Intelligent Systems and Control
Prof. Laxmidhar Behera
Department of Electrical Engineering
Indian Institute of Technology, Kanpur

Module — 1 Lecture - 11
Self Organizing Map: Multi Dimensional Networks and Application

Today, we will discuss a different type of neural network. We have discussed feed-
forward network, back propagation network, which is normally multilayer network, also
radial basis function network. Similarly, another kind of network we discussed is
recurrent network but today's network will be different. It will talk about self-organizing
map and specifically, we will only focus on Kohonen feature map, Kohonen self-

organizing map.

(Refer Slide Time: 00:53)
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Today, we will be discussing about the self-organizing map, specifically, Kohonen.
Specifically, we will be considering only Kohonen network. We will discuss what a
Kohonen SOM learning algorithm is. We will simulate some examples, we will also
show some actual simulation, and we will talk about clustering in a visual-motor

coordination and summary.
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Self-organizing map is motivated by certain features in the brain, as usual. In this case,
the neurons are organized in one or multi-dimensional lattices — 1-D lattice, 2-D lattice,
and 1-D lattice. We can think of even higher dimensional lattices also, because in
engineering application, we can even become little more abstract. The neurons compete
among themselves to be activated according to competitive learning scheme. There are
many neurons in a lattice. They are excited by the same input vector or input feature or
input, whatever the data is. All the neurons in the space, in the lattice, are all excited
simultaneously and there is a competition. The weight vector associated with the winning

neuron is only updated and the scheme “winner takes all’.

For example, if | have a two-dimensional lattice, imagine | have many neurons placed in
this. When an input excites this lattice, one of these neurons becomes the winner. Then,
in the “‘winner takes all’ scheme, only the weight associated with this neuron is updated,
whereas another scheme that is being employed is the soft-max rule, where not only the
winning neuron but also the nearest neighborhood neurons also get updated. The weights
associated with those neurons also take part in the decision-making process. That is the

principle.
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This is in general, in a self-organizing map, but Kohonen proposed a novel neighborhood
concept, where the topology of the input data space can be learnt through SOM. For
example, a data that is coming from which kind of geometry can be understood or can be
captured through SOM, self-organizing map. In this scheme, a neural lattice can be one
or multi-dimensional as usual and a neighborhood concept among individual neurons in a
lattice is a priori embedded. As neurons update their weights upon competition, a
meaningful coordinate system for different input features over the lattice is developed.

We will soon see how this happens in a Kohonen network.
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This is a two-dimensional Kohonen lattice, where you are seeing the neurons all spread
over. This is your input vector X, which is an N-dimensional vector. This excites all the
neurons. As the data comes, all the neurons are excited. As usual, each neuron is
associated with a weight vector w;, which is also N-dimensional (Refer Slide Time:
05:37). A specific neuron wins based on SOM distance measured, which is some kind of
function between a distance measure between x and associated weight vector with a
specific neuron. Based on that, a winner is declared. Normally, when this distance

measured is minimum in a specific case, that specific neuron is declared as winner.

Once we understand the principle, now we will talk about the algorithm. Obviously, as
you saw, we can have a one-dimensional neural lattice or two-dimensional or three-
dimensional and all the neurons are associated with a weight vector, which has the same
dimension as that of the input vector. Before we start the learning process, these weights
are all associated with some random weight vector. This random weight vector has

nothing to do with the actual input data; it can be anything from anywhere.
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Three things are involved in the SOM algorithm, self-organizing map learning algorithm.
The first step is competition, that is, we find the winner and then cooperation, that is, the

winner selects its neighborhood, and finally, weight update.

(Refer Slide Time: 07:43)
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In competition, we take some kind of distance function, a function of a distance measure

and for all neurons, we compute this function. The neuron for which this function is



minimum is declared as the winner. Let m be the dimension of the input (data) space and
weight vector, that is, the weight vector and input data vector have m dimensions. Let a
randomly chosen input pattern be x. We select this input pattern randomly. It is given by

this vector x, which is m-dimensional as you can easily see.

(Refer Slide Time: 08:31)
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The synaptic weight vector for neuron j, which is wj, IS Wj1, Wj, up to Wjm. The best
match of the input vector x with a synaptic weight vector w; occurs where the Euclidean
distance.... This is just one measure and it is not necessary. There are many SOM
algorithms. They use a different distance measure but today, you simply understand...

because we are all aware of Euclidean distance.

We compute Euclidean distance between the input vector and the weight vector and for
that neuron, where this distance Euclidean distance is minimum, we declare that neuron
is the winner. Let i be the index to identify the neuron that best matches x, that is, i of X is
actually the winning neuron index for the winner. Obviously, this is the ... over j, where
this quantity is the Euclidean distance measure (Refer Slide Time: 09:43) and this

Euclidean distance is minimum for a specific j and that j is actually i of x for the winner.



(Refer Slide Time: 10:04)

The winning neuron selects its neighbors according to a pre-defined neighborhood
function. This is called cooperation, that is, as I told in the beginning, the ‘winner takes
all’ scheme, where only the winner takes the final decision, whereas in soft-max rule, not
only the winner, winner allows to be cooperative, that is, it allows its neighbors also to
participate in decision making. The winning neuron selects its neighbor according to a
pre-defined neighborhood function. Let h; ; denote the topological neighborhood centered

on the winning neuron i.

This is my winning neuron i, this is my typical neuron j, and distance between this is h;j, ;.
Any neuron around this winning neuron.... The distance from the winning neuron i is h;,
i. d;, j denotes the lateral distance between the winning neuron i and the excited neuron j.
There are two things. Let h; ; denote the topological neighborhood centered on the
winning neuron and d; j denotes the lateral distance between the winning neuron i and

excited. There are two things.

That is, for example, | have a lattice here, this is my winning neuron i and this is my j th
neuron. They have a lattice distance. Within the lattice, the distance is d; j, whereas the
topological neighborhood, that is, how close this neuron is with this neuron is defined by

a function h; ;. Obviously, h; ; is a function of d; j or d; i (whatever you say is all right).



Hopefully, you are very clear about the lateral distance, that is, the absolute distance
between any two neurons i and j, whereas h;, ; defines the notion of neighborhood, that is,
how close is this neuron to this neuron compared to other neurons. This is the kind of a

function. So this is a function of d; ;.

(Refer Slide Time: 12:52)
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The topological neighborhood h; ; is symmetric about the maximum point, defined by d;;
=0, that is, when distance is 0, lateral distance, that is, when the neuron for which we are
updating the weights is same as the winning neuron, obviously, the distance between
winning neuron and the same is 0. For this, X;,; has to be maximum and we can say that is

1 and h, the lateral distance, increases, the function h; ; tends to 0.

In other words, it attains the maximum value at the winning neuron i, for which the
distance d;j i is 0. The amplitude of the topological neighborhood h; ; decreases
monotonically with increasing lateral distance dj ; decaying to O for d; ; tends to infinity,
which is a necessary condition for convergence. | hope you understood that if d; j = 0,

then h; ; is maximum and as d; j tends to infinity, h; ; becomes 0.
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A typical neighborhood function h;,; is a Gaussian function. There can be other functions
also, but one of the very typical ones is a Gaussian function. When d;,; = 0, its maximum
value is 1 and as it goes to this direction and the other direction, its value finally
decreases to 0. Normally, this function h; ; is exponential minus d; ; square by 2 sigma
square N, where sigma N is defined like this, the weight (Refer Slide Time: 15:06).

What is the meaning of this? If you can see this, when N is the specific learning step....
In the beginning, N = 1. So you can see when N = 1, this value becomes almost like 1.
So, in the beginning, sigma N is sigma 0, the initial value. But, when N increases and
goes to higher values like 10,000 or 50,000 iterations, then this value will become almost

0. So, sigma N goes to 0.

What you are actually trying to do is that using this kind of function, what you are saying
is that in the beginning, what happens when a neuron... because the neural lattice knows
nothing about the input data. In essence, almost all the neurons in the lattice are
considered as a neighbor for the winning neuron but as learning progresses, the
neighborhood decreases. That is the meaning of this. The meaning is that as learning

progresses, the neighborhood shrinks — that is the idea of this neighborhood function.



(Refer Slide Time: 16:48)

Now, I will give you some example of what is a lateral distance. For example, this is a 1-
D neural lattice. In this lattice, this black is the winning neuron and | want to compute
what is the lateral distance between this red one 2.... Obviously, this is the absolute
magnitude between 3 and 2, which is 1. Similarly, the distance between 5 and 3, we can
say this distance major, the lateral distance is 5 minus 3 and the absolute value is 2. This

is an example of 1-D lattice.

(Refer Slide Time: 17:37)




Similarly, we can see the example of 2-D lattice also. In a 2-D lattice, we talk in terms of

position vector.

(Refer Slide Time: 17:44)

The example is like this. This is a 2-D lattice. You can easily see this is the winning
neuron and this is the neuron for which we want to compute the lateral distance.
Obviously, the position of this neuron is 3, 2 or 2, 3 and this is 4, 2. Obviously, the index
of the winning neuron is 2, 3 and the index of the neighborhood neuron, the red one, is 4,
2 (this is the red-colored neuron). The distance between these two is 4 minus 2 whole
square and 2 minus 3 whole square. This 4 minus 2 whole square is.... Actually, this
should be distance like this (Refer Slide Time: 18:37). So 4 minus 2 whole square, that is,

2 square is 4 and 2 minus 3 whole square is 1. So, root over 5 is the lateral distance.
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Once we understood this preliminary concept, then.... Kohonen proposed this algorithm.
This is the Kohonen algorithm. What you are seeing is that this is the weight for a
specific neuron that is being updated at any instant. This is the learning rate. This is the
neighborhood function of the j th neuron corresponding to the winning neuron, which is
iX, and this is the input vector, input data x, and this is the weight associated with the j th

neuron.

You can easily see if this is 1 for the winning neuron, then what is actually happening is
that w is actually closing towards X, that is, that specific weight is moving towards the
specific input vector. This is the specific standard one. The weight associated with the
winning neuron and its neighbors are updated as per a neighborhood index. The winning
neuron is allowed to be maximally benefited from this weight update, while the neuron
that is farthest from the winner is minimally benefited. That is the idea of this
neighborhood function. We also make sure that the learning rate in the beginning is

maximal (the value) and as the learning progresses, its rate becomes very small.
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We already talked about this. This equation that we talked about is our normal Kohonen
learning algorithm. This equation will move the weight of winning neuron w; towards the
input vector X — this is very important. This equation will move the weight of the winning
neuron w; toward the input vector x, to maximum, whereas its neighborhood will go

towards x according to the distance from the winning neuron.

The objective is that.... Normally, the input data, input space is infinite. So the objective
of SOM or self-organizing map is how can | represent a voluminous data or infinite
number of data using finite number of samples? This is the basic idea behind this
competitive network and in classical terminology, this specific thing is known as how to
form clusters. We have already learned clusters are used in pattern recognition, in image
coding, in image processing and we used clusters in many other things, specifically,

pattern recognition.
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What we understood until now is Kohonen lattice. That lattice can be of any dimension —
1-D, 2-D, 3-D and there is a competition once they are excited — one is winning and
others are its neighbors. In the beginning, the neighborhood is very large. As learning
progresses, the neighborhood shrinks, that is the idea and finally, the objective is that
Kohonen shows that such a scheme preserves the topology of the input space. We will

see that now.

Here, what you are seeing is that a 1-D SOM learns 2-D topology, that is, | have a 1-D
neural lattice, a neural lattice that is 1-D. For example, if my neurons are placed in a line,
this is 1-D. Now, | will excite this 1-D lattice with data from a 2-D structure. That 2-D
structure can be a square, can be L shaped or can be anything, even a triangle. Now, can |
say that this 1-D lattice can actually preserve the topology? After | form the clusters
using this 1-D lattice from the data that is coming from a 2-D topology or 2-D geometry,
then looking at these weight vectors of 1-D lattice, can | conclude something about the

structure of the 2-D input space? This is what the question is.

My input space is a square. | take a perfect square. This is a perfect square of 1 meter and
1 meter. My data is coming randomly from this square, 1 do not know and | excite this
data. I excite this 1-D lattice with this data. Now, looking at this the weight vector of this



1-D lattice, can | conclude that my data is coming from a 2-D lattice, which is a square

structure? This is the question.

Now, we will do that SOM relation to let you know what actually a Kohonen lattice is, a
Kohonen SOM. A 1-D Kohonen lattice with 100 neurons is selected. | selected a 1-D
lattice having 100 neurons. Each data point is two-dimensional because any data here has
x coordinate and y coordinate and obviously, the weight associated with each neuron of
this lattice will also be two-dimensional. So, x is two-dimensional and w; is also two-

dimensional.

(Refer Slide Time: 25:47)
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Training is done for 6,000 iterations. Now for this, the dimension is m = 2, x is a two-
dimensional vector and each weight vector is two-dimensional. Now, the weights are all
randomly initialized for the lattice. The first element of all weights is lying between —0.4
and 0.4 and so also, the second one is —0.4 to 0.4 and randomly distributed. The input x
is uniformly distributed in the region 0 to 1 and 0 to 1, that is, my input space is actually
0, 1, 1 (Refer Slide Time: 26:46).

This is my input space and my data is coming from this space, whereas my weights are
initialized. This is —4.4, +0.4 and also, this is 0.4 and this is 0.4. This is like this (Refer
Slide Time: 27:22). My weights are all confined to this zone, the weights of the 1-D



lattice, whereas my data is actually coming from here. Now, we will see what is

happening.

(Refer Slide Time: 27:36)
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This is my input space, random data and this is the initialization of the weight. You can
easily see this is from 0.04 to 0.04 and 0.04 to 0.04. It is a very small zone around the
origin and all the weights are all initialized. Obviously, the weights have no value. This is

a mistake here, which | showed you.
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This is not 0.4, this is 0.04 (Refer Slide Time: 28:18) to let you know why we have taken
a very small value, just to show that you can start from any initial value for the weight

and you still capture the topology using this Kohonen lattice (Refer Slide Time: 28:34).

(Refer Slide Time: 28:37)
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After 6,000 iterations, surprisingly, if you plot the weights sequentially, that is, for
example, this is my sequence of 100 neurons and I plot this one (Refer Slide Time:



29:02), then this one is this one, this one is this one, this one is this one and so on. If you
look at it, it has developed a structure in such a way that by looking at it, | can easily see
that this 1-D lattice captures a 2-D topology. You can see that this 1-D lattice, which was
confined to a very narrow zone around the origin, expanded itself — the neurons. (Refer
Slide Time: 29:39) in such a way that the weights were so organized that they captured
the 2-D lattice. | will show you now in a movie style now how this actually looks like
(Refer Slide Time: 29:58).

You see how this 1-D lattice which was (Refer Slide Time: 30:06) the one line in the
beginning and slowly, it is developing into a very nice structure and telling us that the
data is actually coming from a square. | hope you could appreciate that. Again just to let
you know and for those who could not follow it, I will again repeat it (Refer Slide Time:
30:30). You see that in the beginning, if you look at the structure, the lattice is actually

taking the shape or it is spreading to let us know that the topology is a 2-D square.

(Refer Slide Time: 30:59)
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That was a square. You may say that is nothing surprising, but now, we will take an L-
shaped input space. This is my L shape. My data is not coming from a square but it is
coming from an L shape. Now if | train, if | update my weight of a 1-D lattice, that is,
again, | have 100 neurons in 1-D and they are again in a small.... Again, this is not 0.04,



it is 0.04 (Refer Slide Time: 31:42). The weights are randomly initialized. Can | say once
again.... Once they are trained, they will give me information that topology is from
actually the input space has a topology of L shape. Just looking at the weights of this

neuron, can | tell?

(Refer Slide Time: 32:09)
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In fact, this is also true here. This is my input space. The data is all randomly generated

from this L shape.



(Refer Slide Time: 32:18)
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These are my small weights, initial weights — plus or minus 0.04 is the range.

(Refer Slide Time: 32:29)
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Then, you see that after 6,000 training steps, if you look at the weights, they have exactly
L shape. You can easily see the topology of the input space merges to be L shape.
Looking at the data, you can infer. Again, | can show you a video on this.



(Refer Slide Time: 32:55)

(Refer Slide Time: 32:57) This is an L shape, the input data, and unlike the other one,
which was rectangular, now it is L shape and you see how surprisingly, things are
moving in a different manner. So, this is L shape. Finally, for those who could not
capture, | (Refer Slide Time: 33:22) to show how actually the neurons self-organize
themselves in such a way that we can say that the input data is coming actually from an L
shape using 1-D lattice. You see that the first part is already... this part is L (Refer Slide
Time: 33:41) and again, suddenly, this is spreading to say that this is L shape. That is

something nice to see.



(Refer Slide Time: 33:54)
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You can all do it by sitting in front of your computer. Write the program, a simple
program. You can write in C or MATLAB and you can have fun with this kind of
structure to learn how topology of the input space can be actually recognized using this
self-organizing map learning algorithm, only specifically Kohonen lattice. Earlier, we
used 1-D lattice. Now, we will use 2-D lattice and again, we will take the same input

space and we will see how it varies in the 2-D case.

Again, the square input space — the structure of the input space is a square and we take
again a 2-D Kohonen lattice, so, 10 rows and 10 columns. With that, you see that the
weight space is initialized in very small values. This is my input space and this is my
initial weight, very small weights around origin. After training is over, we can easily see
that they are very regularly arranged and these neurons in 2-D (Refer Slide Time: 35:15)

in such a way that you can easily see the topology is a square.



(Refer Slide Time: 35:29)
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These neurons we have (Refer Slide Time: 35:24). This is neuron 1, neuron 2, 3, 4, 5, 6,
7,8,9.1,2,3,4,5,6,7,8,9,10. Similarly, 1, 2, 3,4, 5, 6, 7, 8,9, 10. You can easily see
that: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. What you are seeing is that we have plotted all the
neurons in the neural lattice and they exactly occupy a space, perfectly distributed in such
a way that the topology is now regular and it looks like a square lattice.

This square lattice will look even better if | increase the number of neurons, 10 neurons
in one lattice. | have taken a 2-D lattice and | have placed 10 neurons in this axis and 10
neurons in this axis. If you increase these neurons to be 100 and 100, this regularization
of this structure will be much more pronounced. You can do that experiment also.



(Refer Slide Time: 36:27)
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We can easily again see another video. (Refer Slide Time: 36:35) You see that earlier, the
neurons were associated and they had no idea about the input space. Slowly, you see that
the neurons are exactly taking the shape of a square lattice. For those who did not see it
properly, again, for their benefit, I am repeating the same video (Refer Slide Time:
36:59). You can easily see how the neurons did not have any idea in the beginning and

they again take the shape of the actual input space. We go to the other example.

(Refer Slide Time: 37:20)
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Just like we took the square space, now we take an L space but again 2-D lattice. So, 2-D
SOM learns 2-D topology. Again, we will do it in the same manner.

(Refer Slide Time: 37:39)
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This is L space. This is L shape structure and this is the input data.

(Refer Slide Time: 37:51)
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This is the initial weight vector of the 2-D lattice for capturing the topology of an L shape

input space. We want to capture the topology of L-shaped input space.



(Refer Slide Time: 38:21)

A AT IR ¥R
]
Conid..
e

Frgura 12; Walghtt Al s Sonmplatan of b

This is the final structure after learning and you can easily see the topology of the

neurons is like an L shape here.

(Refer Slide Time: 38:33)
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You can easily see again how this happens in the movie (Refer Slide Time: 38:38). What
you are seeing is how neurons in a 2-D lattice are learning L shape in a topology space.

You can easily see this is L and this is the other half. For those who could not see it, for



them, | repeat it (Refer Slide Time: 39:00). You can easily see how suddenly this is the
structure. The structure of the input space was L shape and that has been nicely
recognized. As | told you, we can always improve this by using more number of neurons

for each.

(Refer Slide Time: 39:40)
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What we learnt until now is that we can use Kohonen lattice to learn the topology of the
input space. From which geometry is the data coming? Is it 3-D, 2-D or is it coming from
various shapes — circle, sphere, L shape, triangular shape, prism shape? We can actually
learn from where the data has come, the geometry of the data — from where it is coming.
That is a very nice identification of the feature space, which we will be learning later. We
are ready to represent, because this is a very difficult problem. We will learn in this
course this (Refer Slide Time: 40:26) but I will just introduce to you what is the visual

motor coordination problem.

Visual-motor coordination. For example, 1 want to manipulate anything, | want to write
something on the blackboard. In a biological organism, there is a very nice correlation
between the visual feedback and the movement of hand or movement of leg. There is nice

hand-eye coordination that we have particularly in biological organisms, specifically for



us humans. Some animals also have very high degree of coordination between hand and

eye, the visual information and the movement of their organs.

Can we do this kind of things in machines? One example here is that this is a robot
manipulator. You can easily see the three-link robot manipulator and you can see that
there are two cameras camera 1 and camera 2. They give the information about the target,
where these end effectors will go and based on this feedback, where is the target? This

end effector has to reach this point. How can that happen through learning mechanism?

This is the camera input. | have a control algorithm that will formulate a map between
Cartesian space to joint space. Joint space means theta;, theta,, and thetas. If | give a
specific angle set point theta;, the base will go to that specific angle, this first link will go
to specific angle theta, and the second link will go to thetas. Once | know what is the
Cartesian space, based on that information, how do | actuate theta;, theta, and thetas
such that this end effector reaches this point? That is the problem of visual-motor

coordination.

The more difficult problem is that if this target is continuously moving.... If it is static
target, the problem is simple, but if the target is moving continuously, how will this go?
If it is here now (Refer Slide Time: 42:59), it will take a step in this direction and
suddenly, this has gone somewhere else. How can this actually follow a moving target?
This is the problem. Two cameras provide visual feedback to the control algorithm and
thus help in positioning the end effectors to the relevant position. That is the visual-motor

coordination.



(Refer Slide Time: 43:27)
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This is our robot manipulator, three-link manipulator.

(Refer Slide Time: 43:31)

I j'ﬁurlm

& J poand aneglea of the manspulaics are o Be detenminead

b bu el Fervil B ol ﬂ !

Paly it Theghod Bartil aopariecd o (e joanl Anghe :-[r
o of in § |"\.F'__ F

PO (T ] i
|1 TFI PrilF O S s Pl e T | Wt
1% Jgprasbuaney roelies

The idea is actually that we want to learn a map from Cartesian space, which is actually
now four-dimensional, because you see that here, we used the two camera system (Refer
Slide Time: 43:48), which is a stereo vision system. If | have one camera, it is very....

Even if | am looking at a three-dimensional object, in the camera plane, it is only a 2-D



point, a 2-D projection of the three-dimensional object. In that sense, the depth perception
using a single camera may not be properly done. That is why we talk about stereo vision.
We have two cameras to make sure that we have a proper depth perception of the 3-D
object and hence, we can exactly locate where the 3-D point is. That is why we are taking

two cameras.

What is the objective? | will tell you how we solve this problem using a learning
framework or the type of neural network kind of learning that we talk about. | have a
Cartesian space here (Refer Slide Time: 44:52). This is the Cartesian space and this is my
joint space. To simplify, | say this is a point X, y, z in the space coordinate and this joint
theta; coordinate, that is, the robot manipulator is theta;, theta, and thetas.

How do | learn the map from Cartesian space to joint space in such a way that the end
effector of the robot manipulator reaches exactly the target position through visual
feedback? That is the objective. What we do is that from the Cartesian space, we create
small clusters and each cluster, we define a linear mapping from the Cartesian space to
joint space. This is called.... (Refer Slide Time: 45:51). In essence, what | am saying is
that theta is a function of x, y and z, or in this context, it is f of u. u is the four inputs
given by the cameras. Two cameras are there and each camera's output is two-

dimensional output. So, two cameras will give us four-dimensional output and that is u.

Given u, how do I go to theta? What happens is | divide my Cartesian space into small
clusters and within each cluster, 1 define a linear relationship using Taylor series
expansion from theta, that is, theta u equal to thetas plus As into u minus ws, where u is
the input from the camera, ws is the weight associated with a specific neuron, that is,
what | am trying to do is that like a Cartesian space is a 3-D space, | take a 3-D neural
lattice (a neural lattice is a 3-D neural lattice) and each neuron represents a discrete cell in

the Cartesian space.

Then, within this discrete cell, | define a linear relationship using Taylor series first-order
expansion, which is theta. The actual theta is thetas. This thetas is the specific discrete
cell. The center of the discrete cell is correlated to thetas in the joint space and s is the

Jacobean matrix, u is the input from the camera and ws is the weight associated with the



specific neuron that we are talking about, that discrete cell. So, s represents the s th
neuron, theta is the zero-order term, w is the neuronal weight, and s is the Jacobian
matrix. This is the idea of forming a map between input and output. Now, what we are

trying to learn is a cluster.

We will construct a 3-D neural lattice and this 3-D neural lattice, first of all, must capture
the robot workspace. Obviously, the robot workspace may be a 3-D workspace, exactly
cubical. There are two ways we can do the cluster. In one case, we can form a cluster
formation only in the Cartesian space and the other case is the Cartesian and joint space
together — we can also do that. After doing that, we can actually make sure given a target
position, how the robot moves or given a target position, how the end effector moves to

the target position through learning. That is what we will now learn.

(Refer Slide Time: 49:05)
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(Refer Slide Time: 49:28) What you are seeing is how a 3-D neural lattice is learning a
Cartesian workspace. You can easily see that the data is coming from Cartesian
workspace. For those who could not follow this, 1 will do it again. You can easily see this
(Refer Slide Time: 49:53) and you can easily see how the topology of the Cartesian
workspace is being learnt by a 3-D neural lattice. This is the first one. Now, | will
combine the Cartesian space and joint space and again, we will try it. We will see how



that learning takes place (Refer Slide Time: 50:23). You can easily see that the 3-D
neural lattice learns the workspace of a robot manipulator very accurately and this is
much better actually in this case when we combine the Cartesian space and joint space
and finally, using this notion, I will show you how a robot will actually capture (Refer
Slide Time: 50:48)

This is my target and this is my end effector and it moves around it and it goes until it
exactly converges. You see that it has exactly converged now. For those who did not
follow, | again start this (Refer Slide Time: 51:18). You see that this is my end effector
and it is going to try to reach this target. It goes very close and finally, it has reached
exactly. You can see now that this has exactly reached. Using Kohonen SOM, we can do

many things. First of all, let me summarize. Before | summarize, let me....

(Refer Slide Time: 52:07)
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Using a Kohonen lattice, we can do many things. One of the things that | will teach you
in this course is how to do system identification. We can easily do system identification
and some of the difficult tasks like visual-motor coordination. We will take these two
topics exclusively when we go into detailed application of neural networks in intelligent

control.



(Refer Slide Time: 52:46)
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Let us now summarize what we discussed today. For a Kohonen SOM, first what we
have to do is initialize. We select a specific lattice, a Kohonen lattice. It can be 1-D, 2-D,
3-D or even higher dimensional lattice. Then, we assign the associated weight vector with
each neuron of the lattice randomly. Usually, the associated vector of each neuron has the
same dimension as that of the input data or input vector. You draw a sample x from the

input space randomly and then excite all the neurons, find the winning neuron.

(Refer Slide Time: 53:36)
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Then after you find the winner, you do the weight update. This is actually the Kohonen
learning algorithm (Refer Slide Time: 53:39); this is the sum and substance. It contains a
very important item called neighborhood function h;j i. As I told you in the beginning of
the learning, the neighborhood function is adjusted in such a way that almost all the
neurons in the lattice take part in decision-making and slowly as learning progresses, very
few in the nearest neighborhood of the winning neuron take part in the decision-making.
Then, we continue the step from 2 to 4 until the training is over. Finally, when training is
over, we can easily see that a Kohonen lattice has actually learnt the topology of the

workspace. Thank you very much.



