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Recurrent Networks: Real Time Recurrent Learning 

This is the tenth lecture of the first module. We will be discussing today the second part of 

recurrent networks. 

(Refer Slide Time: 00:29) 

 

The subjects to be covered in this section … we will revisit back propagation through time 

algorithm that we discussed in the last class and then we will introduce a real-time recurrent 

learning algorithm. The previous algorithm that we introduced in the last class was offline and 

this is online. This was an offline in the sense that we collect the data a priori from a system and 

then model the system, whereas we collect data online from the system, that is, as we collect the 

data, we learn the model of the system. Then, we will see an example of system identification 

using RTRL and we will compare with the previous result, that is, simple back propagation, back 

propagation through time and RTRL. 



(Refer Slide Time: 01:46) 

 

As I said, recurrent network means you have all these feedbacks. These are your individual 

neurons and the neuron output goes as feedback to all these when they become input to the 

neuron. This is a feedback connection. Each neuron is connected and all the neuronal responses 

are fed back to the input. This is called fully connected recurrent network. Similarly, here also, it 

is almost the same structure. If you look at this, the difference between this and this is that we 

have a self-feedback here. That means I take from here and put it here, but in this case, I do not 

use this self-feedback. This one (Refer Slide Time: 02:52) goes only to this neuron and this 

neuron. This is a fully recurrent network, both are, but this is with self-feedback and this is 

without self-feedback, that is, each neuron is connected to each other in feedback.  



(Refer Slide Time: 05:26) 

 

We also discussed what is feed-forward versus recurrent network. If you look at a feed-forward 

network, let us say, a discrete dynamic, a mathematical form of a dynamic is y t is a function of y 

t minus 1 and f is a nonlinear function and g is g of y t minus 1 (this is another nonlinear function 

of y t minus 1) into u t minus 1. This is a specific type of nonlinear dynamics. Obviously, y t is a 

function of y t minus 1 as well u t minus 1. In a feed-forward network, if I model this dynamic, 

how do I do it?  

I have a feed-forward network. This feed-forward network can be a back propagation network or 

a radial basis function network and the output is computed while inputs are the previous actual 

output of the system and the input to the system, that is, u t minus 1. This is the system output 

(Refer Slide Time: 04:27) and not the network output. This is system output at instant t minus 1. 

From the system, I take the output, which is y t minus 1, and what is input to the system is u t 

minus 1. Based on that, I predict what the system output at t is.  

This is the predictive model using a feed-forward network for this type of dynamics, but if I want 

to capture this dynamic using a recurrent network, the structure is that I only give input and I see 

what is at y t. What you see is that this particular network has no memory. Hence, this is a static 

network, whereas this has internal memory and so this is very much like a dynamic system; in a 

dynamic system, we give input and see the output. A system is dynamic when it has internal 



memory. A recurrent network is more like a dynamic system, whereas a feed-forward network is 

a static network simply constructed for a function approximation.  

(Refer Slide Time: 06:25) 

 

We discussed the BPTT example last time. We also considered this particular example. We have 

two neurons connected to each other. This is the connection from first neuron to second neuron; 

this is connection from second neuron to first neuron with self-feedback w11, w22. If you look at 

this particular thing, we also discussed last time that the output, the response x1 t plus 1…. This t 

is not time; t plus 1 is the time step; t is a numerical integer – 0, 1, 2, 3, 4, 5, and so on. So, this is 

time step. 

So x1 t plus 1. In discrete dynamics, we do not represent t in terms of absolute time; it is in terms 

of time step. So, x1 t plus 1 is a function of w1i xi t. You can easily see x1 t plus 1, x1 t plus 1 

here (Refer Slide Time: 07:28) is a function of w12 into x2 t plus w11 into x1 t. So, w11 x1 t, w12 

x2 t, and a function. Normally, we use a sigmoidal activation function. f is sigmoidal activation 

function. Here it is (Refer Slide Time: 07:59). Similarly, in this case, x2 t plus 1 is a function of 

w21 and w22. w21 is multiplied with the corresponding input signal x1 t and w22 is multiplied 

with corresponding input signal x2 t. This is our forward response of the network. 



(Refer Slide Time: 0826) 

 

In the previous one (Refer Slide Time: 08:32), you see that I can put in the recursion. What is the 

meaning of recursion? I put t = 0, so x11 in terms of 0, x12 in terms of 1. Similarly, x13 is in terms 

of 2. This is a recursive relation. This is a recursive relation (Refer Slide Time: 09:00). What I 

am trying to do is that we represent the response of the network at specific time – t = 1 in terms 

of t = 0. Similarly, the response at t = 2 in terms of t = 1 and we unfold the network according to 

the application. So n plus 1 time step we go and expand the network.  

The objective here is that we convert a feedback network to feed-forward network. Unfolding 

network means convert a feedback network to a feed-forward network. That is the objective of 

unfolding.  



(Refer Slide Time: 10:12) 

 

Then, we define as usual a cost function, which is the instantaneous error at an individual node 

and sum over all the nodes and then over time steps. As you see, our cost function in this 

particular case is a kind of batch update cost function, because the back propagation through time 

is an offline technique, that is, I give to the system a sequence of inputs. If this is my system, I 

give a sequence of inputs, that is, u 0, u 1, and so on. Then, I observe the sequence of outputs, y 

1, y 2, and so on. Then, I collect this data. Over the total batch, for example, I have 200 

sequences of input, so we have 200 sequences of input/output data. Over those data (Refer Slide 

Time: 11:24), we define the cost function. This is a kind of batch. I would not say batch update, 

but it can be likened to a batch update, because that is how the back propagation network works.  



(Refer Slide Time: 11:43) 

 

We showed how after you convert a feedback network to a feed-forward network, you simply 

apply the back propagation generalized delta rule. If I apply the generalized delta rule, we found 

that this is the generalized delta rule. Applying the generalized delta rule…. I find out the error 

here (Refer Slide Time: 12:21), I back propagate this error to this and update these weights. I 

found out what should be the delta w in this layer. Then, the error back propagated through this 

weight is added with the error at the instant n at both the nodes. Then, again, the combined error 

is back propagated until I reach the last layer here. That is what we do in back propagation 

through time.  

That is what you are seeing here (Refer Slide Time: 13:00). Error computed from one layer is 

back propagated to the preceding layer. This is the n th layer. From the n th layer, we go to n 

minus 1 layer and then we go subsequently until we find the delta w at every layer and then we 

sum all these delta ws and then update the weight like batch update. We have already discussed 

this. Today, we will discuss real-time recurrent learning. What is the difference, real-time 

recurrent learning?  



(Refer Slide Time: 13:41) 

 

It is real time and that means I do not have to collect data over time from the system and then 

learn the model. No, I learn the model as and when the data comes; most of our control problems 

must be dealt online. In that sense, real-time recurrent learning has better utility than back 

propagation through time. As usual, as I have already said, in back propagation through time, the 

network is rolled over in time to construct a feed-forward network. The generalized delta rule is 

applied to update the weights. That is what we discussed just now. 

In contrast, RTRL, that is, real-time recurrent learning, the gradient information at t is forward 

propagated, that is, I do not construct a feed-forward network; rather, at t constant, whatever the 

gradient information I have, I forward propagate that gradient information to time step t plus 1. 

The gradient information at t plus 1 is forward propagated to compute the gradient information at 

t plus 2 and so on. This is the difference. The gradient information in back propagation through 

time is backward propagated through time, whereas gradient information in case of RTRL is 

forward propagated in time. This is the major difference. Of course, RTRL is a real-time or 

online technique, whereas this is an offline technique.  



(Refer Slide Time: 15:39) 

 

Now, we will take a very simple example. We also took a simple example for back propagation 

through time. We have a single neuron, I have input x t, the output is y t plus 1, we have two 

weights w and g and this is a unit delay. The input to the neuron is this (Refer Slide Time: 

16:03). This is the input to the neuron. That is w x t, which is input, plus g y t, where y t is the 

previous output. That means this network has an internal one-step memory. x t plus 1 is w x t 

plus g y t. Then, this neuron has a nonlinear activation function. The output of the neuron, which 

is y t plus 1, is a function of s t plus 1, where f h is a sigmoidal activation function. These are the 

normal structures or normal ways to compute the response of a recurrent network that we have 

already seen. 



(Refer Slide Time: 16:57) 

 

Now, you see that we will not compute a cost function like the batch update that we do in back 

propagation network or back propagation through time. This is instantaneous. The cost function 

is simply a quadratic function of the instantaneous error, that is, half (y d t plus 1 minus y t plus 

1) square. This is desired and this is the actual output of the network (Refer Slide Time: 17:44). 

In this network that we showed, we have only two weights w and g. Using gradient descent 

algorithm, how I write this weight is w t plus 1 is equal to w t minus eta del E t plus 1 upon del 

w. 

In a simple back propagation network, we did not put t plus 1 as error. The error is not a function 

of t plus 1, but in recurrent network, it is a function of the time step. Why? It is because it has 

internal memory and that is why these are dynamic networks. Similarly, g t plus 1 is g t minus 

eta del E t plus 1 upon del g. The problem here is that for a recurrent network, how do we 

compute the gradient error function with respect to weight? That is what we will see now. 



(Refer Slide Time: 18:42) 

 

If you differentiate E with respect to w, you have as usual y d t plus 1 minus y t plus 1 and minus 

sign will come because you again differentiate y t plus 1 with respect to w. There is a minus sign 

(Refer Slide Time: 19:02) and this minus comes due to that. Just for those who did not remember 

what is the meaning of E, it is simply half of y d t plus 1 minus y t plus 1 whole square. If you 

differentiate E with respect to w, you have this term coming out. Then, you differentiate this 

term with respect to w and so, minus comes out there.  

Now, we will define two terms, which are actually gradient terms. Pw t plus 1 is the gradient 

term at t plus 1 and this term is defined as del y t plus 1, not del E. Please note we are not 

defining as del E but it is del y – response of the unit or neuron. So, it is del y t plus 1 upon del 

w, the partial derivative. Similarly, Pg t plus 1, g is another weight…. If I differentiate y t plus 1 

with respect to del g, then it is Pg with the assumption that Pw 0 is 0. What is Pw 0? Pw 0 is del y 

0 upon del w. Similarly, Pg 0 is del y 0 upon del g. So, the partial derivative at time instant 0, 

that is, the initial condition, is 0. 

The objective is to derive a recursive relation between Pw t plus 1 and Pw t and Pg t and 

similarly, Pg t plus 1 in terms of Pw t Pg t. This is theme of real-time recurrent learning (RTRL), 

that is, I want to find a relationship Pw t plus 1 in terms of Pw t and Pg t. So, I have two gradient 

terms. You must know that if I have N weights and one output, then the gradient term at every 



instant should be N. More number of responses, based on that, we will have more gradient 

information at every time. I will discuss this that, but in this case, here (Refer Slide Time: 22:11), 

I have only one output, two weights, and only one neuron, which has only one response. 

Obviously, at every instant, the number of gradient terms will be 2. That is what we will do now. 

We will relate Pw t plus 1 and we will try to compute the gradient term at t plus 1 based on the 

gradient term in the previous instant at t.  

(Refer Slide Time: 22:45) 

 

Let us now compute. This is Pw. I can write here that this is actually Pw t plus 1 by definition. 

So, Pw t plus 1, which is this particular term, is y…. I can differentiate y with respect to s t plus 1 

because y t plus 1 is f of s t plus 1 and then del s t plus 1 upon del w. Since y t is a sigmoidal 

activation function of its input s t plus 1, obviously, we know this particular term (Refer Slide 

Time: 23:25) is simply y t plus 1 into (1 minus y t plus 1) due to sigmoidal activation function. 

We can verify that.  

When this is the structure, you differentiate this with respect to s t plus 1, then we will have this 

particular term (Refer Slide Time: 23:50). Similarly, del s t plus 1 by del w…. So, s t plus 1 is 

this; s t plus 1 is w x t plus g y t and I have to differentiate this with respect to w. By definition, 

when I differentiate this particular term with respect to w, I get first x t and because x t is an 

input, I cannot differentiate input with respect to w because the input is not a function of w and 



output is a function of w or any neuronal response is a function of input. Try to remember that 

this x t is not a function of w. Hence, when I differentiate this term, I only get x t with respect to 

w. Similarly, in g y t, g is simply a weight and it is not a function of w. Simply, it is g del y t 

upon del w by differentiating this (Refer Slide Time: 24:51) and by definition, the first term is x t 

plus g and by definition, this one is Pw t, the gradient information at time t – one of the gradient 

information.  

What you get is Pw t plus 1 is finally y t plus 1 into 1 minus y t plus 1 into x t plus g Pw t. What 

you are seeing is that Pw t plus 1 is written in terms of Pw t. So, the gradient information at t plus 

1 is a function of gradient information Pw t. If I have gradient information at t, I can easily 

compute gradient information at Pw t plus 1. If I know the gradient information at t, then I can 

compute what the gradient information at t plus 1 is. This is the basic theme of real-time 

recurrent network. Once you understand this, you can derive any complex network.  

(Refer Slide Time: 26:16) 

 

This is what we derived. Similarly, you can see the other one is also in the same way, which is 

this one in this side (Refer Slide Time: 26:22). This is Pg t plus 1 and this one is actually Pw t 

plus 1. Pw t plus 1 is a function of Pw t and Pg t plus 1 is a function of Pg t. Finally, we can write 

del E t plus 1 by del w is simply this. This is the error term and this particular term is the gradient 

information at t plus 1. Now, it is a very simple relationship.  



(Refer Slide Time: 27:04) 

 

Now, weight update law. This is the final weight update law (Refer Slide Time: 27:11). What 

you saw is that in this weight update law, w t plus 1 is simply this previous weight into the 

instantaneous error t plus 1 into learning rate and gradient information at t plus 1. How do I 

compute this gradient information Pw t plus 1? Using this recursive relationship (Refer Slide 

Time: 27:36), that is, Pw t plus 1 is computed using the gradient information that is already 

computed at t. That is Pw t into g plus x t, input at t into this particular information.  

Similarly, Pg t plus 1 is also computed here: the gradient information at t plus 1 – second 

gradient information using the previous. How do we go about it? In the beginning, first, at 0 

instant, we assume Pw 0 and Pg 0 to be 0. Once we compute that, then we can easily compute 

what is Pw 1. Once Pw 1 is computed, (Refer Slide Time: 28:28) Pw 2. You see that if I put t = 0, 

then Pw 1 is y 1 into 1 minus y 1 into x t, which is x 0, plus g Pw 0 and this is 0 and so on. Once I 

have P 1, I can compute P 2, with P 2, P 3 and it goes on like this. I start from P 0 and then 

compute P. Let me not confuse you again like back propagation. I will put in terms of forward 

propagation. So, I have Pw 0, this is 0. From there, I compute Pw 1and from there, I compute Pw 

2 and so on. This is called forward propagation of gradient descent algorithm. 



(Refer Slide Time: 29:25) 

 

We are now ready to discuss a little more complex network, which was a simple last one, a 

single neural network. Now, I have three neurons 1, 2, 3. Are you aware of how we put the 

network weights? You see that this is the second neuron. The weights coming to this neuron is 

all initialized w2 and from where is it coming? From 2. This is w2. From where is it coming? 

From 1, so this is w21. Similarly, this is w2 and coming from 4, w24. There is no connection 

between 2 and 3. That means this is partially connected and not fully connected. Fully connected 

means there should be at least a connection from here to here. Similarly, w4 is connected from 2 

and 3 and not from 1. These are the conventions. You see that w43 is a connection weight to unit 

4, neuron 4 from unit 3; similarly, w34 is a connection weight from 4 to 3. Of course, w33, w22 

and w44 are all self-feedback. They are connected self-feedback. We assume that all these 

connections have single delay.  



(Refer Slide Time: 31:15) 

 

Based on that assumption, we will write what is the forward response of the network. s2, s3 and 

s4 are the total input sum to the neurons 2, 3, and 4, respectively (Refer Slide Time: 31:20). So s2 

t plus 1 is w21 x1 t plus w22 x2 t plus w24 x4 t. You can see that here (Refer Slide Time: 31:38). 

(Refer Slide Time: 31:39) 

 

The input to the network 2 I can say is s2 t plus 1, which is the input to the neuron 2, is w21 into 

x1 t plus w22 into x2 t plus w24 x4 t. There are totally three input signals to this neuron 2. This is 



the summed input to the neuron. Based on sigmoidal activity, we compute x2 t plus 1 is f of s2 t 

plus 1 (Refer Slide Time: 32:47). For the forward response of the network, you just compute 

what is s2 t plus 1, s3 t plus 1, s4 t plus 1. After computing this sum, the sum of the total input to 

the neuron, then the final response is the sigmoidal activation of the total sum input. Finally, the 

response of the network you will get here is y t plus 1, which is x4 t plus 1 (Refer Slide Time: 

33:20).  

(Refer Slide Time: 33:22) 

 

That is what we write here y t plus 1 is x4 t plus 1 All activation functions are sigmoidal f.  



(Refer Slide Time: 33:34) 

 

Derivation of sigmoidal activation function. The weight update law is as usual a gradient descent 

law, but now my cost function is a time function that is dynamic, because E t plus 1, which is y t 

plus 1…. So, y t plus 1 is a function of y t as well as the other neuronal internal states. That 

makes the difference. E t plus 1 is the instantaneous quality function, which is half into (y d into t 

plus 1 minus y t plus 1) square. This is again instantaneous error because this is real-time 

recurrent learning, that is output. I want to now compute E t plus 1 upon del wjk. What is wjk? It 

can be anything.  

How many weights do we have here? If you see here (Refer Slide Time: 34:58), we have a total 

of nine weights – 1, 2, 3, 4, 5, 6, 7, 8, 9. Totally, there are nine weights. Obviously, with respect 

to x4 or y, we have nine gradient information at any instant. Similarly, with respect to 2, here 

also, there is gradient information; with respect to x2, we have total connection here and we can 

compute all the weights actually, because x2 can be a function of all the weights, because that is 

the meaning of feedback. x2 t plus 1 is a function of all the weights. This is very important to 

understand.  

del E t plus 1 del wjk is obviously…. If I want to differentiate this with respect to any typical 

weight wjk, we get here, this particular term (Refer Slide Time: 36:06), error. When I 

differentiate this with respect to w, the negative comes out and we will define this partial 



derivative del y t plus 1 upon del wjk, this partial derivative. Instead of y, we will write x4, 

because that is the convention we will select that for all active neurons, the output is x. So, x1, 

x2, x3, x4, as many neurons as there, that many subscripts will be there for x. y is x4 t plus 1 and 

we will define this particular function as Pjk 4, which means the differentiation of x4 t plus 1 

with respect to wjk is Pjk 4 to the power of t plus 1. It is the same thing when I compute at t, it 

will be t, t minus 1 will be t minus 1, but the way to write this is Pjk 4. 

(Refer Slide Time: 37:19) 

 

Similarly, if I want to write del x3 t plus 1 by del wjk will be Pjk 3 t plus 1. This is where we 

define the gradient information. As usual, we showed in the simple recurrent network with one 

neuron. Similarly, if you go on computing this particular thing, del y t plus 1 upon del wjk, then 

you will differentiate y t plus 1 with respect to s 4 t plus 1. This is a function of s 4 t plus 1. If 

you differentiate… and then s4 t plus 1 with respect to wjk if you differentiate…. If we want 

differentiate this x4 with respect to wjk, you can easily see that previously, s4 is this particular 

term.  



(Refer Slide Time: 38:32) 

 

If I differentiate del s4 t plus 1 by del wjk, you can easily see I am differentiating this particular 

term with respect to del wjk. So, this is a constant term w42 and you differentiate x2 t with respect 

to wjk. By definition, this is Pjk 2 t (2 will come here) t. The second one is w43 – a constant term 

again. Then, you differentiate x3 t with respect to wjk. Then again, this is Pjk 3 t plus and again 

here, this is a constant w44 and P again with respect to 4 and jk t. By definition, we are 

computing s4 in terms of gradient information in the previous step.  

By doing that, you easily see that Pjk 4 t plus 1 is this particular term (Refer Slide Time: 39:55) 

and the extra term that is coming here is…. If you imagine that jk by chance is 42, 43, or 44, it is 

not actually complete information; I made a mistake. wjk can be either 42 or 43 or 44. If that is 

the case, then obviously, if it is 42, then differentiation of this will be also x2 t, simply x2 t. If jk 

is 43, then the differentiation of this with respect to wjk besides this term is also x3 t.  



(Refer Slide Time: 40:58) 

 

This is what is the last term, that is, deltajk is 1 if j =o 4. Then, this is 1 into xk, that is, either x2 

or x3 or x4. That completes how to compute Pjk 4. We learnt how to compute the gradient 

information, which is Pjk 4 at t plus 1 with respect to the other gradient information at t, but, 

what about this? In this particular expression, there is also gradient information – Pjk 2 t, Pjk 3 t, 

Pjk 4 t. We already derived Pjk 4 t. We have to also find the gradient information, that is, how do 

we relate Pjk 2 t plus 1 with respect to all other gradient information? This also we can always 

write because this is simply….  



(Refer Slide Time: 42:13) 

 

If I go to the previous page and if I write Pjk 2 t plus 1 will be f s2 t plus 1, derivative of that. x 4 

t plus 1, x 2 t plus 1 into 1 minus x 2 t plus 1 into 1… into…. You can easily see that I have to 

differentiate now this particular term (Refer Slide Time: 42:53) with respect to jk. It is the same. 

What we computed here, this would be simply w21 and this will be P 1. You must know that x1 

is an input. So, I cannot actually write this. 

(Refer Slide Time: 43:14) 

 



If I differentiate this with respect to wjk, x1 t is an input. Input is not a function of wjk and so, we 

will omit that. First, we will start from here. That is w22 Pjk 2 t plus w24 Pjk 4 t plus deltajk xk k. 

If jk is either 21 or 22 or 24, then the corresponding term x1 t or x2 t or x4 will appear here. This 

is your Pjk 2 t plus 1 in terms of the other gradient information at t. Similarly, as we saw, we can 

find out the gradient information recursive relation for Pjk 3, Pjk 4, and so on (Refer Slide Time: 

44:27). Once we do that…. 

(Refer Slide Time: 44:30) 

 

Similarly, we got Pjk 3, Pjk 2 and then, we do not have to go exclusive. For example, we simply 

say jk. Instead of jk, if I write 31, how do I compute?  



(Refer Slide Time: 44:50) 

 

You can easily see P31 4 t plus 1 was this particular thing.  

(Refer Slide Time: 44:57) 

 

Now, we go to system identification: an example. We have taken this example earlier in a 

previous class. This is a linear dynamical discrete system. y t plus 1 is minus 0.5 y t minus y t 

minus 1 plus 0.5 u t, represented by a real-time recurrent network. How do I represent this 

network? We have already explained. In a feed-forward network, this will be y t from the 



system, u t, this is y t minus 1 and one more is u t. We have three inputs and the output is y t plus 

1. In contrast, the recurrent network is a memory network because it has its own internal 

memory, u t is the input and y t plus 1 is the output and it has its own (Refer Slide Time: 46:19). 

Here, the first one is single delay and second one is double delay. What does it mean?  

I can write now y t plus 1 is w3 u t plus w1 into this is a single delay, so, w1 into y t – single 

delay and double delay is w2 into y t minus 1. If I match this into this, you can easily see… and 

because this is a linear discrete system, in this case, y t plus 1 is simply w3 u t plus w1 y t plus 

w2 y t minus 1. This is linear. This network response is this, the network has this response, linear 

dynamic. Obviously, I do not know w3, w1 and w2 of this network. What I know is that I can 

generate data from this particular mathematical model. I can use my MATLAB or C language or 

any computing program and generate u t, which is a random number between 0 and 1.  

Then, given u0, u1, u2, u3 and u4, I compute correspondingly what are y1, y2, y3, y4, y5, and so 

on. I compute this data and give those data online, that is, I compute one, I give one input, find 

the output, give that here, match the error, back propagate, update the weight, again generate a 

new data from this model, give it to this network, compute the output, and match the actual 

output and go on like that. Finally, what I should see is that w3 should be 0.5, w1 should be 

―0.5, and w2 should be ―1. That should be the result.  

(Refer Slide Time: 49:06) 

 



We will see what is happening here. The response of the system is w1 y t plus w2 y t minus 1 

plus w3 u t, where w1 and w2 are unknown weights. The cost function is instantaneous cost 

function. So, wi t plus 1 is wi t minus this is gradient descent rule (Refer Slide Time: 49:23). As 

usual, real-time recurrent learning means we put our usual error term into gradient information at 

t plus 1. We have to now compute Pw1 t plus 1 in terms of the gradient information in the….  

(Refer Slide Time: 49:49) 

 

If you look at that, it is very simple here.  



(Refer Slide Time: 49:53) 

 

If I want to differentiate this particular thing, del wy t plus 1 by del w1, if you see here (Refer 

Slide Time: 50:02), if I differentiate this with respect to w1, the first one is…. I am 

differentiating with respect to w1, so w1 into…. If I define, this is simply Pw1 t plus.… Here also, 

if I differentiate with w1, I simply have y t. If I differentiate this with respect to w1, I get first y t 

and then w1 into del y t upon del w1, which is this, plus w2 is not a function of w1, so simply w2 

into Pw1 t minus 1 plus here, of course, there will be no term because neither of these is a 

function of w1. This is actually your this with respect to w1, that is, Pw1 t plus 1.  



(Refer Slide Time: 51:32) 

 

Now, this is the same thing. y t plus w1 Pw1 t plus w2 Pw1 t minus 1, which we showed here 

(Refer Slide Time: 51:40). Similarly, we can find out what is Pw. How many weights do I have? 

I have three weights. We will have three gradient descent information Pw1, Pw2, Pw3.  

(Refer Slide Time: 51:55) 

 

After we found the RTRL rule, now we will generate the data. What we did is that we generated 

100 data points using the dynamic model. Here, u t was a random number between 0 and 1. You 



can easily see that all these blues are the inputs and correspondingly, the output was from ―2 to 

2.5.  

(Refer Slide Time: 52:30) 

 

Using RTRL for one sequence of time, these are the final weights. You have 100 data sets. Over 

that, when you train, finally, you get after training w1 is ―0.5, w2 is ―1 as required, and w3 is 

0.5. What you are seeing here is that in this particular network, I only give recurrent network in 

real time. My input is only u t, whereas if I would have trained the same data set, I should have 

three input to the network. So, this is a 3 by 1 and this is a 1 by 1 network. This is more like a 

dynamic network. So, the recurrent network is a dynamic network.  



(Refer Slide Time: 53:25) 

 

This shows the RMS error versus the number of epochs. You can easily see how the RMS error 

is decreasing and going towards 0 and the number of epochs is almost 1,500.  

(Refer Slide Time: 53:41) 

 

You see how the weights are evolving. In the beginning, all the weights were initialized to be 0 

here. Initially, w1 was 0, w2 was 0 and w3 was 0; this is initial. As the training progressed, the 

weight got settled at this weight, which is w3, settled at 0.5; this is 0.5 value (Refer Slide Time: 



54:12) and w1 is settled at ―0.5, and w2, which is this one, is settled at ―1 – these are the 

desired.  

(Refer Slide Time: 54:29) 

 

This is the error surface. If you look at the error, how in the error surface, the weights glided to 

the bottom-most position, the global minimum. In the linear network, we always reach a global 

minimum using gradient descent.  

(Refer Slide Time: 54:44) 

 



We compare the same system that we took. We trained it using simple back propagation through 

time as well as real-time recurrent learning. After 2,000 epochs, we found a simple back 

propagation gave 0.001 RMS error, back propagation through time gave 0.005 – even more, 

whereas real-time recurrent learning is 0.009. You see that the dynamic network does better and 

it captures the dynamics better. 

(Refer Slide Time: 55:34) 

 

In this lecture, we learnt the architecture of a recurrent network. We also presented a training 

algorithm using RTRL (real-time recurrent learning) and this is an online learning algorithm. We 

also compared. We took a simple example and on that, we compared how three different learning 

schemes work. As this is a course on intelligent control, I hope that you appreciate the system. At 

least in the beginning, I have presented neural network as a system identification tool because 

that is a better way to look at neural network models from a control prospective. Thank you very 

much.  


