



and given two fuzzy rules, how do we infer correspondingly a crisp output? Our data is
crisp, but we are doing fuzzy computation. Hence, rules are fuzzy. We take this data to
the fuzzy rule base and then fuzzify them through fuzzification process. Graphically, we
find what is the net shaded area using the max principle. We found out the shaded area
for each rule in consequent taking the min principle. Taking the max principle, we found

out the resultant area and then, y star is the center of gravity of these areas.
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Finally, the summary. In this lecture, we covered the following topics: linguistic variables
and fuzzy rule-based systems, various fuzzy implication relations, approximate reasoning
for discrete fuzzy sets and then finally, approximate reasoning for continuous fuzzy sets.

Thank you very much.



